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The extensive application of power electronic equipment and the increasing

penetration of renewable energy generation gradually strengthen the

nonlinear and modal-coupling characteristics of electromechanical

oscillation of modern power systems. In this study, a data-driven method

based on improved blind source separation (IBSS) combined with sparse

component analysis (SCA) is proposed to extract electromechanical mode

(oscillation frequency, damping ratio and mode shape) from synchrophasor

measurements. First, short time Fourier transform is used to convert the

modal-coupling oscillation signal to sparse domain, then, on the basis of

time-frequency point clustering characteristics of source signals, the

mixture matrix A is estimated by frequency energy peak point algorithm,

and L1 norm is utilized to separate each mode frommixture matrix A. Finally,

the Hilbert identification algorithm is applied to extract the oscillation

parameters. The performance of the proposed IBSS method for the mode

extraction is verified using the test signal, the simulation signal, and the

measured data.
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1 Introduction

With the acceleration of power grid interconnection across the country and the

increasing scale of renewable energy, the power systems are being operated closer to their

limits and even reach the collapse point, resulting in obvious coupling and non-stationary

characteristics after a power system is disturbed. Low-frequency oscillation has become

one of the important factors affecting the stability of power system (Yang et al., 2020; Lv

et al., 2021; Xue et al., 2022). Therefore, accurate and timely extraction of
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electromechanical modal parame-ters after disturbance is

important for ensuring the stability and security of the power

system (Feng et al., 2019).

Traditionally, the power system oscillation modes can be

obtained through a model-based approach by linearizing the

non-linear differential algebraic equations of a power system at

the current operating point. However, this kind of approach is highly

dependent on the complete system structure and accurate

component parameters. The advent and deployment of phasor

measurement units (PMUs) builds a reliable data platform for

real-time monitoring, analysis and control of power systems,

which provides a new approach for low-frequency oscillation

mode identification (Khosravi-Charmi and Amraee,

2018)– (Kopse et al., 2015). Therefore, the measurement-based

approaches are alternatives to complement the model-based

approaches. In the early days, the single measurement channel

was used to extract electromechanical modal parameters, using

the advanced identification technique, such as Prony (Hauer,

2015) and its improved algorithm (Wadduwage et al., 2015),

Hilbert Huang transform (HHT) algorithm (Lauria and Pisani,

2014), etc., This kind of algorithm can identify oscillation

frequency, damping ratio and other oscillation characteristic

parameters by directly processing and analyzing the

synchrophasor measurement collected by PMUs. Recently, with

the advances in PMU configuration, dynamic feature extraction

methods based onmulti-channel sources were introduced to analyze

the dynamic behavior and estimate the dominant modes from the

global perspective, among which the representative algorithms

include stochastic subspace identification (SSI) (Jiang et al.,

2015), multivariate empirical mode decomposition (MEMD)

(You et al., 2016), etc. This kind of modal parameters extraction

method can analyze the dynamic behavior of each generator from a

global perspective, and the identification accuracy is high. However,

due to the large amount of input measurements, the calculation is

time-consuming and the analysis efficiency is low.

Moreover, the extensive application of power electronic

equipment gradually strengthens the nonlinear and coupling

characteristics of electromechanical oscillation of modern power

systems. Fast and effective identification of modal-coupling

oscillation is the focus of power system operators. Traditional

measurement-based methods are difficult to meet the needs of

security analysis of multi-modal coupled power systems. Blind

source separation method was first developed to extract the

modal parameters of the structures such as voice and image

processing, and the application of the method in the signal

processing field shows that it has good attribute of separating the

independent source signals, however, until so far, we have not seen

much application in electromechanical modal parameters in power

systems (Yi et al., 2017; Ye et al., 2018).

To address the deficiencies listed above, first, the measurement

input signals are filtered according to the rational inertia, which

effectively reduce the dimensionality of original data, then an

improved blind source separation method based on sparse

component analysis is introduced to extract the power system

oscillation modal parameters. Compared with the traditional low-

frequency oscillation mode identification method, the improved

blind source separation algorithm can accurately separate the

stationary source signal with single frequency from the nonlinear

and nonstationary multi-modal coupled oscillation signals, and

accurately extract the oscillation modal parameters such as mode

frequency and damping ratio. The case studies of test signal, the

simulation signal and the measured data confirm the superior

characteristics of the proposed IBSS based multi-modal coupled

modal parameter extraction.

The remainder of this paper is organized as follows: Section 2

introduces the theoretical foundation of the traditional BSS. Section

3 develops the IBSS method based on sparse component analysis.

