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Li-ion batteries degrade with time and usage, caused by factors like the growth
of solid electrolyte interface (SEI), lithium plating, and several other irreversible
electrochemical reactions. These failure mechanisms exacerbate degradation
and reduce the remaining useful life (RUL). This paper highlights the importance
of feature engineering and how a careful presentation of the data can capture
the hidden trends in the data. It develops a novel framework of deep neural
networks with memory features (DNNwMF) to accurately predict the RUL of
Li-ion batteries using features of current and previous n cycles. The results
demonstrate that introducing memory in this form significantly improves the
accuracy of RUL prediction as root mean square error (RMSE) decreases more
than twice with memory compared to without memory. The optimal value
of n, referred to as nopt, is also determined, which minimizes the prediction
error. Moreover, the number of optimization parameters reduces by more than
an order of magnitude if an autoencoder is used in conjunction with the
proposed framework (DNNwMF). The framework in this paper results in a trade-
off between accuracy and computational complexity as the accuracy improves
with the encoding dimensions. To validate the generalizability of the developed
framework, two different datasets, i) from the National Aeronautics and Space
Administration’s Prognostic Center of excellence and ii) from the Center for
Advanced Life Cycle Engineering, are used to validate the results.

KEYWORDS

lithium-ion battery, remaining useful life (RUL), prognostics and health management
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1 Introduction

Prognostics and health management (PHM) deals with forecasting potential failures
in many different engineering application systems, including battery management systems.
PHM is necessary for the reliable operation of the system and allows timely remedial
action by predicting future failures. Remaining useful life (RUL) is when the state of
health (SOH) is expected to remain above a minimum acceptable SOH relative to the
current time. In the case of a lithium-ion (Li-ion) battery, RUL is measured in terms
of remaining cycles before the capacity degrades to less than 70% of its rated capacity
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(Xing et al., 2013; Tarar et al., 2021a; Amir et al., 2022) or 80% of its
rated capacity depending on the application.

Li-ion batteries are widely used in several everyday applications,
including electric vehicles, household equipment, satellite
applications, communications applications, and cell phones (Tarar
et al., 2023). The widespread use of Li-ion batteries is mainly due
to their superiority over other types of batteries. These advantages
include long cycle life, high energy density, high power density,
high output voltage, and low self-discharge rate (Stroe et al., 2016;
Hu et al., 2017b; Meng et al., 2018; Tarar et al., 2021b).

When the Li-ion battery is repeatedly charged and discharged,
the total capacity decreases over time, termed health degradation.
Many factors contribute to this aging process. Solid electrolyte
interface (SEI) film grows on the electrodes due to the movement of
Li-ions during the first charge-discharge cycle (formation process).
The SEI layer continues to grow slowly, causing capacity fade (Pinson
and Bazant, 2012). In addition, overcharging at low temperatures
causes lithium plating, as some Li-ions are reduced to lithium
metal, which further causes capacity loss during the charging
and discharging process (An et al., 2016). An increase in internal
impedance is another cause of capacity fade.

The RUL is an important metric to gauge reliability in electronic
systems. It also gives insight into the proactive maintenance
of systems. For Li-ion batteries, RUL prediction also supports
safety considerations. Battery failure may cause damage to the
entire system, potentially leading to critical injuries and significant
financial loss. For example, a battery malfunction in an electric
vehicle can cause an explosion and other complications. In
cell phones or laptops, battery failures may render a device
useless; knowledge of when the battery will malfunction can be
advantageous.

1.1 Related work

This section presents prior work on RUL prediction. The
approaches to predicting RUL can be categorized into model-based
methods and data-driven methods. Model-based approaches utilize
electrochemical principles, dynamic models, and equivalent circuit
models. (Xiong et al., 2017) utilized electrochemical impedance
spectroscopy (EIS) and proposed a method to identify degradation
behavior. (Xu and Chen. 2017) proposed a state-space model
utilizing expectation-maximization (EM) and extended Kalman
filter (EKF) for RUL prediction. (Pinson and Bazant, 2012)
introduced a single particle model to explain degradation in
capacity, focusing on the growth of the SEI layer. (Hu et al.,
2017a) utilized a reduced-form electrochemical model by proposing
a moving horizon estimation framework (MHE). Even though
model-based approaches give us a basic understanding of the
dynamics of electrochemical reactions inside a battery, they are
computationally expensive. Moreover, the parameters depend on
operating conditions, so the model has limited applicability.

