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Accurately predicting and balancing energy generation and consumption are
crucial for grid operators and asset managers in a market where renewable
energy is increasing. To speed up the process, these predictions should ideally
be performed based only on on-site measured data and data available within the
monitoring platforms, data which are scarce for small- and medium-scale PV
systems. In this study, we propose an algorithm that can now-cast the power
output of a photovoltaic (PV) system with high accuracy. Additionally, it offers
physical information related to the configuration of such a PV system. We adapted
a genetic algorithm-based optimization approach to parametrize a digital twin of
unknown PV systems, using only on-site measured PV power and irradiance in the
plane of array. We compared several training datasets under various sky
conditions. A mean deviation of −1.14 W/kWp and a mean absolute percentage
deviation of 1.81% were obtained when we analyzed the accuracy of the PV power
now-casting for the year 2020 of the 16 unknown PV systems used for this
analysis. This level of accuracy is significant for ensuring the efficient now-casting
and operation of PV assets.
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1 Introduction

Photovoltaic (PV) system installed capacity has doubled globally in the past 3 years,
hitting a terawatt in April 2022, and is projected to reach 2.3 TW by 2025 (SolarPower
Europe, 2022). The surge in PV capacity is being driven by a variety of factors, including
favorable laws and growing public knowledge of solar energy’s advantages, which are causing
this remarkable increase. According to predictions by the International Energy Agency (IEA)
in 2022, PV electricity will generate an extra 180 TW-hours by 2030, making up 60% of all
renewable energy production (International Energy Agency, 2022). An additional important
factor contributing to the success of PV systems is their rapidly declining cost. The average
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global weighted levelized cost of electricity (LCOE) for the utility-
scale PV has dropped by 13% per year since 2010, reaching around
4.8 cents per kilowatt-hour in 2021 (IRENA, 2021). This trend is
expected to continue as technology improves and economies of scale
are reached, making solar energy an increasingly attractive and cost-
effective option for energy generation.

Simulating and forecasting the PV power output of a utility-
scale PV plant is very important for both plant managers and
electricity network operators. Indeed, an accurate PV yield study
is one of the most crucial elements for a successful bankability
and feasible study of a PV power plant (Müller et al, 2016).
Reliable irradiance data and an effective PV power simulation
tool are crucial for correctly forecasting the power output of a PV
system. Although the irradiance data should be approximated
with high accuracy and temporal resolution, the simulation tool
should mimic the behavior of a PV system under various weather
and operating conditions. These two elements can be used to
produce an accurate and reliable PV yield study (Müller et al,
2007). Achieving an accurate PV power simulation often requires
specific physical and technical data for the PV system or
subsystem being modeled, according to Müller et al (2007.
Yet, these data are not always available or may be incomplete
for certain PV systems or subsystems in a larger PV portfolio. As
a result, accurate power prediction for such systems may be
challenging. Moreover, irradiance data used for PV power
simulation can be derived from satellite observations or
measured on-site. However, inconsistencies between the on-
site and satellite-derived irradiance data can propagate
proportionally up to the simulated PV power output.
Furthermore, inaccuracies in the different models used within
the PV power modeling process can amplify these errors (Urraca
et al, 2018a).

As suggested in IEC 61850-7-420 (IEC, 2009), PV systems are
expected to have basic meteorological measurement devices for
ambient temperature and solar irradiation. Considering this, our
work focuses on developing an optimization algorithm that learns
the basic parameters of an unknown small- or medium-scale PV
system or subsystem. Thereby, an accurate PV power simulation is
implemented based on only the on-site measured PV power and on-
site measured meteorological data.

This work is a continuation of a previous publication (Guzman
Razo et al, 2020), in which we used a genetic algorithm (GA)
approach to parametrize and create a digital twin of an unknown
PV system based on the measured PV power and data provided by
SolarGIS s.r.o., including air temperature and satellite-derived
irradiation. Next, we created a digital twin and accurately
simulated the behavior of that specific PV power plant under
different outdoor conditions. This publication will be referred to
as Guzman1 in the following sections of this work.

