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Accurate estimation of battery state of charge (SOC) is of great significance to

improve battery management and service life. An unscented Kalman filter (UKF)

method is used to increase the accuracy of SOC estimation in this paper. Firstly,

a battery model that the parameters are identified by using the least squares

algorithm is established, which is foundation of the two-order RC equivalent

circuit model. Secondly, SOC is estimated by UKF. In order to validate the

method, experiments have been carried out under different operating

conditions for LiFePO4 batteries. The obtained results are compared with

that of the extended Kalman filter. Finally, the comparison shows that the

UKF method provides better accuracy in the battery SOC estimation. Its

estimation error is less than 2%, which is better than EKF algorithm. An

effective method is provided for state estimation for battery management

system.
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1 Introduction

As the power source of electric vehicle, power battery plays a core role in electric

vehicle. Its performance is closely related to the braking energy recovery rate, driving

range and acceleration performance of the whole vehicle. The key role of power battery in

electric vehicles is to provide electric vehicles with strong climbing ability, acceleration

ability and endurance ability. The specific power of the battery determines the starting,

acceleration, climbing performance and the maximum speed performance of the electric

vehicle. Power battery is the core component of electric vehicle energy storage system.

Lithium-ion batteries have been widely used in electric vehicles because of its obvious

advantages in performance, capacity, service life and so on (Chen et al., 2019; Shuzhi et al.,

2021). Lithium-ion batteries include ternary material batteries, lithium-iron phosphate

batteries and lithium manganese acid batteries (Li et al., 2017). Lithium-rich oxides have

been considered as promising cathodes for the next generation power batteries (Yang

et al., 2020). Lithium-iron phosphate batteries are widely used in electric vehicles because

OPEN ACCESS

EDITED BY

Yunlong Shang,
Shandong University, China

REVIEWED BY

Longxing Wu,
Xi’an University of Technology, China
Wenhua Zuo,
Helmholtz-Institut Ulm, Germany

*CORRESPONDENCE

Shulin Liu,
shulin1023@sina.com

SPECIALTY SECTION

This article was submitted to
Electrochemical Energy Conversion and
Storage,
a section of the journal
Frontiers in Energy Research

RECEIVED 19 July 2022
ACCEPTED 29 August 2022
PUBLISHED 06 January 2023

CITATION

Guo J, Liu S and Zhu R (2023), An
unscented kalman filtering method for
estimation of state-of-charge of
lithium-ion battery.
Front. Energy Res. 10:998002.
doi: 10.3389/fenrg.2022.998002

COPYRIGHT

© 2023 Guo, Liu and Zhu. This is an
open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2023
DOI 10.3389/fenrg.2022.998002

https://www.frontiersin.org/articles/10.3389/fenrg.2022.998002/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.998002/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.998002/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.998002/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.998002&domain=pdf&date_stamp=2023-01-06
mailto:shulin1023@sina.com
https://doi.org/10.3389/fenrg.2022.998002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.998002


of their non-toxic, pollution-free, good safety performance.

However, the accidents caused by fire, combustion and

explosion of power batteries at home and abroad in recent

years fully illustrate that once the hidden danger of battery

safety breaks out, its harmfulness is difficult to measure. And

strong measures must be taken to prevent the accidents that may

be caused by the hidden danger of battery safety. Therefore, the

significance of efficient management of battery system for electric

vehicles is highlighted and has attracted much attention. It has

become a hot issue in scientific research in related fields, and it is

also a difficulty in technical development.

The model of power battery is to describe the mathematical

relationship between voltage, current, state of charge (SOC) and

other parameters in the working process (Gao et al., 2018; Zheng

et al., 2018). At present, there are four kinds of commonly used

battery models: neural network model, electrochemical model,

AC impedance model and equivalent circuit model. Equivalent

circuit model plays an important role in battery state estimation.

SOC estimation of lithium-ion power battery is one of the

important links in battery management system. SOC is one of

the parameters characterizing the working state of power battery,

which can provide basis for battery management. (Singh et al.,

2020; Yang et al., 2020; Zuo et al., 2022).