Section 4 expands the IBSS to extract the oscillation modal

parameters. Section 5 presents three cases to evaluate the

performance of the proposedmethod. Section 6 concludes the paper.

2 Blind source separation

The term blind source separation (BSS) refers to a wide class

of problems in signal and image processing, in which one needs

to extract the underlying sources from a set of mixtures. The

mathematical model of BSS can be expressed as (Ye et al., 2018):

X(t) � AS(t) � ∑n
i�1
aisi(t) (1)

where S(t) � [s1(t),/, sn(t)]T is an n-dimension unknown

source signals. X(t) � [x1(t),/, xm(t)]T is an m-dimension

observed vector. A is an unknown m × n mixing matrix, in

which ai is the mixing parameter of the source signal; si(t) is
discrete signals.

BSS algorithm is usually suitable for solving positive definite

problems, that is, the mixing matrix A is full rank, in which the

number of observed signals (m) is greater than or equal to the

number of source signals (n). The core of BSS is to solve the

mixture matrix A and its inverse matrix W, which is called the

separation matrix, moreover, the source signal can be separated

simultaneously, satisfying (Yang et al., 2018):

S(t) � WX(t) (2)

3 Improved blind source separation

3.1 Sparse component analysis

An attractive advantage of sparse component analysis (SCA)

is that it can transform the time-domain signal into the frequency

domain through appropriate linear transformation method, such

as short-time Fourier transform, wavelet transform, etc., making
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the observed measurement signals sparse in the frequency

domain. The sparsity of observation signal means that most

time-frequency points are zero, and only a few time-frequency

points have large values in the time-frequency domain (Ye et al.,

2018). In this paper, one-dimensional time-domain signal is

transformed into two-dimensional time-frequency-domain

signal by short-time Fourier transform, and the rectangular

window function is selected. And 1) could be further

expressed as (Yi et al., 2017):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(t, f)
x2(t, f)

..

.

xp(t, f)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � [ a1 a2 / aQ ]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1(t, f)
s2(t, f)

..

.

sQ(t, f)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 / a1Q
a22 / a2Q
..
.

1 ..
.

aP1 / aPQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
s1(t, f)
s2(t, f)

..

.

sQ(t, f)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

where [ a1 a2 / aQ ] is the column vector of mixing matrix

A. aPQ is the attenuation factor for the Q-th source signal

reaching the P-th observation point.

When each source signal is sparse and disjoint, the observed

signal has at most one source signal at a certain time-frequency

point. Assuming that only the source signal sj(tv, fv) exists at the
time-frequency point (tv, fv), 3) can be expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x1(tv, fv)
x2(tv, fv)

..

.

xp(tv, fv)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � [ a1 a2 / aQ ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
..
.

sj(tv, fv)
..
.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
a11 / a1Q
a22 / a2Q
..
.

1 ..
.

ap1 / aPQ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
..
.

sj(tv, fv)
..
.

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

Then, (4) can be simplified as:

x1(tv, fv)
a1j

� x2(tv, fv)
a2j

� / � xP(tv, fv)
aPj

� sj(tv, fv) (5)

From a geometrical point of view, if the real part or

imaginary part of x1(t, f), x2(t, f) is used as the horizontal

axis and vertical axis to draw a scatter plot,

x1(tv, fv)/x2(tv, fv) � a1j/a2j is constant for the sampling

times belonging to the source signal sj. That is, the time-

frequency points belonging to the source signal sj will

determine a straight line. Similarly, the time-frequency

points of different source signals will be clustered into

corresponding clustering lines. The direction vector of these

clustering lines is the attenuation coefficient ratio of each source

signal mixed to the observation point, which is the column

vector aQ of the mixing matrix A. And the mixing matrix A can

be estimated by the direction of each clustering line in the

scatter diagram.

Based on the obtained mixing matrix A, the L1 norm is used

to solve the underdetermined equation, then the system source

signal is extracted.

3.2 Mixing matrix estimation

The premise of estimating the mixing matrix A is that the

time-frequency points of the mixed signal can form a clustering

line with certain directionality in the real or imaginary part

scatter diagram. In this paper, the fuzzy C-means method is used

to estimate the mixing matrix A by calculating the clustering

center of the clustering line, which is suitable for the blind source

decomposition problem with any number of measurement signal

channels. However, when there are too many time-frequency

points, the clustering direction in the scatter diagram is

complicated, resulting in much calculation time and poor

identification accuracy.

