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Multi-objective optimization problems (MOPs) are commonly confronted in

various fields, such as conditionmonitoring for renewable energy systems, and

ratio error estimation of voltage transformers. With the increase in decision

variables of MOPs, their exponentially growing search spaces are challenging

for existing evolutionary algorithms. To handle this challenge, this paper

suggests a coarse-to-fine large-scale evolutionary multi-objective search,

called CF-LEMO. In the coarse search phase, CF-LEMO performs evolutionary

search on both the original and transformed large-scale MOPs alternately,

accelerating the population to approach the Pareto-optimal fronts. In addition,

to alleviate the issue of diversity loss, we design a diversity preservation

mechanism to preserve a well-distributed archive to support subsequent

fine search. In the fine search stage, CF-LEMO conducts local search on

the current population to mine high-quality solutions, which are used to

update the population and archive. Then, based on the archive, the multi-

objective optimization based on decomposition is employed to evolve all

decision variables, so as to obtain a population with good convergence and

diversity near the Pareto-optimal fronts. To assess the effectiveness of the

proposed CF-LEMO, we compare its performance against four representative

baseline algorithms on a benchmarks suite LSMOP1-LSMOP9 with 2 and 3

objectives. The empirical results confirm its super performance by significanlty

outperforming all the four competitors on 12 out of 18 benchmarks. Moreover,

the experiments demonstrate the superior performance of CF-LEMO in sovling

multi-objective ratio error estimation problems with up to 6,000 decision

variables.
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1 Introduction

Multi-objective optimization problems (MOPs) are common
in diverse fields (Abdel-Basset et al., 2021; Li T. et al., 2021;
Jiang et al., 2021; Wang et al., 2021; Liao and Li, 2022;
Zong et al., 2022). For instance, ratio error (RE) estimation
of voltage transformers involves three conflicting objectives,
e.g., the total time-varying REs, the sum of the RE variation,
and the variance of the phase angle RE variations (Fadaee
and Radzi, 2012; He et al., 2020). Scheduling workflows for
cloud platforms need to balance makespan and monetary cost
(Chen et al., 2021; Belgacem and Beghdad-Bey, 2022). They are
mathematically constructed as:

P1:{
Minimize ⃗f (x⃗) = [f1 (x⃗) , f2 (x⃗) ,…, fm (x⃗)] ,
S.t. x⃗ ∈Ω,

(1)

where x⃗ = (x1,x2,…,xn) denotes a decision vector, m and

n respectively indicate the count of objectives and decision
variables, Ω ⊆ ℝn represents MOP’s feasible area. The objective
function ⃗f(x⃗) is to map each n-dimensional feasiable decision
vector to anm-dimensional objective vector.

Real-world MOPs often involve hundreds or thoudsands of
decision variables, which are generally termed large-scale MOPs
(LSMOPs). With the increase in decision variables of an LSMOP,
its search space grows exponentially and fitness landscape
becomes more complex. During the past 3 decades, the studies
on large-scale multi-objective optimization have attracted
increasing enthusiasms, and evolutionary algorithms have
been extensively accepted as one practical technique to resolve
LSMOPs (Yi et al., 2020; Hong et al., 2021; Omidvar et al., 2021;
Tian et al., 2021). So far, scholars have suggested a large number
of evolutionary optimization approaches to solve LSMOPs,
and these existing approaches can be roughly partitioned into
three categories (Tian et al., 2021): powerful search mechanism,
decision variable decomposition, and problem transformation.

The first category is to develop powerful search mechanisms
to reproduce superior quality offspring populations by evolving
all the decision variables. For instance, to tackle thousands of
decision variables, Hong et al. used a probabilistic prediction
model to enhance population convergence while employing
importance sampling to maintain the population diversity
(Hong et al., 2022). Ghorbanpour et al. proposed an integer
programming-based initialization, crossover, and mutation
operators to resolve multi-objective energy disaggregation
problems (Ghorbanpour et al., 2021). Yang et al. suggested a
fuzzy evolution strategy to blur LSMOPs’ decision vectors to
compress the search space, such accelerating the convergence
of populations (Yang et al., 2021). Huang et al. suggested an
ensemble of multiple offspring reproduction and environmental
selection operators to handle the massive volume of search
space in the voltage transformer ratio error estimation