Because of the drawbacks and limitations of model-based
approaches, data-driven approaches have received substantial
attention recently. The advancements in machine and deep learning
techniques and their non-reliance on inherent electrochemical
dynamics make them an attractive alternative. Numerous machine
learning and deep learning algorithms have been investigated

such as the auto-regression model (Song et al., 2017), relevance
vector machine (RVM) (Yuchen et al., 2018), Gaussian process
regression (GP-regression) (Liu et al., 2013) and support vector
machine (SVM) (Dong et al., 2014). Neural networks have proved
efficient because of their nonlinear modeling capability (Wu et al.,
2016; Tarar et al., 2022). Sequential dependency networks, such as
recurrent neural networks (RNNs), are widely used (Liu et al., 2010;
Sbarufatti et al., 2017; Zhang et al., 2022) proposed a prediction
framework based on a combination of offline global models
developed by different machine learning methods and cell-
individualized models that were online adapted. (Hu et al., 2020)
provided a timely and comprehensive review of the battery lifetime
prognostic technologies, focusing on recent advances in model-
based, data-driven, and hybrid approaches. These approaches’
details, advantages, and limitations were presented, analyzed, and
compared.

A novel hybrid method is proposed (Xu et al., 2022) to predict
battery capacity degradation trajectory, which combines physics-
based and data-driven approaches in three steps: hybrid feature
extraction, clustering with data augmentation, and training a deep
neural network.Themethod provides accurate predictionswith only
20% training data and is robust to noisy input. Validation results
show mean absolute percentage errors below 2.5% for capacity
degradation trajectory and 6.5% for remaining useable cycle life
under different aging conditions. (Deng et al., 2022) use battery
aging data to recognize degradation patterns and improve the
state of health (SOH) estimation accuracy using transfer learning.
Four discharge capacity curve features are extracted, with two
distinct degradation patterns and two used for SOH estimation.
Long short-term memory (LSTM) network achieves the best SOH
estimation accuracy compared to other algorithms, and degradation
pattern recognition and transfer learning methods further
improve accuracy to mean MAE and RMSE values of 0.94% and
1.13%.

Jiang et al. (2021) proposed a reliable cycling aging prediction
based on a data-driven model to address the urgent issue of
adaptive and early prediction of lithium-ion batteries’ remaining
useful life. First, a multi-kernel relevance vector machine (RVM)
model with two alternative kernel functions was built to improve
the learning and generalization capabilities of the traditional RVM.
Next, the kernel and weight parameters were determined using
the particle swarm optimization approach. A similarity criterion of
the battery capacity curves is then provided to filter offline battery
data for model training to accomplish early life prediction. For
model training and verification, battery cycling aging data from
two different types of batteries under various aging conditions were
employed. Ren et al. (2018) proposed an integrated deep learning
approach in which 21-dimensional features extracted from the
National Aeronautics and Space Administration (NASA) dataset are
fused by an auto-encoder that reduces their dimensionality to 15.
The reduced 15-dimensional features are then fed to a deep neural
network (DNN) model for RUL prediction.

1.2 Contributions

The capacity of the battery degrades over charge-discharge
cycles. In data-driven approaches, various features extracted from
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the measured data exhibit valuable patterns that can be exploited to
predict the battery’s RUL. These trends can be exploited in a time
series analysis using features spanning multiple cycles. However,
these memory-based features that span multiple cycles have rarely
been used.

With a growing trend of using deep neural networks in such
problems, domain knowledge-based features are also declining, and
researchers bank on the power of neural networks to extract features
from the data. Feature engineering is an important aspect where
domain knowledge plays an important role. A careful presentation
of the data can help identify the trends in the data and can be an
important step in validating the dataset. Furthermore, the identified
features are used with memory to predict RUL by introducing a
window spanning multiple cycles capturing features of the previous
n cycles. The main contributions of this research are as follows

1. This paper developed a novel framework—DNN with memory
features (DNNwMF)—to accurately predict the RUL of Li-ion
batteries using features of current and previous n cycles.

2. The proposed DNNwMF is also compared with logistic
regression and SVMmodels.

3. The optimal value of n (nopt)is computed, giving the minimum
testing loss.

4. The effect of increasing C-rate and temperature on the optimal
value of n is explored.

5. The input dimension increases significantly if nopt number of
cycles are used. Therefore, a framework, namely, an autoencoder
and DNN with memory features (ADNNwMF), is employed to
considerably reduce the number of dimensions and optimization
parameters in the online training phase without much loss in
RUL prediction accuracy.