GA optimization offers a deterministic and time-efficient
alternative for curve fitting. Additionally, GA optimization
characteristically offers an alternative (crossover and mutation) to
avoid solving for local minima. In contrast with Guzman1, in this
work, we created a digital twin of an unknown small- or medium-
scale PV system without exogenous information. In other words, the
current GA optimization approach is based on only the on-site
measured PV power and on-site measured meteorological data,
specifically, module temperature (Tmod) and irradiance in the

plane of array (G) data (considered to be the most accurate
source of irradiance data for PV power simulations (Urraca et al,
2018b)).

This work aims to

• Show an accurate method to create a digital twin of a PV
system based on the GA optimization;

• Learn and optimize basic parameters of an unknown PV
system or subsystem without the need for external data,
including the PV module temperature coefficient,
Heydenreich a, b, and c, DC-to-AC ratio, and nominal power;

• Evaluate the accuracy of the digital twin created with different
lengths of training data;

• Evaluate the now-cast precision of a digital twin trained with
either all-sky or clear-sky conditions;

• Propose potential accuracy improvement for the GA
optimization approach proposed in this study.

This article is structured as follows: We present a summary of
previous publications for PV simulation and forecasting using
exclusively monitoring data and metrics to evaluate the results
(Section 2). In Section 3, we show how we adapted the
methodology from Guzman1 and present a description of the
data to be used within this study. In Section 4, we offer a
discussion regarding the results of the GA optimization, namely,
digital twin parameters and the now-casting results using these
parameters. In addition, we validate the methodology proposed in
the current study and propose an example to improve the now-
casting accuracy considering additional weather information.
Finally, in Section 5, we present the main conclusion of this
work and future improvements.

2 Literature overview and evaluation
metrics

Short-term PV power forecasting is key for achieving a balance
between energy consumption and production in a grid with high PV
penetration, applications for storage management, and reliability of
the bidding markets. This work focuses on creating an accurate tool
that can be applied for PV parameter extraction and short-term PV
power forecasting.

In this section, we present methods suggested in the literature to
create a model of a PV system and the use of that model for short-
term forecasting with no additional data to those collected on-site by
the data acquisition systems. Moreover, in this section, we show the
accuracy metrics used to evaluate the method proposed in this
publication.

2.1 PV system modeling methods for short-
term power forecasting without external
inputs

At present, several machine-learning approaches have been
studied to develop models for PV power forecasting. These
models use on-site power-measured data in combination with
numerical weather prediction or satellite-derived data. These
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methods commonly minimize data used while increasing the overall
accuracy of the solution. However, these approaches rarely provide a
physical description of the PV system’s components and
configuration. In this study, we focus on methods without
exogenous data, in other words, methods that include exclusively
on-site PV power-measured data and on-site measured
weather data.

Mandal et al (2012) offered a solution with a mix of wavelet
transform (WT) and different machine learning techniques. A PV
system model is created by dividing the PV power time-series data
between the ill-mode and non-linear fluctuations (spikes in power).
After that, four components are extracted by downsampling and
then filtered using low-pass filters. Finally, the PV system model is
obtained after a wavelet reconstruction, including some upsampling
after feeding each one of the individual components from the TW
into different neural networks. A mean absolute percentage
deviation (MAPD) of 2.38% can be achieved for clear-sky periods
of PV power forecasting. This method has a horizon of 12 h, and its
performance decreases considerably when cloudy or rainy days are
forecasted (Mandal et al, 2012).

Almeida et al (2015) proposed an alternative model for PV
power output forecasting that includes on-site weather data. They
applied a random forest (RF) model to create a PV model and then
used numerical weather prediction data to forecast the PV power
output. The results suggested an MAPD of 9.5% between the
forecasted and the on-site measured data (Almeida et al, 2015).

This contribution proposed a data-driven approach based on the
use of artificial neural networks (ANNs) trained with measured PV
power to create day-ahead forecasts of PV power. Unlike other
methods, this solution does not require any weather data and offers
an MAPD of 6.64% for the best-case scenario.