The source signal propagates outward in the energy form,

however, the energy will be attenuated during the propagation

process, the final energy of the same source signal reaching each

observation is a little different. Therefore, an algorithm combing

the frequency energy peak point method (Jin et al., 2021) and the

fuzzy C-means method is proposed to estimate the mixing

matrix A.
The main principle of the proposed method to estimate the

mixture matrix A is: since the energy of each source signal is the

largest near its own frequency point, the frequency value of each

source can be determined by using the frequency peak method.

The clustering straight line direction of the corresponding time-

frequency point at the maximum energy is the clustering

direction of each source signal. Then, the real part or

imaginary part time-frequency dispersion points

corresponding to each peak frequency point are normalized

and mapped to the unit circle. Finally, the clustering center is

calculated by using the fuzzy C-means algorithm, so as to obtain

the mixing matrix A.
In the time-frequency domain, the energy distribution of a

single measurement signal is firstly calculated, and then the

energy of multiple channels at the same frequency point is

added, which is:

E(f) � ∑m
i�1

∫t2

t1

((Re(xi(t, f)))2 + (Im(xi(t, f)))2)dt (6)

where E(f) is the sum of the energy of all observation signals at

each frequency point; xi is the i-th time-frequency point;

Re(xi(t, f)) and Im(xi(t, f)) are the real part and imaginary

part of the time-frequency point respectively;m is the number of

the observation signals.
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3.3 Source signal recovery

SCA algorithm utilizes the sparsity of the source signal in time-

frequency domain to recover the source signal. The sparse solution is

obtained by establishing and solving the optimization problem (P1)

in (7):

(P1): { ~s(t, f) � min
∣∣∣∣s(t, f)∣∣∣∣l1

subject to As(t, f) � x(t, f) (7)

where ~s(t, f) is the estimation of the source signal s(t, f); (P1)
is a convex optimization problem. The solution of the

optimization problem is the L1 norm minimum solution

(Donoho, 2006).

4 Oscillation modal parameter
identification

4.1 Rotational inertia-based input
measurement selection

The power system requires accurate generator parameters and

mathematical models when performing small-signal stability

calculation and analysis. The kinetic energy of the generator is an

important parameter of the generator, which is determined by the

rotational inertia of the generator rotor. The rotational inertia refers

to the inertia of the generator rotor during the rotation process,

which affects the electromechanical transient process of each

FIGURE 1
Flow chart of SCA and the modal parameter identification.
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generator and is of great significance to the stability and safety of the

power system.When the system is disturbed, the generator rotor will

accelerate or decelerate due to the unbalanced torque, and the

rotational inertia can be expressed as the ability of the system to

return to the original stable operation. The smaller the rotational

inertia, the worse the generator’s resistance to disturbance.When the

proposed method is applied to the actual system, it is necessary to

use the rotational inertia of the generator in each region as a

quantitative index, and select the measurement signals of the

generator with the smallest rotational inertias as the input signals

of SCA algorithm, which can greatly reduce the number of the input

signals and effectively improve the calculation speed.

4.2 Estimation of modal matrix

The low-frequency oscillation signal of power system is

essentially the multimodal coupling response, which can be

expressed by (8). The oscillation frequency has a large

deviation in a period of time, which shows obvious nonlinear

characteristics:

x(t) � Φq(t) � ∑n
i�1
φiqi(t) (8)

where Φ� [φ1,φ2,/φn] is the mode shape matrix, the mode

shape of the i-th column φi is related to the i-th modal response

vector qi(t), and can also be transformed into the form of (9)

(Yang and Satish, 2013):

q(t) � Φ−1x(t) (9)

Comparing (1) and (8), the viewpoints of characteristic

parameter identification of electromechanical oscillation mode

and blind source separation are consistent, that is, the perturbed

dynamic response of multi-modal coupling is regarded as a linear

group of multiple single-modal responses. The single-modal

response q(t) is equivalent to a special form of the source

signal s(t), and the mixing matrix A contains the information

of the modal matrix, satisfying Φ � A.

4.3 Oscillation frequency and damping
ratio identification based on hilbert
transform

In this paper, Hilbert transform (HT) is used to extract the

oscillation frequency and damping ratio (Gibbard and Vowles,

2010). Performing the HT on a single-mode oscillation

component qi(t), we can obtain:

FIGURE 2
Test signal waveforms and their WFT spectrum.

FIGURE 4
The peak plot in frequency domain.

FIGURE 3
Diagram of clustering characteristics.
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h(t) � 1
π
∫+∞

−∞
q(t)
t − τ

dt (10)

Where τ is the integral variable.