Incorporating memory in features in such a way for batteries
has not been found in the literature. Memory-based features in a
simple deep neural network are used rather than RNN or LSTM.
RNN and LSTMnetworks aremore complex and take longer to train
than DNN. LSTM networks also require more memory to train and
can easily overfit. Moreover, dropout is much harder to implement
in LSTM. In addition, LSTM is sensitive to different random weight
initializations. Also, LSTM processes time-dependent data, so using
the extracted features might not be a good way to feed to an
LSTM network. Instead, providing sequential raw information is a

better approach with the LSTM network. These limitations make it
challenging to find the optimal value of n, for which the proposed
method is used. Hence, the proposed method allows for finding an
optimal window to incorporate memory, which has not been done
for Li-on battery datasets.

The generalizability of the results is another crucial aspect often
overlooked in data-driven approaches. The design of experiments
for dataset creation is constrained because only a few attributes, like
charging profiles, discharging profiles, temperature, and humidity,
are changed to build a dataset. Therefore, datasets capture different
degradationmechanisms; hence, a data-driven technique optimized
for a dataset may not work if the dataset is changed. In order to
confirm the generalizability of the results, two different datasets, a)
from the Prognostic Center of excellence of National Aeronautics
and Space Administration (NASA) and b) the Center for Advanced
Life Cycle Engineering (CALCE) dataset provided by the University
of Maryland College Park are used to validate the results. For these
datasets, the tests have been performed in different conditions. For
instance, all the tests forNASA’s dataset are run at room temperature,
whereas the CALCE dataset has 22 different test conditions that vary
in temperature, C-rate, and the time interval between cycles.

The next section describes the proposed framework and
problem formulation. Section 3 presents and analyzes the
experimental results and Section 4 concludes this paper.

2 Proposed deep learning with
memory features framework

Figure 1 shows the proposed DNNwMF and ADNNwMF
frameworks of DNNs with memory features with and without auto-
encoder. Features are extracted from the dataset. In Figure 1A
features of the last n cycles are used without auto-encoder,
whereas in Figure 1B the memory-based features are fused, and
their dimensionality is reduced using autoencoder. These low-
dimensional fused features are then fed to the DNNmodel for RUL
prediction.

The problem to be solved is as follows: given the ith cycle features,
xi, and the features of previous n cycles {xi,xi−1,xi−2,……,xi−n},
estimate the RUL, yi, corresponding to the ith cycle. The paper
investigates whether the introduction of memory (expanding the

FIGURE 1
The proposed frameworks (A) DNN with memory features (DNNwMF) and (B) autoencoder with DNN with memory features (ADNNwMF).
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feature set to previous n cycles) improves RUL prediction accuracy.
Furthermore, the number of cycles to be used, n, is empirically
optimized. The goal is to find the optimal window of the ith

and previous n cycle features to predict RUL as efficiently as
possible.

2.1 Data set validation and feature
extraction

Figure 2 shows one cycle of the most widely used constant
current constant voltage (CC-CV) charge and discharge process.

(a) Charging process: In the charging process, the first step is
constant current (CC) charging, in which current is set to a constant
value while voltage is raised to the maximum upper limit. After that,
the voltage is kept at this constant value, called the constant voltage
(CV) charging step. While the voltage is kept at the CV, the current
drops to a certain threshold.

(b) Discharging process: This process consists entirely of CC
discharging in which the voltage drops to the lower limit.

In typical experimental data, the charging and discharging
processes described above are repeated until the battery reaches
its end of life. In this paper, the NASA dataset (Saha and Goebel,
2019) and theCenter forAdvanced Life Cycle Engineering (CALCE)
dataset provided by theUniversity ofMaryland (UMD)College Park
have been used for RUL estimation. Features are extracted from the
charging and discharging voltage and current profile from the two
datasets.

When the battery goes through charge-discharge cycles, several
degradation mechanisms occur, which include loss of lithium
inventory, lithiumplating, andmetallic dendrites, negative electrode
degradation, degradation in composite electrode, metal dissolution,
positive electrode degradation in bulk, loss of active material,
and increased impedance. These degradation mechanisms reduce
the battery capacity, manifested in the shortening of the time it
takes to reach upper and lower cutoff voltage during charging and

FIGURE 2
One cycle of constant current constant voltage (CC-CV) charge
discharge process.

discharging. Similarly, constant current charging time and constant
current discharging time decrease over the cycles. Hence, these
features can help extract helpful degradation patterns to help predict
RUL.Figures 3, 4 shows the battery voltage and battery output
current over time during multiple charge and discharge cycles of
battery B0005 from the NASA data set.