The suggestions from González Ordiano et al (2017) on using
weather-free approaches based on machine learning techniques are
particularly relevant. This contribution proposed a data-driven
approach based on the use of ANNs trained with measured PV
power to create day-ahead forecasts of PV power. Unlike other
methods, this solution does not require any weather data and offers
an MAPD of 6.64%, for the best-case scenario (González Ordiano
et al, 2017).

In contrast to the various machine learning solutions, there are
only a few physics-based or hybrid methods in the literature that
provide a description of a specific PV system or subsystem’s
configuration.

The article by Ogliari et al (2017) presents a model for next-day
PV power forecasting based on the well-known single-diode model,
which can consider either three or five parameters. In addition, the
authors propose two other approaches, an ANNmodel and a hybrid
model combining both physical and ANN models, for next-day
forecasting. The ANN and hybrid models use historical weather data
for training, with two different training approaches. However, it is
important to note that the physical parameters required for the
single-diode model need to be determined from the PV module’s
datasheet or from previous experiments (Ogliari et al, 2017).

It is important to mention that the physical model used in
Ogliari et al can only describe the behavior of a PV module under
outdoor conditions without considering the losses from the rest of
the components of a PV system or subsystem, i.e., cabling losses and
inverter efficiency (DC-to-AC ratio). Ogliari et al reported achieving

mean absolute deviations (MADs) of 19.1 W and 20.2 W for the
three- and five-parameter physical models, respectively. In the case
of the hybrid method, the MAD is 12.46 W for the best case of the
first training approach and 12.5 W for the best case of the second
training approach.

2.1.1 Evaluation metrics
Similar to Guzman1, we used four values to evaluate the

accuracy of the digital twin created by the GA optimization
method offered here, i.e., root mean square deviation (RMSD),
MAPD, mean bias deviation (MBD), and MAD. Eqs. 1–4,
respectively, show how we calculate the values.

RMSD �
�������������
1
n
∑n

i�1 yi − xi( )2√
, (1)

MAPD � 100
n
∑n

i�1
yi − xi

∣∣∣∣ ∣∣∣∣
yi

∣∣∣∣ ∣∣∣∣ , (2)

MBD � 1
n
∑n

i�1 xi − yi( ), (3)

MAD � 1
n
∑n

i�1 yi − xi

∣∣∣∣ ∣∣∣∣, (4)

where yi is the actual value, xi is the estimated value, and the
number of observations is n. Estimated values and actual values
exclude nighttime.

3 Methodology and data

In this work, we adapted some steps of a PV power simulation
tool developed in-house by Fraunhofer ISE and suggested by
Dirnberger et al (2015) and Müller et al (2016). We optimized
the parameters required by the PV system simulation tool using the
GA and created a digital twin of an unknown PV system or
subsystem.

Figure 1 shows the overall methodology used to parameterize an
unknown PV system or subsystem, with the GA optimization
process, the PV system simulation tool (and its main models),
the inputs (i.e., initial parameters, and on-site measured
meteorological and PV power), and the optimized parameters as
an output, which are later used as a digital twin. The green dotted
rectangle represents the GA optimization process, while the orange
dotted rectangle represents the PV system simulation process and its
corresponding steps.

3.1 PV system simulation

As shown in the orange rectangle in Figure 1, the adapted PV
system simulation tool can simulate AC PV power with only on-
site measured Tmod and G as inputs. Comparable to Guzman1, the
simulation tool proposed here neglects some PV power
performance losses, such as soiling, degradation, snow, and
inter-row shading. However, surrounding shading loss effects
(horizon line) can be included in the G on-site measurements, in
addition to specific objects projecting shadow to a particular part
of the PV system or subsystem. The PV system simulation model
proposed here comprises two main steps, DC PV power and AC
PV power:
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Using equations suggested by Heydenreich et al (2008)(Eqs. 5,
6), we simulated DC PV power (Heydenreich et al, 2008). First, the
DC PV power at a temperature of 25°C, or standard test conditions
(STCs) Eq. 5, was simulated, and later, we translated that simulated
DC PV power to the on-site measured temperature and irradiance
conditions Eq. 6.