The electrochemical model of power battery mainly reflects the

internal electrochemical reaction process, and uses mathematical

formulas to describe the battery characteristics (Li et al., 2020; Zuo et

al., 2020). The model is closely related to battery materials, formulas

and processes, and the calculation of parameters is complex. The

simplified electrochemical model can predict the change of voltage

and residual electricity. The classical electrochemical simplified

models mainly include single particle model (SPM) and single

particle model incorporating electrolyte physics (SPMe) (Wu

et al., 2021). Neural network model can accurately describe the

dynamic characteristics of power battery, and takes a large number

of battery test data as training data (Yang et al., 2019; Feng et al.,

2020; Shen et al., 2020). But the neural network also has some

shortcomings. It needs a lot of training data to increase the accuracy

of the model, and the model error is easily affected by the training

data and training methods. The AC impedance model is established

based on the AC impedance characteristics and dynamic frequency

characteristics of the battery. Zhu established the AC impedance

model by using the battery impedance spectrum (Zhu et al., 2020).

The battery model can accurately describe its impedance and

electrochemical characteristics. However, the AC impedance

spectrum and battery impedance are directly affected by the

temperature and frequency. At the same time, the calculation of

parameters in the model is complex. The equivalent circuit model is

a circuit network composed of circuit elements (Tran et al., 2020).

Such as resistance, capacitance and constant voltage source to

describe the external characteristics of the battery. The physical

meaning of the equivalent circuit model is clear. Considering the

external characteristics such as voltage, current and temperature, it

has good adaptability to the power battery under different working

conditions. So it is widely used in power battery state estimation and

battery management system.

At present, there are four main categories of SOC estimation

methods proposed by domestic and foreign scholars (Zhao et al.,

2018; Jiao et al., 2020): estimation methods based on A hour integral,

estimation methods based on measured values of battery

characterization parameters, estimation methods based on

empirical equations and mathematical models, and estimation

methods based on battery equivalent circuit model. Ampere hour

integral is also called Coulomb counting method. This method is

usually used as the reference SOC in the single discharge process of

battery, which is common in practical application. The parameters

such as residual capacity and open circuit voltage of power battery

have a certain relationship with SOC (Kwak et al., 2019). These

parameters are usually used to characterize battery SOC. SOC

estimation methods based on empirical equation and

mathematical model mainly include linear model method, neural

network method, fuzzy logic method, support vector machine and so

on (She et al., 2019; Cheng andTingloang, 2020;Guo et al., 2021). The

estimationmethods based on battery equivalent circuit model mainly

include Kalman filter, observer and particle filter (Peng et al., 2019).

The observer method can increase the accuracy and robustness of

SOC estimation, but the performance of this method will be greatly

FIGURE 1
The two-order RC equivalent circuit model.
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affected by the noise. Unscented Kalman filter (UKF) is the

combination of unscented transform (UT) and standard Kalman

filter system. Through the lossless transform, the nonlinear system

equation is suitable for the standard Kalman system under linear

assumption. The UKF uses statistical linearization technology which

is called linearization method unscented transformation. This

technology linearizes the nonlinear function of random variables

mainly through the linear regression of n points collected in a priori

distribution. Considering the expansion of random variables, this

linearization is more accurate than Taylor series linearization. This

method has better accuracy than EKF in estimating SOC and error

covariance.

2 Modeling of lithium-ion battery

2.1 Battery model
The equivalent circuit model is a circuit network composed of

circuit elements such as resistance, capacitance and constant voltage

source. The model is usually used to describe the relationship

between the external characteristics such as terminal voltage,

charge discharge current and working temperature of the battery.

It is widely used in the research of power battery. Lithium-ion battery

model should better reflect the dynamic characteristics of the battery

and it can’t be too complicated. Besides, the model should be easily

used in engineering. Taking these factors into account, the two-order

RC equivalent circuitmodel is established as themodel of lithium-ion

battery, as shown in Figure 1.