The figures visibly capture various trends as the battery ages
and the number of cycles increases. This kind of plotting shows
the variation of all these features over the charge-discharge process
and how the trend varies over the number of cycles. For example,
Figure 3 shows how the battery voltage varies over time during the
charge-discharge cycle. During the CC phase in the charging cycle,
as shown in Figure 3A, the battery voltage increases to its cut-off
voltage, where it stays constant for the rest of the cycle; however,
the time required to reach the cut-off voltage decreases with the
number of cycles. Figure 3B demonstrates that the time to reach
the lower cut-off voltage during the discharge phase decreases with
the increasing number of cycles. Similarly, the CC charging and
discharging time decrease as the number of cycles increases, as
shown in Figure 4. Thus, clear patterns emerge as the battery ages,
benefiting battery prognostics.

However, as the battery ages and its capacity fades, the collected
samples in the charging and discharging process are different:
4,500–5,000 for newer and 700–800 for old batteries. Therefore, it
is not feasible to use these data samples directly from the charge
and discharge cycle into the prognostic frameworkwithout data pre-
processing or a mechanism for feature extraction. To learn from this
data, features are extracted from the charge and discharge cycle that
can be used inRULprognostics.The extracted features are as follows:

Upper Cut-off Voltage Time: During the charging process, the
battery terminal voltage features are

(tmin(i),Vi) , Vi ⩾ upper cut− off voltage,

i = 1,2,3,…,m,
(1)

where tmin(i) represents the time when the battery terminal
voltage reaches themaximum value first, andVi represents the value
of the output voltage in the ith cycle.

Constant Current Charging Time (CCCT): One of the output
current features is CCCTwhich represents the time when the output
current of the battery starts to drop,

(tmin(i),Ai) , Ai ⩽ constant current value,

i = 1,2,3,…,m,
(2)

where Ai represents the current value in the ith cycle.Maximum
Charging Voltage Time:The time required to reach the maximum
battery measured voltage is given as

(tmax,Vmax) = {(ti,Vi|max(Vi))} , i = 1,2,3,…,m, (3)

where tmax is the time stamp for which the maximum voltage
Vmax is measured in the ith cycle.

Constant Voltage Charging Time: The time for which the
battery is charged at constant voltage

(tmin(i),Vi) , Vi ⩽ constant voltage value,

i = 1,2,3,…,m,
(4)

where Vi represents the voltage value in the ith cycle.

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1059701
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Tarar et al. 10.3389/fenrg.2023.1059701

FIGURE 3
Battery voltage in relation to time and number of cycles during (A) charging and (B) discharging cycle.

FIGURE 4
Battery output current in relation to time and number of cycles during (A) charging and (B) discharging cycle (absolute values are plotted, in actual the
discharging current has negative values).

Minimum Discharging Voltage time: During the discharging
process, the time for which the battery terminal voltage reaches its
minimum voltage is given as

(tmin,Vmin) = {(ti,Vi|min(Vi))} , i = 1,2,3,…,m, (5)

where tmin is the time to reach the minimum battery terminal
voltage value Vmin in the ith cycle.

Constant Current Discharging Time: The time when the
output current during the discharging phase starts to rise again is
the constant current charging time given as
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TABLE 1 UMDCALCE dataset test conditions used in this paper.

Vendor Test No. Temperature (°C) Discharge C-rate

2 1 25 0.5

2 2 25 1.0

2 3 25 1.5

2 4 35 0.5

2 5 35 1.0

2 6 35 1.5

2 7 45 0.5

2 8 45 1.0

2 9 45 1.5

TABLE 2 RMSE(%) for n = 0,1,2 for ADNNwMF and DNNwMF and
corresponding number of optimization parameters.

n ADNNwMF
(RMSE %)

DNNwMF
(RMSE %)

ADNNwMF
(number of

parameters to
optimize)

DNNwMF
(number of

parameters to
optimize)

0 11.34 9.92 214 254

1 9.35 8.59 214 384

2 8.41 7.64 214 514

TABLE 3 RMSE% and change in RMSE with increase in value of n for
DNNwMF and corresponding number of parameters to optimize.

n DNNwMF
(RMSE %)

Change in
RMSE

Optimization
Parameters

0 9.92 N/A 254

1 8.59 1.33 384

2 7.64 0.95 514

3 6.85 0.79 644

4 6.20 0.65 774

5 5.69 0.51 904

6 5.26 0.43 1,034

7 4.99 0.27 1,164

8 4.78 0.21 1,294

9 4.61 0.17 1,424

10 4.48 0.13 1,554

11 4.38 0.10 1,684

12 4.30 0.08 1814

13 4.24 0.06 1944

14 4.21 0.03 2074

15 4.19 0.02 2,204

16 4.17 0.02 2,334

17 4.16 0.01 2,464

(tmin(i),Ai) , Ai ⩾ −constant current value,

i = 1,2,3,…,m,
(6)

where tmin(i) represents the time and Ai represents the value of
current in the ith cycle.