η G, TSTC( ) � aG + b ln G + 1( ) + c
ln 2 G + e( )

G + 1
− 1( ), (5)

where TSTC is 25°C, and a, b, and c are constants defining the PV
module efficiency curve at a specified G.

η G, Tmod( ) � η G, TSTC( ) 1 + γ Tmod − TSTC( )( ), (6)
where γ represents the PV module temperature coefficient, Tmod

represents the PV module temperature measured on-site, and in
both equations, and η represents the PVmodule efficiency at specific
conditions.

To simulate AC PV power output, we used the inverter model
proposed by Schmidt and Sauer (1994), accounting for 1% of cabling
losses (Schmidt and Sauer, 1994).

3.2 Detection of clear-sky moments and GA
optimization

To define the best climatic conditions for the parameter extraction, in
theGAoptimization training phase, we created two different training sets:

• The first set includes all possible conditions measured on-site
i.e., overcast and clear-sky-like moments. This training dataset
will be referred to in this work as all-sky.

• The second set filters out the overcast moments and only
includes clear-sky-like moments. This training dataset will be
referred to in this work as clear-sky.

We detected and filtered clear-sky-like moments based on the
two-step process described in detail in Guzman1. First, based on the

on-site measured PV power data, a statistical clear-sky curve was
created following the method implemented and proposed by Stein
et al (2012) and Reno and Hansen (2016). Next, with the “detect_
clearsky” function from the PVLib library (Holmgren et al, 2020), we
detected clear-sky-like moments. Training datasets of both clear-sky
and all-sky moments comprised only on-site measured PV power
data and their correspondent on-site measured Tmod and G being
used in this study.

In general terms, we based our GA algorithm on the technique
proposed by Holland (1975). Although GA optimization is
considered a traditional optimization algorithm, it has been
rarely implemented in the solar industry. Moreover, inherently,
the GA optimization offers an accurate and time-efficient
deterministic approximation of the real parameters of unknown
PV systems and subsystems. Additionally, the GA performs
effectively for problems relating to dynamic environments where
an optimal answer can evolve over time. In these situations, the
solution space might be too big to thoroughly explore, and the ideal
answer can change as the situation changes (Mori and Kita, 2000).

The novelty of this work relies on the fact that we can extract the
main characteristics of an unknown PV system or subsystem by
implementing a similar GA optimization to the one proposed by
Holland (1975) within a stepwise process. In this work, we opted for
a stepwise optimization process to reduce the compensation
between parameters.

To extract the most accurate PV system parameters, we
minimized the MAD (see Eq. 4) between simulated AC PV
power and on-site measured AC PV power. The MAD of the
best member of the population and population mean MAD are
two key performance indexes to monitor throughout the GA
optimization. The optimization process is interrupted if neither
of the two performance indexes improves any more. A detailed
description of this process can be found in Guzman1.

In the GA optimization, to create the initial population of PV
system parameters to be evaluated and optimized, we began by
defining the initial parameters for this work as 1-kilowatt peak
(kWp) for nominal power, −0.43 %/°C for the power temperature
coefficient, and a ratio of 1 for the DC to AC power.

FIGURE 1
Interaction between inputs and outputs of the overall GA optimization methodology.
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Next, we normalized the on-site measured AC PV power by
the maximum measured value. By normalizing on-site
measured AC PV power, we compared it with the simulated
AC PV power of a 1-kWp installed capacity system. It is
important to mention that the measured G must be in the
same plane of array of the PV system or subsystem. After the
AC PV power is normalized, the subsequent steps are followed
to complete the optimization process for the assumed 1-kWp
PV system:

• With cross-validation optimization, we selected the best
set of a, b, and c parameters for (Eq. 5). The cross-
validation optimization process was based on a database
comprising 107 sets of three parameters, described in
Guzman1, including the results from Fraunhofer ISE
CalLab efficiency measurements of 107 PV modules at
different irradiance levels. We simulated DC PV power,
using each one of the 107 sets of parameters, and compared
it with the normalized AC power. We considered the lower
MAD as the optimum set of parameters for the simulated
PV system.