In Figure 1, U0 is the terminal voltage of the battery, Uocv is

the battery open-circuit voltage, R iss the battery internal

resistance, R1, C1 are diffusion resistance and diffusion

capacitance respectively, R2, C2 are concentration polarization

resistance and concentration polarization capacitance

respectively. According to Figure 1, the battery equivalent

circuit mathematical model can be obtained as follows:

V0 � Vocv − VR − V1 − V2 (1)
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

•
V1 � I

C1
− V1

R1C1

•
V2 � I

C2
− V2

R2C2

(2)

Where I represents the load current (negative for charge,

positive for discharge).

By defining Et � V0 − Vocv and according to Eq. 1, the transfer

function of the battery impedance can be written by Eq. 3.

G(s) � V0(s) − Vocv(s)
I(s) � Et(s)

I(s)
� −(R + R1

1 + R1C1s
+ R2

1 + R2C2s
) (3)

Abilinear transformationmethod shown in Eq. 4 is employed foe

the discretization calculation of Eq. 3, and the result is given by Eq. 5.

s � 2
Ts

1 − z−1

1 + z−1
(4)

Where the z is the discretization operator and the Ts is the

sampling period with an interval of 1s.

G(z) � c3 + c4z−1 + c5z−2

1 − c1z−1 − c2z−2
(5)

Then the parameters of the battery model can be solved by

Eq. 6.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0 � c3 − c4 + c5
c2 − c1 − 1

τ1 + τ2 � − c2 + 1
c1 + c2 − 1

τ1τ2 � c2 − c1 − 1
4(c1 + c2 − 1)

R + R1 + R2 � c3 + c4 + c5
c1 + c2 − 1

R(τ1 + τ2) + R1τ2 + R2τ1 � c3 − c5
c1 + c2 − 1

(6)

Eventually, the auto-regressive exogenous (ARX) form of the

battery can be rewritten by

yk � φkθk (7)

where the φ and the θ denote the data matrix and the

parameter matrix respectively.

{ φk � [Et,k−1 Et,k−2 Ik Ik−1 Ik−2]
θk � [c1 c2 c3 c4 c5]T (8)

2.2 Model parameter identification
method

In this paper, the least square algorithm with forgetting factor

(FFRLS) is used to realize the dynamic identification of model

TABLE 1 Implementation process of the FFRLS algorithm.

1) Initialization.

φ0 , θ0 , P0 , K0 , λ

2) Calculate algorithm gain Kk and error covariance matrix Pk.

Pk � Pk−1φTk
φkPk−1φT

k
+λ

(9)

Pk � Pk−1−KkφTk Pk−1
λ

(10)

3) Calculate predication error and update model parameters.

ek � Et,k − φkθk−1 (11)

θk � θk−1 +Kkek (12)

4) Update the predicted terminal voltage.

Et,k � φkθk (13)
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parameters. The detailed implementation process is shown in

Table 1, where denotes the forgetting factor.

2.3 Space state equation of battery model

SOC denotes the state of remaining electrical capacity stored

in a battery. It can be expressed as:

SOCt � SOCt0 −
∫Idt
QN

(14)

The relationship between SOC and open-circuit voltage of

battery can be expressed as:

Vocv � k0 +k1 ln(SOC)+k2 ln(1−SOC)+k3 1
SOC

+k4SOC (15)

Where SOC is the state of charge of the battery.

k0, k1, k2, k3, k4 are the parameters that needs to be

identified. The two-order RC equivalent model of lithium-

ion battery is

{ _x � A · x + B · I
y � C · x +D · I (16)

Where

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 exp( − Δt/R1C1) 0

0 0 0 exp( − Δt/R2C2)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫dt
QN

0

R1(1 − exp( − T/R1C1))
R2(1 − exp( − T/R2C2))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
C � [ dVOC

dSOC
0 −1 −1]

D � −R, x � [ SOC R V1 V2 ]T, y � V0, x ∈ R4

(17)

FIGURE 2
Battery test bench.

TABLE 2 The identification result of R1,R2,C1,C2.