problems (Huang et al., 2021). Rizk et al. suggested a multi-
orthogonal opposition scehme to diversify offspring solutions
(Rizk-Allah et al., 2020). Li et al. formulated the power flow
optimization with uncertain wind and solar energy into multi-
objective problems, and introduced constraint handle technique
to resolve it (Li et al., 2022). Kropp et al. proposed a sparse
population sampling approach to initialized population for large-
scale sparse multi-objective algorithms (Kropp et al., 2022).
Liu et al. employed a feedforward neural network to learn a
gradient-descent-like direction to reproduce offspring solutions
for efficiently tackling LSMOPs (Liu et al., 2022).

The second category is based on decision variable
decomposition. The approaches belonging to this category
often divide the decision variables into multiple groups,
and then evolve the decision variables in different groups
alternately. For instance, Antonio et al. suggested to randomly
divide decision variables into multiple groups, and employed
the cooperative coevolutionary framework to evolve each
group of decision variables (Antonio and Coello, 2013).
Sander et al. employed differential grouping techniques
Omidvar et al. (2017) to detect the interactions among decision
variables, and assigned the ones interating with each other into
the same group (Sander et al., 2018). There also exist some
works (Ma et al., 2016; Zhang et al., 2018; Chen et al., 2020)
performing variable analysis to decompose decision variables.
Yang et al. suggested a coarse-to-fine decomposition to divide
the reservoir flood control problem into a sequence of sub-
problems being solved simultaneously (Yang et al., 2022).
Although random grouping approaches are simple and easy,
they ignore the interactions among decision variables, which
likely push the populations to local optimal regions. Besides, the
differential grouping technique and variable analysis consume
considerable function evaluations to group decision variables,
which is inefficient to solve real-world LSMOPs.

The third category is to reformulate the original LSMOPs
into simplified ones, and perform evolutionary search on both
the original and transformed problems. For instance, Zille
et al. suggested a weighted optimization framework (WOF)
to transform orginal LSMOPs into small-scale multi-objective
weight optimization problems by assigning a weight to the
decision variables in the same group (Zille et al., 2018). Liu et al.
improved WOF using a random dynamic grouping approach
to adjust group size and a multiple search strategies assisted
particle swarm optimization (Liu et al., 2020). Li et al. integrated
the problem reformulation technique with decomposition-based
MOEAs to handle the growing complex relationships among
decision variables (Li L. et al., 2021). He et al. used the decision
vectors of obtained solutions to reformulate the original LSMOPs
into small-scale single-objective problem (He et al., 2019). Qin
et al. suggested to perform directed sampling on solutions nearer
to ideal point for assisting reproducing an offspring population
(Qin et al., 2021).
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Compared with the other two categories of approaches,
problem reformulatation-based approaches are more prevalent
in solving real-world LSMOPs (Feng et al., 2021). On the one
hand, the search spaces of LSMOPs can be drastically compressed
by suitable reformulatation functions to improve algorithms’
search efficiency. On the other hand, problem reformulatation
approaches are handy for inseparable LSMOPswithout deliberate
handling interactions among decision variables. However, these
approaches accelerate the population to only a tiny fraction of
the Pareto-optimal front. Besides, local search shows competitive
capability in solving large-scale single-objective optimization
problems and small-scale MOPs (Tseng and Chen, 2009;
Chen et al., 2015), but is rarely used to solve large-scale MOPs.
Furthermore, recent study (Pang et al., 2022) pointed out a
counterintuitive observation that traditional EMO algorithms
performs better than state-of-the-art LEMO algorithms on some
LSMOPs.

Inspired by the above existing works, we develop a coarse-
to-fine evolutionary search to handle exponentially growing
search spaces of LSMOPs. The proposed CF-LEMO first
carries out coarse search in the simplified search spaces to
quickly approximate a tiny fraction of the Pareto-optimal front.
Meanwhile, to alleviate the issue of diversity loss during coarse
search process, a diversity preservation mechanism is designed
to maintain the archive based on fitness between solutions
and subproblems, such preserving a well-distributed archive
for the subsequent fine search. Then, CF-LEMO leverages
traditional MOEAs, such as local search and decomposition
based MOEAs, to perform fine search on the results of coarse
search, so as to obtain a population with well diversity and
convergence.