• We used GA optimization to learn the PV module
temperature coefficient by minimizing the MAD between
simulated DC PV power resulting from Eq. 6) and
normalized-measured AC PV power.

• To optimize the DC-to-AC ratio, we used GA optimization to
minimize the MAD between simulated AC PV power (based
only on the efficiency section of the Schmidt and Sauer model)
and normalized-measured AC PV power.

FIGURE 2
Two-day results of a digital twin from a system located in southwest Germany. In subfigure (A, B), the red dotted line shows the irradiance G
measured on-site, the orange dotted line shows the AC PV powermeasured on-site, and the solid green line shows the AC PV power forecasted by the
digital twin parametrized with a 30-days long data set considering all-sky conditions. Subfigures (C, D) show the deviation betweenthe AC PV power
measured on-site and the AC PV power forecasted. The left side of FIGURE 2 shows a clear-sky like day and the right side shows an overcast-like day.

FIGURE 3
Location of the 16 real on-site measured PV systems.
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• Finally, we used GA optimization to minimize the MAD
between simulated AC PV power and measured AC PV
power (non-normalized) to extract the PV system nominal
power.

The results obtained from applying the PV models with the
optimized parameters in this study accurately reflect the real
behavior of the tested PV system. As a result, by using these
optimized parameters, we can create a digital twin of the PV
system or subsystem and simulate its performance by changing
the irradiance and temperature conditions to current (now-cast) or
future (forecast) values.

Figure 2 shows two digital twins created from on-site
measurements of a system located in southwest Germany with a
training dataset of 30 days length (before the day to be tested), in
which all-sky conditions are considered. On the left-hand side,
subplot (a) shows a PV power simulation for a clear-sky-like day:
measured PV power, the measured G. Subplot (c) shows the
deviation between the simulated and measured PV power in W/
kWp. On the right-hand side, subplot (b) shows overcast-like day
results: simulated PV power, measured PV power, and measured G.
Subplot (d) shows the deviation between the simulated and
measured PV power in W/kWp. On-site data for the
optimization have been measured during the year 2020, and the
results presented in this example considered only daytime
measurements.

3.3 Data used in this publication

In this work, we used a database comprising 16 real on-site
measured PV systems installed in Germany, which are part of the
Fraunhofer ISE monitoring portfolio. The geographical location of
those systems can be observed in Figure 3.

The database used here, collected between 2018 and 2020,
consists of a time series of approximately 567,500 points of 5-
min resolution including three main features: measured PV power,
measured Tmod, and measured G. Table 1 shows the nominal power
and the G sensor installed at each location of the 16 PV systems. PV
systems from 36 kWp up to 1,202 kWp were considered in this
publication.

Additionally in Section 4.3.1, we used daily observations of snow
depth data from the Deutscher Wetterdienst (German Weather
Service) climate data center (CDC) (Kaspar et al, 2013) for the year
2020, for all 16 locations.

4 Results and discussion

In the first part of this section, our goal was to demonstrate the
impact of different lengths of training datasets on the
parametrization and now-casting performance of the digital twin.
We analyzed data from a PV system located in southwest Germany
(ID 5) to investigate this effect. The selection of PV system ID 5 was
arbitrary and was chosen out of the 16 real PV systems in our
database to randomize the process and prioritize our research on the
effect of different training dataset lengths on PV system
parametrization.

The reported design parameters from the PV system ID 5 are the
following:

• Temperature coefficient (%/°C): -0.43
• Heydenreich a: 0.001084
• Heydenreich b: -7.247061
• Heydenreich c: -156.5457
• DC-to-AC ratio: 1.04
• Nominal power (kWp): 553
• Year of construction: 2010

Next, we evaluated the rest of the PV systems within the
database using the best-performing length for training the digital
twin. Additionally, we investigated the potential for improving now-
casting accuracy by considering locally measured snow deposition
information. Finally, we discuss limitations and possible future
improvements at the end of this section.