SOC R1 (mΩ) C1(F) R2 (mΩ) C2(F)

0.1 4.1 118,125.1 6.2 6,305.2

0.2 4.2 120,803.7 5.9 5,762.5

0.3 3.6 143,115.7 5.9 4,974.3

0.4 4.0 121,295.4 7.1 4,396.6

0.5 6.6 62,891.6 7.8 4,990.7

0.6 4.3 104,868.1 7.1 4,088.5

0.8 5.1 81,848.9 10.14 3,576.5

0.9 8.3 44,419.1 14.8 2,588.5

1 17.8 20,480.9 27.7 1,384.3
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3 Unscented kalman filter

The basic idea of UKF is Kalman filter and lossless

transformation. It can effectively overcome the problems of

low accuracy and poor stability of EKF estimation. Because

the high-order term does not need to be ignored, the

calculation accuracy of nonlinear distribution statistics is high.

When EKF is used to estimate the battery state, the state space

model of the battery need to be linearized since the state spacemodel of

the battery is nonlinear. The Jacobian matrix will be calculated

during the linearization process, which makes the

computation complex and reduces the estimation

accuracy. The UKF uses the sigma point for nonlinear

transformation directly instead of linearizing the battery

model, which improves the estimation accuracy.

Step1. sigma points are set by the mean and variance of the

state variables by calculating in accordance with certain rules.

Step2. sigma points will be operated by the state-space model

to get the new sigma point set.

Step3. the excellent estimate of state variable is obtained by

weighting the new set of point.

Step4. repeat the previous operation process to iterate.

For a nonlinear system, the state and measurement equations

with additional noise are:

{xk � f(xk−1, uk) + ωk

yk � g(xk−1) + ϑk
(18)

Where k is the current time, f () is the nonlinear system

state transition equation, g () is the nonlinear measurement

equation, the ωk and the ϑk are process noise and measurement

noise respectively. Assumed that the ωk and the ϑk are

uncorrelated zero-mean white Gaussian noise, and

covariance matrixes are respectively. The specific algorithm

of UKF is as follows:

{ �x � E(x0)
p0 � E(x0 − �x)(x0 − �x)T (19)

The sigma point is set as follows:

xk−1,i � { �xk−1 + [ ����������
(n + λ)pk−1

√ ]
i
, i � 1,/, n

�xk−1 − [ ����������
(n + λ)pk−1

√ ]
i
, i � n + 1,/, 2n + 1

(20)

Time update equation is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xk|k−1,i � f(xk−1,i), �xk− � ∑2n
i�0

ωm
i xk|k−1,i

pk|k−1 � ∑2n
i�0

ωc
i (xk−1,i − �xk− )(xk−1,i − �xk− )T + Qk

yk|k−1,i � g(xk−1,i), �yk− � ∑2n
i�0

ωm
i [g(xk|k−1,i) + υk−1,i] � ∑2n

i�0
ωm
i yk|k−1,i

(21)

The measurement update equation is as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

p�y,k � ∑2n
i�0

ωc
i (yk|k−1,i − �yk−)(yk|k−1,i − �yk−)T + Qk

p�xy,k � ∑2n
i�0

ωc
i (xk−1,i − �xk− )(yk|k−1,i − �yk−)T

K � p�y,kp�xy,k, �xk � �xk− +K(yk − �yk− ), pk|k � pk|k−1 −Kp�y,kK
T

(22)

It is seen from the above formulas that as long as the initial

conditions and are given, the optimal estimate value of the state

FIGURE 3
Open circuit voltage and SOC fitting.
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at time k can be estimated depending on the state value at time

k−1, the input value and the observed value at time k.

4 Experimental

The test object is LiFePO4 batteries with the nominal capacity of

6.2 Ah and the nominal voltage of 3.2 V. To verify the accuracy of

the two-order model and the effectiveness of battery state estimation

algorithm, a battery test bench has been established, as shown in

Figure 2. Constant discharge current is 0.5°C. The experimental

environment temperature is 25°C. R1, C1, R2 and C2 were identified

which is shown in Table 2. And the SOC initial value of the battery is

0.9 while the SOC value is 0.1 when the experiment reached the

discharge cut-off condition. Then the SOC and open circuit voltage

can be fitted as shown in Figure 3. Battery’s measured terminal

voltage and estimated voltage curves are shown in Figure 4. The

error is shown in Figure 5, and it is can been seen that themaximum

error is less than 0.08 V. From the above experimental results, we

can see that the battery model is accurate.