Battery Capacity: Battery capacity, C, represents the discharge
capacity available at each cycle. The discharge capacity feature is
the product of the last two features (tmin(i),Ai), so it may seem
unnecessary to include it. However, the experiments show accuracy
loss with no significant reduction in the number of optimization
parameters.Moreover, the optimal values of n obtained by excluding
this feature are the same when including this feature. Also, because
an autoencoder using the optimal value of n is employed, the
redundancy of features is being taken care of.

2.2 Generating labels and data
normalization

Prediction of RUL requires the true labels of RUL for the training
phase. For this, the total number of battery charge and discharge
cycles are calculated and assigned as the total cycle life L. Then, for
the ith charge and discharge cycle (0 ⩽ i ⩽ n), RUL (yi) is calculated
as

yi = L+ 1− i. (7)

Finally, xi and yi are combined to get the supervised data (xi,yi)
where xi is the input feature with label yi. To mitigate any negative
effects of different data ranges, data normalization is carried out to
map each feature in an interval [0,1] using theminimum-maximum
normalization method on the input xi.

2.3 Training DNN for RUL prediction

A DNN is employed with memory features that use the features
of the last n cycles at the input. The DNN is a supervised learning
model. The input is fed to the network along with the ground truth.
The network processes input assigns weights to different inputs, and
passes it through a nonlinear function to generate the mapping for
the next layer. For instance, for the ith hidden layer, its input is
mapped as

hi = 𝒻(Whi−1 + b) , (8)

where 𝒻 is non-linear activation function, W is the weight
matrix, b is the bias, and hi−1 is the output of the previous hidden
layer. The output of the last layer is compared with the ground truth
to form a loss function.During the training phase, the layers’ weights
are optimized so that the loss function is minimized.The framework
uses a DNN model consisting of four fully connected layers; the
number of neurons in each layer is 10, 7, 4, and 1. The current
DNN structure was picked based on the results of tuning the model.
The number of hidden layers and the number of neurons in each
hidden layerwere varied, and the best results were used.The rectified
linear unit (ReLu) function is used as an activation function for the
intermediate hidden layers, and the sigmoid function is used as an
activation function for the output layer. The network is then trained
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to minimize the root mean square error (RMSE) as the error (loss)
metric given by

RMSE = √( 1
Nt
)

Nt

∑
i=1
(ŷi − yi)

2, (9)

whereNt is the size of the training set. ŷi and yi are the predicted
value and the true value of sample i respectively.

2.4 Autoencoder

As the number of features in the DNNwMF framework
increases, the number of optimization parameters also increases.
Redundancies in the features also creep into the system. In such a
scenario, an auto-encoder is used to reduce the dimensionality of the
input features. An autoencoder is used instead of other compression
algorithms, such as PCA, because the features have a nonlinear
relationship to the cycle life. An autoencoder can compress the
information better into low dimensional latent space, leveraging

its capability to model complex nonlinear functions. Moreover,
the autoencoder is better at feature fusion than PCA. PCA simply
learns a linear transformation that projects the data into a different
space, with the projection vectors determined by the data’s variance.
Autoencoder is a neural network that tries to mimic the input
and hence tries to learn an identity system (Gondara, 2016; Tarar
and Khalid, 2021). It consists of an encoder-decoder pair. A fully
connected autoencoder encodes the input vector x into a latent
space representation as vector z using a transformation of the
form

z = 𝒻(Wex+ be) , (10)

where 𝒻 is non-linear activation function, We is the weight
matrix, and be is the bias at the encoder. Latent space representation
z is then decoded into an output space x̃ having the same
dimensionality as x. This transformation also uses a similar
mapping, that is,

x̃ = 𝒻(Wdz+ bd) . (11)

FIGURE 6
Change in RMSE for DNNwMF framework with the increase in n.