4.1 Digital twin parametrization

To evaluate the effect of seasonality and the length of training
data on the parametrization of the digital twin and the accuracy of
now-casting, we randomly selected 1 day per week of the year 2020

TABLE 1 Nominal power and G sensor description for each of the 16 PV systems.

System Nominal power (kWp) Sensora System Nominal power (kWp) Sensora

ID 1 36 1 ID 9 555 2

ID 2 899 2 ID 10 1,000 2

ID 3 999 2 ID 11 497 1

ID 4 910 1 ID 12 1,202 1

ID 5 553 2 ID 13 293 1

ID 6 713 2 ID 14 829 1

ID 7 595 2 ID 15 1,012 1

ID 8 678 2 ID 16 1,045 1

a1 = Mencke and Tegtmeyer Si reference cell; 2 = Kipp and Zonen CMP11 pyranometer.
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(a total of 52 days). For each selected day, we used six different
training dataset lengths, including 30, 60, 90, 120, 150, and 182 days
prior to the selected day. We also identified clear-sky conditions
within all the training datasets and trained the GA using both all-sky
and clear-sky moments. Each combination of training dataset
length, selected day, and all/clear-sky moments resulted in a
different set of parameters (digital twin) for the PV system under
consideration.

Figure 4 shows plots of optimization results for nominal power
and the DC-to-AC ratio, considering 52 randomly chosen days and
different training set lengths: 30, 60, 90, 120, 150, and 182°days.
Optimization results for the temperature coefficient have been
reported constantly throughout the 52°days (−0.4%/°C) and,
therefore, are not shown in the figure. In general, while
considering all-sky moments, the DC-to-AC ratio (see subplot c))
remains more constant than while considering only clear-sky
moments. In contrast to that, optimization for nominal power
remains more stable while considering only clear-sky moments
(see subplot b)).

The results of a quantitative analysis are included in Table 2. The
analysis includes results from the GA optimization considering

clear-sky and all-sky conditions for all the different training
length datasets.

One of the advantages of parametrizing a PV system or
subsystem based on only on-site measured data (including G) is
the low variability of optimized parameters over time. As shown in
Table 2, a training length of a minimum of 120 days is a common
agreement between the best results, considering both clear-sky and
all-sky moments.

The parametrization results for nominal power shown in
Figure 4 are on the side of an underestimation. As mentioned
previously, using only clear-sky moments seems to be more
stable. As shown in Table 2, the best conditions for an
accurate nominal power parametrization are as follows: all-sky
conditions in combination with a 120-day training length. This
combination shows a mean value of 510.55 kWp with an MAPD
of only 7.93% and an MBD of only −42.45 kWp. In contrast to our
previous publication (Guzman Razo et al, 2020), these values have
reduced considerably from 10.69% and −84.24 kWp, respectively.
This is most likely due to the increase in accuracy of G which was
measured on-site instead of using satellite-based irradiance
information.

FIGURE 4
GAoptimization results for nominal power and theDC-to-AC ratio. A total of 52 days were chosen, of the year 2020 considering six different training
datasets for each day; all-sky and clear-sky conditions with 30, 60, 90, 120, 150, and 182°days of training datasets. The 30-day dataset is represented by
the solid blue line, 60-day dataset is represented by the orange dashed-line, 90-day dataset is represented by a green dotted line, 120-day dataset is
represented by the dotted–dashed red line, 150-day dataset is represented by the dotted–dashed blue line, 182-day dataset is represented by the
dotted–dashed brown line, and the reported parameter is represented by a horizontal red dashed-line. Figure 4 is divided into left-hand (A, C) and right-
hand (B, D) sections. The left-hand subplots (A, C) show optimized parameters for all-sky condition optimization, whereas the right-hand side subplots
(B, D) show optimized parameters considering only clear-sky conditions.
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Given that the reported nominal power value is 553 kWp, there
is still a deviation between it and the value extracted using the GA
model. One possible explanation for this deviation could be
attributed to a degradation rate, which according to Jordan et al
(2016), is expected to be between 0.8% and 0.9% per year since the
installation year (Jordan et al, 2016). For system ID5, which has been
installed for 10 years to the date of the experimental data, a
degradation rate of between 8% and 9% can be expected,
resulting in a nominal power between 508.76 kWp and
503.23 kWp. The value calculated using the proposed GA model
shows good agreement with the expected value. However, this
should not be taken lightly as additional power losses can exist
and require further investigation.