We organize this paper as follows. Section 2 elaborates
the proposed CF-LEMO, including problem transformation,
pseudo-codes, and descriptions. Then, Section 3 provides
comparison experiments on benchmark functions and ratio
error estimation of voltage transformers to verify CF-
LEMO’s effectiveness. At last, this paper is concluded in
Section 4.

2 Algorithm design

This section introduces the transformation method to
reformulate the LSMOPs, and details the proposed CF-LEMO.

2.1 Problem transformation

We divide the large-scale decision variabels into g groups,
denoted as (G1,G2,…,Gg), and assign a weight wk to the
decision variables in the kth group Gk. Referring to works
(Yang et al., 2008; Zille et al., 2018), given a fixed decision vector
x⃗, we employ a transformation function ψ(w⃗, x⃗) to reformulate
the original LSMOP in (1) as a small-scalemulti-objective weight
optimization problem as follows.

P2 :

{{{{{
{{{{{
{

Minimize ⃗fx⃗ (w⃗) = [f1,x⃗ (w⃗) , f2,x⃗ (w⃗)) ,…, fm,x⃗ (w⃗)] ,
S.t. w⃗ ∈Φ ⊆ ℝn,

fj,x⃗ (w⃗) = fj (ψ (w⃗, x⃗)) , j ∈ {1,2,…,m} ,
ψ (w⃗, x⃗) ≔ (w1 ⋅G1,w2 ⋅G2,⋯ ,wg ⋅Gg) ,

(2)

Figure 1 provides an intuitive example to the illustrate the
transformation function. Suppose an MOP has ten decision
variables x⃗ = {x1,x2,…,x10}, which are divided into three
groups, denoted as G1 = {x5,x2,x1,x7}, G2 = {x3,x8,x9,x6}, and
G3 = {x10,x4}. For a given decision vector x⃗, after assigning a
weight to all the variables in one group, the 10-dimensional
problem is transformed into a 3-dimensional problem.

Using the above transformation method, an n-dimensional
LSMOP is reduced into onewith g decision variables. If it satisfies
g≪ n, the dimensionality of the original LSMOP is reduced
substantially.

2.2 Description of CF-LEMO

The main process of the proposed CF-LEMO are
summarized in Algorithm 1. CF-LEMO’s main inputs include
the original problem, transformed problem, population size,
and termination condition. After CF-LEMO finishes the
optimization process, it output a population for decisionmakers.

As illustrated in Algorithm 1, CF-LEMO starts with
initializing a set of weight vectors, a random population, and
an empty archive. Notice that the ith element Ai of the archive
stores the solution reserved by the ith weight vector.

In the coarse search phase (Lines 5–21), CF-LEMO
consumes α (0 < α < 1) of the total function evaluations to search
original space and transformed space in turn. When searching
the original space, CF-LEMO performs variantion operator on

FIGURE 1
An example of the transformation function.
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Algorithm 1. Themain process of CF-LEMO.

all decision variables to obtain an offspring population and
environmental selection operator to update the population
(Lines 6–8). It also updates the archive using the current
population (Line 9), and selects m+ 1 well-diversified solutions
(Line 10) to support the search of transformed space.The selected
m+ 1 solutions include m extreme solutions and one solution
with the maximum acute angle to these extreme solutions.
Then, CF-LEMO searches the transformed space as follows.
For each selected solution, it evolves the weight vector of the
transformed LSMOPs to reproduce a weight population (Line
14), and applies each weight vector to the selected solution to
obtain the corresponding solution in the original space (Line
18). Also, the new generated solutions by evolving the weight
vector will update the archive (Line 21).

In the fine search phase (Lines 22–32), CF-LEMO consumes
β− α (α < β < 1) of the total function evaluations to perform
local search (Lines 23–25). During this sub-phase, CF-LEMO
reproduces an offspring population by perturbing the decision
variables one by one (Line 23), and update the population and
archive (Lines 24–25). After the local search, the algorithm
merges the population P and the archive A. If the ith solution Ai
in the archive is better than the ith solution Pi in the population,
Ai will replace the Pi. After that, CF-LEMO employs the
decomposition based MOEA to further search well-diversified
and well-distributed solutions using the remaining function
evaluations.