FIGURE 7
Prediction results for DNNwMF when features of nopt = 17 cycles are used in comparison with prediction results for ADNNwMF when features of
nopt =17 cycles are used.
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TABLE 4 Comparison of DNNwMFwith logistic regression and SVM on NASA
dataset.

n DNNwMF
(RMSE %)

Logistic
Regression
(RMSE %)

SVM
(RMSE %)

0 9.92 11.32 12.54

1 8.59 10.33 11.84

2 7.64 9.95 10.54

3 6.85 8.79 9.44

4 6.20 8.65 9.24

5 5.69 8.11 8.84

6 5.26 7.63 8.14

7 4.99 7.27 7.84

8 4.78 6.91 7.34

9 4.61 6.77 7.03

10 4.48 6.43 6.94

11 4.38 6.20 6.74

12 4.30 6.08 6.56

13 4.24 5.96 6.37

14 4.21 5.90 6.30

15 4.19 5.82 6.14

16 4.17 5.75 6.05

17 4.16 5.60 5.95

TABLE 5 Optimal n for each test condition for UMD CALCE dataset.

Test No. Temperature (°C) Discharge C-rate nopt

1 25 0.5 13

2 25 1.0 15

3 25 1.5 16

4 35 0.5 14

5 35 1.0 16

6 35 1.5 17

7 45 0.5 15

8 45 1.0 17

9 45 1.5 18

(We,Wd,be,bd) are the weights optimized using a back
propagation algorithm so that the error in the reconstruction is
minimized.

Autoencoders are used for many applications, including feature
extraction, feature fusion, dimensionality reduction, and denoising,
to name a few. Here, the task is two-fold; dimensionality reduction
and feature fusion. When the parameters above are optimized, the
hidden neurons can be used to express the input, albeit with a
reduced dimension. In this paper, autoencoders compress the high

dimensional highly correlated features to low dimensional complex
features as opposed to (Ren et al., 2018), which used autoencoder
only to reduce the 21-dimensional features to 15-dimensional
features. The autoencoder contains one hidden layer containing
nine neurons. So the features were compressed to nine features.
The input and output layers contain ((nopt + 1) × 13) number of
neurons.

3 Experimental details

3.1 Dataset

This paper used the Li-ion batteries data set from NASA’s
Prognostic Center of excellence (PCoE) (Saha et al., 2009; Saha and
Goebel, 2019) and the Center for Advanced Life Cycle Engineering
(CALCE) dataset provided by the University of Maryland (UMD)
College Park. The NASA dataset was collected under room
temperature and rated conditions. B0005, B0006, B0007, and B0018
batteries were used to generate results. The total number of cycles,
i.e.,m, was 168 for batteries B0005, B0006, and B0007, whilem = 132
for battery B0018. The CALCE dataset contains data from six
vendors under twenty-two different test conditions of temperature,
discharge C-rate, and rest time. Although the cycle datasets used
in the paper contain batteries that only last a few hundred cycles,
the developed method will work for batteries with longer cycle life
(>1000 cycles). Also, it is pertinent to mention that the CALCE
dataset contains battery life cycles closer to 1,000 cycles. Therefore,
the developed method can be applied to batteries with any life cycle.
Table 1 presents CALCE dataset test conditions used in the paper.
For all test conditions of the CALCE dataset, the charging took place
at 0.8 C.

3.2 Feature extraction and data
normalization

All the features explained in Section 2 were extracted for
batteries from two datasets. Batteries B0005, B0006, and B0007 were
used for training, and battery B0018 was used for testing from
the NASA dataset. For the CALCE dataset, as each test condition
contained three battery samples, two samples were used for training,
and the remaining sample was used for testing. Thus, for nine test
conditions shown in Table 1, nine separate models were trained
using two samples, with the third sample used for testing. As
there are 168 cycles for the batteries B0005, B0006, and B0007,
RUL corresponding to ith cycle is calculated as 169− i. For battery
B0018, ith cycle RUL was calculated as 133− i as it contains 132
cycles. The paper used a similar process for the CALCE dataset. The
data were normalized using minimum-maximum normalization.
As indicated previously, there were separately trained models for
two datasets. In fact, for the CALCE dataset, there were nine
trained models for the nine test conditions used in the paper.
Training so many models may raise the question of why not a
universal model is trained for both datasets. However, the two
datasets contain batteries of different chemistries. Furthermore, the
CALCE dataset comes from six different vendors with 22 different
testing conditions. Each test condition triggers different degradation
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FIGURE 8
RMSE (%) vs. test number of UMD CALCE dataset.

mechanisms. Hence, all these factors make it challenging to
make a universal model even for the same dataset with different
test conditions, let alone for different datasets. Thus, as will be
seen from the results, the optimal value of n is different for
different test conditions, indicating difficulty in obtaining a universal
model.