Introduce an analytic function consisting of q(t) and h(t):

Z(t) � q(t) + jh(t) � A(t)e−jφ(t) (11)
Where A(t) is the envelope of the signal after Hilbert transform

and φ(t) is the instantaneous phase, namely:

⎧⎪⎪⎨⎪⎪⎩
A(t) � [q2(t) + h2(t)]1/2
φ(t) � tan−1[h(t)

q(t)]
(12)

The instantaneous frequency can be obtained:

f(t) � 1
2π

×
dA(t)
dt

(13)

The system oscillation signal can be deduced from the

generator swing equation, which can be expressed as:

x(t) �� ∑n
i�1
φiqi(t) � ∑n

i�1
φiuie

−λi tcos(ωdit + θi) (14)

Where qi(t) is a cosine curve that decays exponentially; ui and θi
are the amplitude and phase respectively, which are determined

by the initial conditions; λi is the decay coefficient; ωdi is the

oscillation frequency.

For a damped oscillaion, the single-modal response signal

qi(t) can be expressed as:

qi(t) � uie
−ξω0tcos(ω0

�����
1 − ξ2

√
t + θi) (15)

By comparing 14) and (15), we can obtain:

FIGURE 5
The separated source signals and their WFT spectrum.

TABLE 1 Extracted modal parameters of test signal.

Mode Frequency (Hz) Damping ratio (%)

Identified value Theoretical value Identified value Theoretical value

1 0.1960 0.2 8.3913 6.3662

2 0.3972 0.4 8.1498 5.9683

3 0.6033 0.6 2.3319 2.6526

4 0.7699 0.8 3.8385 4.9736

5 1.0995 1.1 0.9751 0.7234
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{ ξω0 � λi

ωdi � ω0

�����
1 − ξ2

√
(16)

The damping ratio of the signal is calculated as:

ξ � − λi�������
ω2
di + λ2i

√ (17)

The modal parameter extraction of an electromechanical

oscillation based on the SCA algorithm is shown in Figure 1:

5 Case studies

The proposed method has been tested on test signal, test

system and real measurements. In this section, the experiments

are carried out on an Intel Core i7 3.7 GHz computer with 16 GB

of RAM. Additionally, our proposed method is coded by

MATLAB.

5.1 Test signal analysis

The five single-mode oscillation signals shown in Eq. 18 are

constructed with frequencies of 0.6 Hz, 1.1 Hz, 0.4 Hz, 0.8 Hz,

and 0.2 Hz, in that order:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S1 � e−0.1t sin(2π × 0.6t + π /

6)
S2 � e−0.05t sin(2π × 1.1t + 0)

S3 � e−0.15t cos(2π × 0.4t + π /

3)
S4 � e−0.25t sin(2π × 0.8t + π /

4)
S5 � e−0.08t sin(2π × 0.2t + π /

5)

(18)

FIGURE 6
Single line diagram of simplified 14-generator system.

FIGURE 7
The rotational inertias of 14-generator system.

TABLE 2 The characteristic results of simplified 14-generator system.

Mode Real Imaginary Frequency (Hz) Damping ratio (%)

1 −0.589 2.513 0.399 22.8

2 −0.563 3.322 0.529 16.7

3 −1.080 4.581 0.729 22.9
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Using a three-dimensional random mixing matrix

A � ⎡⎢⎢⎢⎢⎢⎣ 0.6 0.4 0.53 0.45 0.41
0.44 0.65 0.5 0.68 0.48
0.5 0.45 0.35 0.67 0.61

⎤⎥⎥⎥⎥⎥⎦, it is mixed into three

coupled oscillating signals with non-smooth characteristics as

the test signals. The three test signals are sampled separately with

the sampling frequency of 0.01Hz, and the sampling time is 15s.

The spectrum analysis of the three test signals is performed using

window Fourier transform (WFT), as shown in Figure 2.

Short time Fourier transform (STFT) is used to transform the

three groups of test signals into time-frequency domain, and the

window function is chosen to be a rectangular window of length

10s, and the window was shifted by four points each time.

Figure 3 shows the scatter plot of the real part of the test

signal x. From Figure 3, we can know that there are five

obvious clustered straight lines, indicating that there are five

source signals in the test signal x.

According to (6), the total energy of the three groups of test

signals at each frequency point is calculated, and the frequency

corresponding to each energy peak is detected using the

frequency energy peak point method, as shown in Figure 4.