In this paper, the SOC is estimated by the EKF and the

UKF, which are validated through the experiments under

different conditions. Figures 6–9 show that the two

algorithms are accurate and reliable to estimate SOC. The

maximum errors of two algorithms are less than 4 and 1.4%

respectively. It can be seen that the UKF algorithm is more

accurate than EKF algorithm on SOC estimation. The UKF

algorithm is more stable than the EKF algorithm for the

EKF’s error is within 2.5% while the error of UKF is less than

0.5% when the SOC is in the range of 90–20%. During the

discharge end when SOC is less than 20%, the errors of these

two algorithms are both larger since the battery works in a

highly non-linear region. The error of EKF is nearly 4%,

while the peak error of UKF is less than 1.4% which is still

relatively small. In summary, UKF algorithm is more stable

and accurate than EKF algorithm.

FIGURE 5
Model voltage and true voltage udder constant current test.

FIGURE 4
Open circuit voltage and SOC fitting.

Frontiers in Energy Research frontiersin.org06

Guo et al. 10.3389/fenrg.2022.998002

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.998002


FIGURE 7
Comparison of SOC estimate error under constant current discharge.

FIGURE 6
SOC estimate results under constant current condition.

FIGURE 8
SOC estimate results under UDDS condition.
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5 Conclusion

As the main power source of electric vehicle, the

performance of power battery directly affects the economy,

power and reliability of the vehicle. In order to ensure the safe

and stable operation of electric vehicles in complex driving

environment, it is necessary to effectively manage the power

battery system and prolong the battery life. In the complex and

changeable environment, the accurate modeling and accurate

state estimation of power battery can ensure the safe and

reliable operation of battery management system. The

equivalent model of power battery has important

significance for SOC estimation. By employing the UKF, the

battery SOC was estimated using the two-order RC model.

However, the modeling is not accurate enough and the battery

state can not be accurately estimated in real time. These

problems have always been recognized as difficult problems

in academic and industrial circles. The UKF is proposed to

estimate the SOC in this paper. To verify the performance of

the UKF method, experiments were conducted on battery test

bench. The obtained results have demonstrated that the UKF

algorithm has provided better performance in comparison

with the extended Kalman filter.

Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.

Author contributions

Conceptualization, JG and SL; methodology, JG and SL;

software, JG and SL; validation, JG and SL; formal analysis,

JG and SL; investigation, JG and SL; resources, JG and SL;

data curation, JG and SL; writing—original draft preparation,

JG and SL; writing—review and editing, JG and SL; visualization,

JG and SL; supervision, JG and SL; project administration, SL;

funding acquisition, SL and RZ. All authors have read and agreed

to the published version of the manuscript.

Funding

This research was funded by the Natural Science Foundation

of Shandong Province (Grant number: ZR2020QF064) and the

Research Leader Studio Project of Jinan City (Grant number:

2019GXRC062).

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Chen, X., Lei, H., Xiong, R., Shen, W., and Yang, R. (2019). A novel approach to
reconstruct open circuit voltage for state of charge estimation of lithium ion
batteries in electric vehicles. Appl. Energy 255, 113758. doi:10.1016/j.apenergy.
2019.113758

Cheng, W., and Tinglong, P. A. N. (2020). Prediction for SOC of lithium-ion
batteries by estimating the distribution algorithm with LSSVM[J]. Energy Storage
Sci. Technol. 9 (6), 1948. doi:10.19799/j.cnki.2095-4239.2020.0165

Feng, F., Teng, S., Liu, K., Xie, J., Xie, Y., Liu, B., et al. (2020). Co-estimation of
lithium-ion battery state of charge and state of temperature based on a hybrid
electrochemical-thermal-neural-network model. J. Power Sources 455, 227935.
doi:10.1016/j.jpowsour.2020.227935

Gao, W., Zheng, Y., Ouyang, M., Li, J., Lai, X., and Hu, X. (2018). Micro-short-
circuit diagnosis for series-connected lithium-ion battery packs using mean-
difference model. IEEE Trans. Ind. Electron. 66 (3), 2132–2142. doi:10.1109/TIE.
2018.2838109

Guo, Y., Yang, Z., Liu, K., Zhang, Y., and Feng, W. (2021). A compact
and optimized neural network approach for battery state-of-charge estimation
of energy storage system. Energy 219, 119529. doi:10.1016/j.energy.2020.
119529

Jiao, M., Wang, D., and Qiu, J. (2020). A GRU-RNN based momentum optimized
algorithm for SOC estimation. J. Power Sources 459, 228051. doi:10.1016/j.
jpowsour.2020.228051

FIGURE 9
Comparison of SOC estimate error UDDS condition.