3.3 Results and discussion

This subsection shows that without using memory features, an
auto-encoder is not required. This section also presents the results
of DNNwMF with different values of n and finds the optimal value
nopt. The optimal value of n refers to the number of previous cycles
used with the current cycle to predict the RUL. For each value of
n, training data is used to train the model. Within the training
data, validation data is used to test the model, and the model is
selected based on the minimum validation loss. The testing data is
then used on the trained model, and RMSE (%) is obtained. This
process is repeated for all the values of n. The optimal value of n
is chosen for which the change in RMSE (%) starts to diminish
(0.01% in this case). In other words, for each n, the optimal model
is chosen using validation loss, with the optimal value of n chosen
using the testing loss. The proposed DNNwMF is compared with
logistic regression and SVM models, and the effect of increasing C
rate and temperature on the optimal value nopt is explored.The SVM
benchmark used Gaussian Kernel Radial Basis Function (RBF) and
the hyperparameters were optimized within the Regression Learner
app inMATLAB to automate the selection of hyperparameter values.
Finally, the results with ADNNwMF show that an autoencoder
can be used to reduce the number of optimization parameters
considerably without compromising accuracy. Stochastic gradient
descent with RMSE as a loss function is used for all these cases
during the training phase. After optimizing parameters during the
training, RUL prediction results are verified using the testing set.
The results are presented using RMSE (%), which is calculated

as follows.

RMSE (%) = √( 1
Nt
)

Nt

∑
i=1
(
ŷi − yi
yi
)
2
× 100, (12)

whereNt is the size of the training set. ŷi and yi are the predicted and
actual value of sample i, respectively.

3.3.1 Redundancy of auto-encoder without
memory features

In the absence of memory features, using autoencoders is not
required. Thus, when features of only one cycle are applied, the use
of an autoencoder worsens the accuracy compared to a simpleDNN,
and the number of optimization parameters is also not reduced
considerably.

Figure 5 shows the prediction results for battery B0018 using
auto-encoder and DNN (ADNN) and DNN without memory
(n = 0). These results show the true and predicted RUL on ith cycle
when features of ith cycle are used. The vertical axis represents the
normalized RUL values, and the horizontal axis represents the cycle
number at which RUL is predicted. The black line shows the true
normalized RUL values, the red line shows the predicted RUL values
using ADNN, and the blue line shows the predicted RUL values
using DNN only. The RMSE with ADNN is 11.34%, whereas the
RMSE with DNN is 9.92%. The number of optimizing parameters
is 214 and 254 for ADNN andDNN, respectively.This demonstrates
that using an auto-encoder does not provide a significant gain in
terms of the number of optimization parameters, and it results in
a worse performance than a simple DNN.

3.3.2 Results with DNNwMF
The proposed framework uses features of the previous n cycles

during the prediction process. To reiterate the point made in the
last subsection, Table 2 compares the RMSE (%) and the number
of parameters to optimize for ADNNwMF with DNNwMF for
n ∈ {0,1,2}. This means that in order to predict RUL on ith cycle,

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1059701
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Tarar et al. 10.3389/fenrg.2023.1059701

TABLE 6 RMSE(%) and number of optimization parameters for nopt = 17 for
different number of encoding dimensions in autoencoder with DNN (ADNN),
autoencoder with logistic regression (ALogReg), and autoencoder with SVM
(ASVM).

Encoding
Dimension

Number of
Parameters
to optimize

ADNN
(RMSE %)

ALogReg
(RMSE %)

ASVM
(RMSE %)

15 274 5.01 6.87 7.11

30 424 4.89 6.75 6.98

45 574 4.74 6.58 6.82

90 1,024 4.5 6.43 6.67

features of cycles [i,⋯i− n] are used. It can be seen from Table 2
that DNNwMF predicts RUL more accurately as compared to
ADNNwMF without having an extra processing step in the form
of an autoencoder network, but it requires a larger number of
parameters to optimize as the input features increase with n. Note
that the number of features optimized by auto-encoder is not
included as the feature compression with auto-encoder can be
performed offline.