The pseudo-code of the function UpdateArchive() is briefly
shown in Algorithm 2. Its main inputs are the current
population, the archive, and the set of weight vectors. After this
function runs, a new archive will be returned.

Algorithm 2. Function UpdateArchive().

As illustrated inAlgorithm 2, functionUpdateArchive() first
assigns each solution in the population P to the weight vector
with the best fitness (Line 2). Note that Aj stores all the solutions
assigned to the jth weight vector. Then, this function traverses
the solution set assigned to each weight vector, and retains
a solution with the best fitness value for each weight vector
(Lines 4–6).

3 Experiment studies

In this section, we verify the performance of CF-LEMO by
comparing it with four baselines in the context of a complicated
benchmark functions and 5 test cases on ratio error estimation
of voltage transformers.

3.1 Experimental setup

Comparison algorithms: We choose four relevant baseline
MOEAs for performance comparison: WOF (Zille et al., 2018),
NSLS (Chen et al., 2015), CCGDE3 (Antonio and Coello, 2013),
and NSGA-III (Deb and Jain, 2014). WOF suggests a weighted
optimization framework to transform large-scale decision
variables into small-scale weight variables, and employs
existing MOEAs to successively optimize the original and
transformed problems during each iteration. NSLS employs a
local search mechanism to reproduce offspring population, and
is a representative MOEAs based on local search. CCGDE3
embeds a cooperative coevolution mechanism into existing
MOEAs to handle large-scale decision variables. NSGA-
III is the recent version of the popular multi-objective
optimization algorithm NSGA-II, and NSGA-III employs a
reference-vector-based selection mechanism to balance the
convergence and diversity for the solutions in the last accepted
front.

Significance test: Similar to existing works (Chen et al., 2019;
Wang et al., 2019; Ishibuchi et al., 2022; Lin et al., 2022), we
adopt the Wilcoxon’s ranksum test with a confidence level of
0.05 to distinguish the statistical significance between the CF-
LEMO and the corresponding competitors. The signs + , − , and
≈ respectively represent that the correspondingMOEA performs

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2022.988772
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Li et al. 10.3389/fenrg.2022.988772

significantly better, worse, and similar to the CF-LEMO on a test
case.

Benchmark functions: LSMOP1-LSMOP9 (Cheng et al., 2017)
are tailored for meansure the performance of MOEAs in
solving large-scale MOPs. They reflect challenges in real-world
applications, such as complex relationships among decision
variables and inhomogeneous correlations from decision
variables to objectives.

Population size: The population sizes of 2- and 3-objective
benchmark functions are set to 100 and 190, respectively.

Stop Condition: Similar to works (Deb and Jain, 2014;
Chen et al., 2015; Zille et al., 2018), the maximum number of
fitness evaluations is set to n× 104, where n is the number of
decision variables.

Metrics: The inverted generational distance (IGD)
(Zitzler et al., 2003) and hypervolume (HV) (While et al., 2006)
are employed for performance measurement. Both the IGD
and HV metrics are capable of simultaneously measuring
the convergence and diversity of the populations obtained
by MOEAs. When caculating the IGD metric, about 10,000
uniformly distributed Pareto optimal points on the PF are
sampled for each benchmark function. Besides, the HV metric
refers to the volume of objective space construted by a reference
vector and the objective vectors of the obtained solutions. The
reference vector is set as 1.5 times the upper bounds of each
benchmark function’s PF.

All the experiments are run on a workstation with 64-bit
operating system, 256 GB memory, two Intel(R) Xeon(R) Gold
6226R CPU @ 2.90GHz.

3.2 Comparison on benchmarks

In terms of IGD metrics, the average values and standard
deviations (in brackets) of the algorithms CF-LEMO, WOF,
NSLS, CCGDE3, and NSGA-III are summarized in Table 1.