Frontiers in Energy Research frontiersin.org08

Guo et al. 10.3389/fenrg.2022.998002

https://doi.org/10.1016/j.apenergy.2019.113758
https://doi.org/10.1016/j.apenergy.2019.113758
https://doi.org/10.19799/j.cnki.2095-4239.2020.0165
https://doi.org/10.1016/j.jpowsour.2020.227935
https://doi.org/10.1109/TIE.2018.2838109
https://doi.org/10.1109/TIE.2018.2838109
https://doi.org/10.1016/j.energy.2020.119529
https://doi.org/10.1016/j.energy.2020.119529
https://doi.org/10.1016/j.jpowsour.2020.228051
https://doi.org/10.1016/j.jpowsour.2020.228051
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.998002


Kwak, M., Lkhagvasuren, B., Park, J., and You, J. H. (2019). Parameter
identification and SOC estimation of a battery under the hysteresis effect.
IEEE Trans. Ind. Electron. 67 (11), 9758–9767. doi:10.1109/TIE.2019.
2956394

Li, D., Danilov, D. L., Zwikirsch, B., Fichtner, M., Yang, Y., Eichel, R. A., et al.
(2017). Modeling the degradation mechanisms of C6/LiFePO4 batteries. J. power
sources 375, 106–117. doi:10.1016/j.jpowsour.2017.11.049

Li, W., Cao, D., Jöst, D., Ringbeck, F., Kuipers, M., Frie, F., et al. (2020). Parameter
sensitivity analysis of electrochemical model-based battery management systems for
lithium-ion batteries. Appl. Energy 269, 115104. doi:10.1016/j.apenergy.2020.
115104

Peng, J., Luo, J., He, H., and Lu, B. (2019). An improved state of charge estimation
method based on cubature Kalman filter for lithium-ion batteries. Appl. Energy 253,
113520. doi:10.1016/j.apenergy.2019.113520

She, C., Wang, Z., Sun, F., Liu, P., and Zhang, L. (2019). Battery aging assessment
for real-world electric buses based on incremental capacity analysis and radial basis
function neural network. IEEE Trans. Ind. Inf. 16 (5), 3345–3354. doi:10.1109/TII.
2019.2951843

Shen, S., Sadoughi, M., Li, M., Wang, Z., and Hu, C. (2020). Deep convolutional
neural networks with ensemble learning and transfer learning for capacity
estimation of lithium-ion batteries. Appl. Energy 260, 114296. doi:10.1016/j.
apenergy.2019.114296

Shuzhi, Z., Xu, G., and Xiongwen, Z. (2021). A novel one-way transmitted co-
estimation framework for capacity and state-of-charge of lithium-ion battery based
on double adaptive extended Kalman filters. J. Energy Storage 3, 102093. doi:10.
1016/j.est.2020.102093

Singh, K. V., Bansal, H. O., and Singh, D. (2020). Hardware-in-the-loop
implementation of ANFIS based adaptive SoC estimation of lithium-ion battery for
hybrid vehicle applications. J. Energy Storage 27, 101124. doi:10.1016/j.est.2019.101124

Tran, M. K., Mevawala, A., Panchal, S., Raahemifar, K., Fowler, M., and Fraser, R.
(2020). Effect of integrating the hysteresis component to the equivalent circuit

model of Lithium-ion battery for dynamic and non-dynamic applications. J. Energy
Storage 32, 101785. doi:10.1016/j.est.2020.101785

Wu, L., Liu, K., and Pang, H. (2021). Evaluation and observability analysis of an
improved reduced-order electrochemical model for lithium-ion battery.
Electrochimica Acta 368, 137604. doi:10.1016/j.electacta.2020.137604