The normalized clustering center of the five straight lines is

calculated using the fuzzy C-mean algorithm, and the mixing

matrix A can finally be accurately estimated as:

A � ⎡⎢⎢⎢⎢⎢⎣ 0.4826 0.6458 0.6662 −0.4350 0.4478
0.5492 0.6030 0.4770 −0.6257 0.7329
0.6777 0.4243 0.5484 −0.6230 0.5040

⎤⎥⎥⎥⎥⎥⎦.
The L1 norm minimization method was used to separate the

five source signal components, and the time domain and

frequency domain distribution of the five source signals is

shown in Figure 5. As shown in Figure5, each component has

the characteristics of periodic oscillation, and the calculated

frequencies are basically the same as the actual frequencies.

Meanwhile, the proposed algorithm decomposes the multi-

modal coupled oscillation signal into multiple source signals

with the single frequency, without modal aliasing. The detected

frequencies are arranged in the order from low to high, which

effectively solves the problem of uncertainty in the order of

source signals.

Hilbert transformwas utilized to extract modal parameters of

the separated components, and the oscillation frequencies and

damping ratios are obtained, as shown in Table 1. It can be seen

from Table 1 that the results of the extracted modal parameters

are quite close to their true values, indicating the effectiveness of

the proposed method.

5.2 Modified IEEE 14-genertor 5-area test
system

In this section, the modified IEEE 14-generater 5-area

simplified system is used as an example (Ding et al., 2019), as

shown in Figure 6. There are five areas in this system, but since

area one is strongly coupled with area 2, the system can be

considered to have four main areas, which are defined as Area 1,

Area 2, Area 3, and Area 4, respectively. Area one contains five

generators, namely G101, G201, G202, G203, and G204;

Area2 contains two generators, G301, G302; Area3 contains

four generators, namely G401, G402, G403, G404;

Area4 contains G501, G502, G503. And two aggregated

PMSG-based wind farms are connected to Buses 504 and 201,

respectively in Figure 6. Furthermore, the parameters of the two

wind farms are configured in accordance with Literature (Dejian

et al., 2022a; Dejian et al., 2022b). Moreover, the active outputs of

the SGs in the same area are reduced accordingly to keep the

operating point the same as that before the SG reduction.

Inter-area mode is more likely to excite a poorly damped

oscillation, which involves more generators and has a wide range

of influence, so it is usually considered the mode of most interest.

The 14-generator test system was linearized around an operating

point, and small-signal stability analysis (SSSA) results show that

the system has three inter-area modes. as shown in Table 2.

In this paper, the rotational inertia of the generators in each

area of the system is used as a quantitative index, and the angular

frequency of the generator with the smallest rotational inertia in

each area is selected as the input signal. Figure 7 shows the

rotational inertia of each generator. According to the signal

selection principle and the inertia results in Figure 7,

generator G203 is selected as the representative of Area1, in

which its inertia is lower than the other generators in the same

area. Similarly, the signal of generator G301 is selected as

representative of Area2, generator G401 is se-lected as

representative of Area3, and generator G501 is selected as

representative of Area4.

In order to verify the effectiveness of the proposed method

for identifying the interarea modes, a representative two-phase

grounded short circuit is applied at bus 506, the sampling

frequency of 100 Hz and the sampling time is 50 s. And the

simulation was carried out using power system toolbox (PST).

FIGURE 8
The waveforms of rotor speed of generators and their
frequency domain.
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The angular frequency of each generator within 10s after the fault

is used as the input signal in this paper. The input signals of

generator G203, generator G301, generator G401, and generator

G501 were first detrended, and the time domain angular

frequencies of these four generators were transformed into the

frequency domain using WFT. Three interarea oscillation modes

could be identified, with frequencies of 0.34 Hz, 0.51 Hz, and

0.68 Hz, respectively. Figure 8 shows the time-domain

distributions and the corresponding frequency-domain

distributions of the angular frequencies of the four generators.

The four input signals are decomposed using SCA algorithm,

and three single-mode oscillation components can be obtained.

The time-domain and frequency-domain distributions of each

single-mode component are shown in Figure 9. HT was used to

calculate the oscillation frequency and damping ratio, and the

obtained modal parameter results were compared with WFT

results and SSSA results, as shown in Table 3. From Figure3, we

can know that all the three inter-area modal parameters can be

extracted by using only four input signals of generator G203,

G301, G401 and G501, which effectively saves calculation time.

While identifying the oscillation frequency and damping

ratio of the system, SCA algorithm can also estimate the

modal matrix utilizing the clustering characteristics.