As illustrated in Table 1, the proposed CF-LEMO poses
better overall performance than all the four comparisonMOEAs.
Specifically, CF-LEMO obtains 14 out of 18 lowest IGD values,
while comparison algorithms WOF, NSLS, CCGDE3, and
NSGA-III respectively only obtain 1, 3, 0, and 0 best results.These
numerical results demonstrate the competitive performance of
the CF-LEMO in solving complex LSMOPs.

The main difference between CF-LEMO and WOF is that
the proposed CF-LEMO employs an archive to store a set
of well-diversified solutions to support fine search, and a
multi-objective local search to improve the results of coarse
search. The comparison results in Table 1 show that CF-LEMO
significantly outperforms WOF except for the tri-objective
LSMOP3.The comparison results demonstrate that the proposed
components in CF-LEMO, i.e., diversity maintaince and local
search mechanism, is effective.

NSLS is a multi-objective optimization algorithm based on
local search. In each generation, it perturbs the decision variables
one by one to obtain an offspring population. It poses the best
performance among the four comparison algorithms, but it is
far inferior to CF-LEMO proposed in this paper. This can be
explained as that even if local search has strong exploitative
ability, simple local search based MOEA is difficult to cope with
the exponential growth of search space.

For baseline CCGDE3 employing cooperative
coevolutionary framework to deal with the large-scale decision
variables, it performs the worst among the five algorithms.
This can be explained as that the relationships among
decision variables of LSMOPs and the landscapes are complex.
The random grouping mechanism in CCGDE3 divides the
interacting decision variables into the same group with very
low probability, which seriously weakens the performance of
the cooperative coevolutionary framework. The comparison
between CF-LEMO and CCGDE3 shows that the problem
transformation-based mechanism is more effective than the
cooperative coevolutionary framework in dealing with complex
LSMOPs to a certain extent.

NSGA-III is a representative multi-objective optimization
algorithm, which has been widely used for experimental
comparison. Recent study (Pang et al., 2022) shows that in
the benchmark suite LSMOP1-LSMOP9 (Cheng et al., 2017),
the NSGA-III performs better than many recent large-
scale multi-objective optimization algorithms. As shown in
Table 1, CF-LEMO is much better by significantly outperming
NSGA-III on 17 out of the 18 benchmark functions. These
comparison results demonstrate the superior performance of
CF-LEMO over the traditional multi-objective optimization
algorithms.

Figure 2 depicts the populations with the lowest IGD values
obtained by the five algorithms on LSMOP1, LSMOP2, LSMOP6,
and LSMOP8 with 200 decision variables.

As can be seen in Figure 2, on the four benchmark functions,
the populations obtained by CCGDE3 are far away from their
PFs, indicating poor convergence of the CCGDE3. These are
consistent with the extremely high IGD values of CCGDE3 in the
Table 2. Compared with the CCGDE3, the other four MOEAs,
i.e., CF-LEMO,WOF, NSLS, andNSGA-III, can converge to near
PFs.

More specifically, the proposed CF-LEMO performs better
than all the comparison MOEAs in terms of both convergence
and diversity. For example, on bi-objective LSMOP1 with a
linear PF, the diversity of CF-LEMO is similar to that of
WOF, while CF-LEMO obviously has better convergence. For
NSGA-III, its output population only converges to two extreme
points. For NSLS, it poses poor convergence and diversity near
the two extreme points. On benchmark function bi-objective
LSMOP6, the advantage of CF-LEMO is more obvious. The
population obtained by CF-LEMO can approximate PF as a
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TABLE 1 IGD values of the five algorithms on benchmarks LSMOP1-LSMOP9with 2- and 3-objectives.

MOPs m n CF-LEMO WOF NSLS CCGDE3 NSGA-III

LSMOP1 2 200 3.5721e-3 (6.26e-7) 4.0640e-1 (5.70e-2) − 2.8967e-2 (1.21e-2) − 2.9242e+0 (4.57e-1) − 3.5425e-1 (1.24e-1) −
3 300 4.1363e-2 (2.62e-4) 1.9224e-1 (1.76e-2) − 4.4535e-2 (1.45e-3) − 6.4217e+0 (7.64e-1) − 2.1476e-1 (4.81e-2) −