It seems that there is a trade-off between using all-sky
conditions and clear-sky moments for parametrization of the
AC-to-DC ratio; see Figure 4. Although all-sky conditions
provide more stable results in a particular period, clear-sky
moments tend to result in spreader results on the side of
overestimation. However, regardless of the condition used, a
training length of 182 days seems to be the most suitable for
accurate parametrization; see Table 2. The best-case scenario
shows a mean value of 1.06 with a 5.7% MAPD and an MBD of
0.02, which is an improvement from the MBD of −0.14 achieved
in Guzman1.

As mentioned previously, a constant parameter has been
estimated for the 52 test days for the power temperature
coefficient. Therefore, the parametrization results of the
Heydenreich et al model for PV system ID5, considering both
scenario clear-sky and all-sky moments, are the following:

• Heydenreich a: 0.004326
• Heydenreich b: -11.275966

• Heydenreich c: -182.272483

Although the optimal conditions for parametrizing the
presented model are defined based on clear-sky or all-sky
conditions and the length of the training dataset, the accuracy of
the now-casting must also be evaluated. For instance, if the nominal
power is close to the reported value, it would receive a higher score.
However, these values do not account for additional losses that are
commonly present in PV systems under outdoor conditions, such as
soiling and degradation.

Therefore, in the following subsection, we evaluated the
accuracy of now-casting using the parameters calculated with
different training dataset lengths.

TABLE 2 Parametrization results of the GA optimization for PV system ID5 including all-sky and clear-sky conditions.

Sky Training length (days) Parameter

Nominal power (Reported: 553 kWp) DC-to-AC ratio (Reported: 1.04)

Mean (kWp) MAPD (%) MBD (kWp) RMSD (kWp) Mean MAPD (%) MBD RMSD

All 30 497.71 10.70 −55.29 61.97 0.99 21.78 −0.05 0.32

60 504.94 9.94 −48.06 56.66 0.88 21.65 −0.16 0.36

90 502.84 9.07 −50.16 52.89 0.79 24.94 −0.25 0.41

120 510.55 7.93 −42.45 46.85 0.72 30.81 −0.32 0.51

150 507.50 8.23 −45.50 47.52 0.91 12.30 −0.13 0.16

182 501.22 9.36 −51.78 52.26 0.96 7.78 −0.08 0.08

Clear 30 503.71 8.91 −49.29 50.47 0.87 40.16 −0.17 0.47

60 504.64 8.75 −48.36 49.36 0.86 34.87 −0.18 0.43

90 504.44 8.78 −48.56 49.51 0.78 32.47 −0.26 0.39

120 508.02 8.13 −44.98 45.89 0.81 29.36 −0.23 0.49

150 504.83 8.71 −48.17 48.70 1.00 10.21 −0.04 0.15

182 502.17 8.71 −50.83 51.43 1.06 5.70 0.02 0.08

Bold values represent the best parametrization results for both different sky conditions and different lenght data set.

TABLE 3 Accuracy results of the digital twins created for 52 randomly chosen
days in the year 2020. A total of 12 different training datasets including all-sky
and clear-sky conditions with lengths of 30, 60, 90, 120, 150, and 182°days.