The modal matrix is estimated as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0.1902 0.4766 −0.6595 −0.0357
−0.1971 0.451 0.7167 −0.0124
0.5477 −0.4067 −0.0325 −0.0364
−0.7905 −0.6355 −0.2221 −0.9985

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The mode shape corresponding to the three inter-area

oscillation modes are shown in Figure 10. For Mode 1,

generator 401 oscillates against generator 501. In this paper,

the input signal is the representative of each region, so it can also

be considered that mode one is the inter-area oscillation mode,

with generator 401 in Area3 oscillates against generator 501 in

Area4. By the same token, the oscillation area clusters of mode

two is Area two and Area three against Area 4, the oscillation area

clusters of mode three is Area two against Area 3. The estimated

oscillation frequencies, damping ratios and mode shapes using

the proposed method in this paper are summarized in Table 4.

TABLE 3 Identified results with three different methods of simplified 14-generaror system.

Mode Frequency (Hz) Damping ratio (%)

Identified value WFT SSSA Identified value SSSA

1 0.336 0.34 0.399 12.22 22.8

2 0.504 0.51 0.529 9.09 16.7

3 0.679 0.68 0.729 6.19 22.9

FIGURE 9
The separated single-mode components and their WFT spectrum.
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5.3 Test on the real measurements

In this section, a set of real PMU measurements from

north power grid of China was used to further illustrate the

adaptability of the algorithm in practical system. The system

comprises two major areas connected through four 500-kV

transmission lines. When the maintenance schedule requires,

heavy power is delivered between the two areas, the

electromechanical oscillation is one of the major threats to

the power grid stability. The data are collected from four

PMUs located in the two areas. The input signals were

recorded for a duration of 15 s with the sampling frequency

of 30 Hz. The time-domain oscillation waveforms and the

corresponding frequency-domain distributions are shown in

Figure 11. As can be seen from Figure 11, the practical power

grid contains an inter-area oscillation mode with the

frequency of 0.28 Hz.

The SCA algorithm was used to extract oscillation features

from PMU measurement data, the decomposed time-domain

source signals and their spectrum are shown in Figure 12.

Then the HT algorithm was applied to the decomposed source

signals to extract oscillation frequencies and damping ratios,

as shown in Table 5. As can be seen from Table 5, the proposed

method identified the oscillation mode with the frequency of

0.28 Hz, which is consistent with the spectrum analysis, and

the corresponding mode shape is shown in Figure 13. From

Figure 13, it can be seen that PMU2 is mainly involved in the

oscillation of this mode.

To sum up, it can be seen that the proposed algorithm in this

paper can not only effectively extract the modal parameters from

the test signal and the simulated signal, but also has good

applicability to the real measured signal.

FIGURE 10
Normalized mode shapes.

TABLE 4 Identified results of the simplified 14-generator system.

Mode Frequency (Hz) Damping ratio (%) Mode shape

1 −0.589 0.399 22.8

2 −0.563 0.529 16.7

3 −1.080 0.729 22.9

FIGURE 11
Active power oscillation signal in time and frequency domain.
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6 Conclusion

In this paper, an improved blind source separation algorithm

based on sparse component analysis is proposed to extract

electromechanical modal parameters in power systems. Test cases

of simulation studies and PMU measured data can obtain the

following conclusions:

First, the proposed algorithm decomposes the multi-

modal coupled nonstationary oscillation signal into source

signals with single frequencies, and the source signals are

arranged in the order of oscillation frequency from small to

large, which effectively avoids the problem of modal

aliasing.

Second, the SCA algorithm reduces the original input

measurement data by using the rotational inertia of the generator

rotor in each area of the system as a quantitative index, which

effectively reduces the calculation time and improves the analysis

efficiency.

Third, the proposed method can extract the modal

parameters from the multi-mode coupled oscillation signal,

which can accurately reflect the inherent electromechanical

characteristics of power systems, and provide a new idea for

the analysis of the electromechanical oscillation.

The proposed algorithm is suitable for analyzing the mode-

coupled oscillation signal of the interconnected power system,

and provides a new idea for the extraction of electromechanical

oscillation parameters.
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FIGURE 12
The decomposed waveform of active power and its spectrum. (A) The decomposed source signal (B) Spectrum of the source signal.

TABLE 5 Identified oscillation mode of active power oscillation signal.

Mode Frequency (Hz) Damping ratio (%)

1 0.2653 0.3323

FIGURE 13
The identified mode shape of the actual power grid.
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