LSMOP2 2 200 3.7525e-3 (2.64e-5) 2.2230e-2 (8.97e-4) − 4.2293e-2 (1.85e-3) − 1.4543e-1 (4.58e-3) − 3.9852e-2 (2.00e-3) −
3 300 4.1704e-2 (3.04e-4) 6.6304e-2 (4.28e-3) − 6.5776e-2 (1.71e-3) − 9.7285e-2 (2.67e-3) − 4.7609e-2 (3.39e-4) −

LSMOP3 2 200 5.7079e-1 (6.99e-2) 6.4864e-1 (3.48e-2) − 5.1349e-1 (7.77e-2) + 1.5080e+1 (2.03e+0) − 8.8952e-1 (4.36e-2) −
3 300 5.7489e-1 (3.45e-2) 4.4822e-1 (3.47e-2) + 6.8609e-1 (5.47e-2) − 1.5563e+1 (1.85e+0) − 5.5185e-1 (5.18e-2) +

LSMOP4 2 200 5.8247e-3 (4.32e-4) 6.4808e-2 (1.55e-3) − 4.8746e-2 (1.95e-3) − 1.9666e-1 (1.13e-2) − 5.9067e-2 (3.44e-3) −
3 300 5.9655e-2 (4.28e-3) 1.4883e-1 (5.09e-3) − 9.3747e-2 (2.03e-3) − 2.9609e-1 (8.28e-3) − 9.1643e-2 (2.16e-3) −

LSMOP5 2 200 4.2236e-3 (4.72e-5) 1.1382e-1 (8.98e-2) − 1.7429e-1 (4.12e-2) − 6.4831e+0 (6.14e-1) − 3.4296e-1 (6.81e-4) −
3 300 5.1746e-2 (1.54e-3) 4.6804e-1 (2.70e-2) − 1.4650e-1 (3.04e-2) − 7.9761e+0 (2.03e+0) − 3.1495e-1 (1.96e-2) −

LSMOP6 2 200 2.9515e-2 (6.80e-3) 5.3077e-1 (1.39e-1) − 6.2356e-1 (1.19e-1) − 9.2667e-1 (1.47e-2) − 5.9293e-1 (9.64e-2) −
3 300 5.4758e-1 (6.66e-2) 1.2078e+0 (3.11e-3) − 1.6849e+0 (1.92e-1) − 7.6340e+3 (4.20e+3) − 1.2883e+0 (3.21e-1) −

LSMOP7 2 200 9.0669e-1 (1.50e-1) 1.0352e+0 (2.64e-1) − 1.9918e+0 (3.12e-1) − 1.2365e+4 (3.78e+3) − 1.0993e+0 (3.59e-1) −
3 300 7.3720e-1 (1.07e-1) 8.6740e-1 (1.36e-2) − 9.3768e-1 (3.75e-2) − 1.5524e+0 (6.19e-2) − 9.3645e-1 (5.52e-2) −

LSMOP8 2 200 4.3096e-3 (1.98e-4) 1.3066e-1 (7.96e-2) − 1.1378e-1 (4.54e-2) − 5.8375e+0 (7.41e-1) − 3.4548e-1 (7.69e-4) −
3 300 5.1299e-2 (1.07e-3) 1.3638e-1 (2.15e-2) − 1.2270e-1 (9.99e-3) − 8.6378e-1 (1.16e-1) − 3.4423e-1 (3.43e-2) −

LSMOP9 2 200 6.2032e-1 (2.76e-1) 8.1004e-1 (3.10e-16) − 1.5261e-1 (3.45e-2) + 1.4655e+1 (5.81e+0) − 8.1004e-1 (5.18e-16) −
3 300 9.5934e-1 (3.22e-1) 1.1457e+0 (1.02e-3) − 3.5804e-1 (1.16e-1) + 4.3487e+1 (8.65e+0) − 1.2658e+0 (2.63e-1) −

− / + / ≈ — — — 17/1/0 15/3/0 18/0/0 17/1/0

TABLE 2 HV values of the five algorithms on solving TREE1-TREE6.