Yang, C., Wang, X., Fang, Q., Dai, H., Cao, Y., and Wei, X. (2020). An online
SOC and capacity estimation method for aged lithium-ion battery pack
considering cell inconsistency. J. Energy Storage 29, 101250. doi:10.1016/j.est.
2020.101250

Yang, F., Li, W., Li, C., and Miao, Q. (2019). State-of-charge estimation of
lithium-ion batteries based on gated recurrent neural network. Energy 175, 66–75.
doi:10.1016/j.energy.2019.03.059

Zhao, Y., Xu, J., Wang, X., and Mei, X. (2018). The adaptive fading extended
kalman filter SOC estimation method for lithium-ion batteries. Energy Procedia
145, 357–362. doi:10.1016/j.egypro.2018.04.064

Zheng, Y., Gao, W., Ouyang, M., Lu, L., Zhou, L., and Han, X. (2018). State-of-
charge inconsistency estimation of lithium-ion battery pack using mean-difference
model and extended Kalman filter. J. Power Sources 383, 50–58. doi:10.1016/j.
jpowsour.2018.02.058

Zhu, J., Darma, M. S. D., Knapp, M., Sorensen, D. R., Heere, M., Fang, Q., et al.
(2020). Investigation of lithium-ion battery degradation mechanisms by combining
differential voltage analysis and alternating current impedance. J. Power Sources
448, 227575. doi:10.1016/j.jpowsour.2019.227575

Zuo, H., Zhang, B., Huang, Z., Wei, K., Zhu, H., and Tan, J. (2022). Effect
analysis on SOC values of the power lithium manganate battery during
discharging process and its intelligent estimation. Energy 238, 121854. doi:10.
1016/j.energy.2021.121854

Zuo, W., Luo, M., Liu, X., Wu, J., Liu, H., Li, J., et al. (2020). Li-Rich cathodes for
rechargeable Li-based batteries: Reaction mechanisms and advanced
characterization techniques. Energy Environ. Sci. 13, 4450–4497. doi:10.1039/
D0EE01694B

Frontiers in Energy Research frontiersin.org09

Guo et al. 10.3389/fenrg.2022.998002

https://doi.org/10.1109/TIE.2019.2956394
https://doi.org/10.1109/TIE.2019.2956394
https://doi.org/10.1016/j.jpowsour.2017.11.049
https://doi.org/10.1016/j.apenergy.2020.115104
https://doi.org/10.1016/j.apenergy.2020.115104
https://doi.org/10.1016/j.apenergy.2019.113520
https://doi.org/10.1109/TII.2019.2951843
https://doi.org/10.1109/TII.2019.2951843
https://doi.org/10.1016/j.apenergy.2019.114296
https://doi.org/10.1016/j.apenergy.2019.114296
https://doi.org/10.1016/j.est.2020.102093
https://doi.org/10.1016/j.est.2020.102093
https://doi.org/10.1016/j.est.2019.101124
https://doi.org/10.1016/j.est.2020.101785
https://doi.org/10.1016/j.electacta.2020.137604
https://doi.org/10.1016/j.est.2020.101250
https://doi.org/10.1016/j.est.2020.101250
https://doi.org/10.1016/j.energy.2019.03.059
https://doi.org/10.1016/j.egypro.2018.04.064
https://doi.org/10.1016/j.jpowsour.2018.02.058
https://doi.org/10.1016/j.jpowsour.2018.02.058
https://doi.org/10.1016/j.jpowsour.2019.227575
https://doi.org/10.1016/j.energy.2021.121854
https://doi.org/10.1016/j.energy.2021.121854
https://doi.org/10.1039/D0EE01694B
https://doi.org/10.1039/D0EE01694B
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.998002

	An unscented kalman filtering method for estimation of state-of-charge of lithium-ion battery
	1 Introduction
	2 Modeling of lithium-ion battery
	2.1 Battery model

	2.2 Model parameter identification method
	2.3 Space state equation of battery model

	3 Unscented kalman filter
	4 Experimental
	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