As DNNwMF gives better prediction accuracy than
ADNNwMF, the optimal nopt value is found using DNNwMF. n and
input features are increased to predict RUL using the DNNwMF
framework. Table 3 shows the RMSE (%), change in RMSE, and
the number of parameters to optimize for different values of n for
the NASA dataset. It can be seen that as n increases, the prediction
accuracy increases, and RMSE decreases. However, diminishing
returns are obtained as n is increased, and the rate of change of
the accuracy improvement slows considerably at higher values of
n, as shown in Figure 6. At n = 17, the curve flattens and there
is a very small decrease in RMSE, and so n = 17 is taken to be
the optimal value nopt. Figure 7 shows the battery B0018 prediction
results usingDNNwMFwhen nopt(n = 17) is used.Table 4 compares
the performance of DNNwMF with logistic regression and
SVM, and it can be seen that DNNwMF outperforms both. If n

increases, the model may run into an overfitting problem. However,
in the cases addressed in this paper, the overfitting problem
did not occur. Regardless, if needed, regularization techniques
and dropout layers can be used to overcome the overfitting
problem.

3.4 Results on CALCE dataset

Table 5 shows the optimal value nopt for each test condition for
the CALCE dataset. It can be seen that increasing discharge C-rate
and temperature increases the nopt. Figure 8 shows the RMSE (%)
for each test number of the CALCE dataset at nopt for DNNwMF,
logistic regression and SVM. DNNwMF outperforms both logistic
regression and SVM.

Table 3 also shows that the number of parameters to optimize
increases with the increase in n. For instance, for n = 17, the
number of optimization parameters is an order of magnitude higher
compared to n = 0. Thus, improved accuracy is achieved at the cost
of computational complexity.

3.4.1 Results with ADNNwMF
Finally, an autoencoder is employed to reduce the number of

parameters to optimize. The auto-encoder is used to compress
the features to a much lower dimension. This reduces the
number of optimization parameters significantly. For instance,
for n = 17, the optimization parameters reduces from 2,464 to
214 when the features (13× 18 dimensional) are encoded to a
9-dimensional feature set. Figure 7 shows the prediction results
when encoding dimension of nine is used for n = nopt = 17 which
achieves an RMSE of 5.11%. Therefore, using an autoencoder
reduces the feature dimensions and, consequently, the number of
parameters to optimize but at the cost of accuracy. However, the
proposed solution allows the flexibility to increase the encoding
dimensions and achieves better accuracy. Table 6 compares the
performance of ADNNwMF with a different number of encoding
dimensions or the compressed features with auto-encoder. It
can be seen that autoencoders are more efficient in exploiting

FIGURE 9
RMSE (%) vs. number of optimization parameters.
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the redundancy of features without significant loss in prediction
accuracy and, at the same time, significantly reduce the number
of optimization parameters (see Table 6). For instance, comparing
the performance of DNNwMF with n = 8 with ADNNwMF with
n = nopt = 17 and encoding dimensions of 45, it can be seen that
the DNNwMF achieves an RMSE of 4.78% with 2014 parameters
whereas ADNNwMF achieves an RMSE of 4.74% with only 574
parameters to be optimized. From Table 6, it can be seen that
by increasing the number of neurons in the encoding layer, the
RMSE can be reduced. Table 6 also shows the performance in
RMSE% of autoencoder with logistic regression (ALogReg) and
autoencoder with SVM (ASVM). It can be seen that autoencoder
with DNN (ADNN) outperforms both ALogReg and ASVM.
Figure 9 shows graphically how increasing the encoding layer or
the number of compressed features impacts the RMSE. Please
note that this research using machine learning has its limitations.
These limitations include dataset size, dataset quality, model
complexity, and battery variability. These limitations can affect the
generalizability and accuracy of predictions. In order to mitigate the
limitations mentioned, the study uses two datasets. Consequently,
the research uses data of sufficient size and quality. Also, a neural
network of only 3 hidden layers is used, so the model is not
very complex. Also, the CALCE dataset consists of six vendors
and accounts for battery variability by providing various battery
samples.

4 Conclusion

This paper introduces a novel deep learning approach,
DNNwMF, to accurately predict the RUL of Li-ion batteries by
introducing memory in DNNs. The proposed methodology uses
domain knowledge features after capturing the dataset’s trends.
The features of current and n previous cycles were used. The
paper finds the optimal value of n and shows that introducing
memory in this form significantly improves the RUL prediction.
Two independent datasets encompassing many testing conditions
are used to verify the results. The results are consistent across data
sets and test conditions, proving the generalizability of the proposed
framework. Furthermore, the results with the proposed framework

outperform the classic machine learning approaches like logistic
regression and SVM models, establishing the method’s superiority.
In addition, ADNNwMF is employed for dimensionality reduction
and feature fusion, which considerably reduces the number of
optimization parameters.Theperformance ofADNNwMF improves
if the number of encoding dimensions increases.Thus, the proposed
methodology is flexible regarding the number of previous cycles and
the number of encoding dimensions.
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