MOPs m n CF-LEMO WOF NSLS CCGDE3 NSGA-III

TREE1 2 3,000 8.5364e-1 (1.71e-4) 8.4862e-1 (3.70e-3) − 7.4950e-1 (1.89e-3) − NaN (NaN) − 8.5376e-1 (5.57e-5) ≈
TREE2 2 3,000 8.5653e-1 (2.93e-5) 8.5596e-1 (2.59e-4) − 7.7696e-1 (1.11e-3) − NaN (NaN) − 8.5305e-1 (1.11e-4) −
TREE3 2 6,000 8.8770e-1 (1.50e-5) 8.7725e-1 (6.39e-3) − NaN (NaN) − NaN (NaN) − 8.4309e-1 (8.84e-4) −
TREE4 2 6,000 9.6440e-1 (8.19e-5) 9.6296e-1 (1.18e-3) − NaN (NaN) − NaN (NaN) − 9.0754e-1 (1.25e-3) −
TREE5 2 6,000 9.3871e-1 (6.52e-5) 9.2726e-1 (8.28e-3) − NaN (NaN) − NaN (NaN) − 9.3207e-1 (4.13e-4) −
− / + / ≈ — — — 5/0/0 5/0/0 5/0/0 4/0/1

whole, while comparison algorithmsWOF, NSLS, and NSGA-III
only converge to a tiny part of the PF.OnLSMOP8with a concave
PF, the CF-LEMO outputs a set of superior-quality of solutions,
followed by NSLS and WOF, with CCGDE3 worest.

3.3 Comparison on ratio error estimation
of voltage transformers

To further study the performance of the proposal and
four comaprison MOEAs on a real-world application of time-
varying ratio error estimation (TREE) in voltage transformers
(He et al., 2020). We choose five LSMOPs with large-scale
decision variables and multiple conflicting objectives, termed

TREE1 to TREE6. To be specific, TREE1 and TREE2 have two
objectives and 3,000 decision variables, TREE3-TREE5 have two
objectives and 6,000 decision variables. We set the maximum
number of fitness evaluations as 3× 106 and 6× 106 for TREE1-
TREE2 and TREE3-TREE5, respectively.

Table 2 illustrates the statistics of HV results produced by
the five algorithms. The reason for the NaN results is that no
feasiable solutions are obtained by the corresponding MOEAs.
It is clear that the proposed CF-LEMO significantly outperforms
all the four competitors by obtaining the highest HV values in 4
out of the 5 application cases. Based on the experimental results
on TREE1-TREE6, it exhibits that the proposed CF-LEMO is
superior over baselines for resolving LSMOPs on ratio error
estimation of voltage transformers.
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FIGURE 2
Output populations of CF-LEMO, WOF, NSLS, CCGDE3, and NSGA-III on bi-objective LSMOP1, LSMOP2, LSMOP6, and LSMOP8.

4 Conclusion

In this paper, we design a coarse-to-fine evolutionary
search to handle large-scale multi-objective optimization
problems, which are common in various fileds, such as condition
monitoring for renewable energy systems, and cloud workflow
scheduling. In the coarse search phase, the proposal leverages
the problem transformation technique to simplify the complex
original LSMOPs into small-scale multi-objective weight
optimization problems, resulting in the rapid convergence of
the population towards the Pareto-optimal fronts. Meanwhile,
an archive equipped with a diversity maintenance mechanism is
employed to perserve a set of well-diversified solutions. In the
fine search phase, the proposal employs traditional MOEAs,
such as local search and decomposition based MOEAs, to
further push the solutions in the population and archive to
well approximate the Pareto-optimal fronts. Finally, we conduct
numerical experiments on a challenging benchmark test suite
and multi-objective ratio error estimation problems for voltage
transformers to verify the superior performance of the proposed

CF-LEMO in resolvingmulti-objective problemswith large-scale
decision variables.

The problem transformation approaches are fundamental
for the population to quickly approach the Pareto-optimal fronts
of LSMOPs. But, the coarse search stage of the proposed CF-
LEMO directly employs an existing problem transformation
approach. Then, designing more powerful transformation
approaches is our future research direction. Besides, many
real-world multi-objective optimization problems often involve
complex constraints and dynamic environments, which are
tough tasks for evolutionary optimization. Thus, designing
problem-specific strategies to handle these tasks deserves further
research.
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