Error metric Training dataset length (days)

30 60 90 120 150 182

All-sky conditions

MBD (W/kWp) 3.91 4.14 4.03 2.09 3.12 3.27

MAPD (%) 1.13 1.17 1.29 1.05 0.96 0.91

RMSD (W/kWp) 11.83 12.10 11.90 11.96 11.44 11.04

Clear-sky conditions

MBD (W/kWp) 3.93 4.26 4.72 3.61 4.66 4.81

MAPD (%) 0.98 1.05 1.08 1.01 0.94 0.92

RMSD (W/kWp) 10.77 11.11 11.49 11.57 11.48 11.27

Bold values represent the best parametrization results for both different sky conditions and

different lenght data set.

Frontiers in Energy Research frontiersin.org08

Guzman Razo et al. 10.3389/fenrg.2023.1060215

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1060215


4.2 Digital twin now-casting

To select the optimal training length for the GA algorithm
presented here, in this section, we evaluate simulated PV power with
parameters from the digital twin considering only daytime values.
We randomly selected 52°days from the year 2020 of System ID
5 and generated a set of parameters for each of the 52°days in
combination with different training lengths (30°days, 60°days,
90°days, 120°days, 150°days, and 182°days). Finally, we compared
the simulated PV power with the on-site measured PV power.

To generalize and correlate the results offered here with any other
PV system or subsystem, we measured the deviation in W/kWp

installed. Table 3 shows the results of now-casting for all the
training datasets (30, 60, 90, 120, 150, and 182°days) and all the
conditions (all-sky and clear-sky).

We evaluated the now-casting results based on the MAPD
parameter. As shown in Table 3, the best combination of
conditions and training length is achieved with all-sky conditions
and a 182-day training dataset, resulting in an MAPD of 0.91%.

Figure 5 shows that the high variation in the
parameterization, particularly in the DC-to-AC ratio, is not
necessarily reflected in the now-casting results. The now-
casting deviation using all-sky conditions (subfigure (a)) is
consistently underestimated compared to the deviation using
only clear-sky conditions (subfigure (b)), particularly for short
training datasets (30–90°days). However, the absolute deviation
of the now-casting is similar for both all-sky and clear-sky
conditions, particularly for longer training data sets
(120–182°days).

Based on the results presented here, we considered that
182 days (or 6 months) based on all-sky conditions is the
minimum required length to train GA optimization. With
these condition-training lengths, it is possible to achieve an
MBD of 3.27 kWp and an MAPE of only 0.91%. Previous
publications, including Guzman1, reported an MAPE from 6%
to 10% for now-casting tests (Ding et al, 2011; Mandal et al, 2012;
Kaspar et al, 2013; Monteiro et al, 2013; Ibrahim et al, 2015;
Landelius et al, 2019; Guzman Razo et al, 2020).

FIGURE 5
Digital twin now-casting results based on GA optimization. A total of 52 days chosen in the year 2020. Six different training datasets for each day
were considered: All-sky and clear-sky conditions with 30, 60, and 90 days of training datasets. 95% confidence interval. The 30-day dataset is
represented by the solid blue line, the 60-day dataset is represented by the orange dashed line, the 90-day dataset is represented by a green dotted line,
the 120-day dataset is represented by the dotted–dashed red line, the 150-day dataset is represented by the dotted–dashed blue line, the 182-day
dataset is represented by the dotted–dashed brown line, and the reported parameter is represented by a horizontal red dashed line. Figure 5 is divided
into two vertical sections; on the left-hand side, we can see the results of the now-casting considering all-sky conditions (A, C), and the right-hand side,
shows the results from the now-casting considering only clear-sky conditions (B, D).
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4.3 Digital twin validation

According to the results presented in the previous
subsections, a training dataset length of 182°days is suggested
to achieve high accuracy for both the digital twin parametrization
and now-casting. To validate this suggestion, a 182-day training
dataset was selected for each of the 16 monitored PV systems for
the year 2020. Similar to the experiment described in the previous
subsections, a random day from each week of the year 2020 was
selected (52°days in total) to create a digital twin for each PV
system on each selected day.

Figure 6 shows the PV power now-casting results for all 16 real
PV systems. As observed, the mean deviation of all 16 real PV
systems, in W/kWp installed, indicates an under-casting, −1.14,
which is influenced by high-deviation peaks in winter,
particularly for System ID15. Additionally, the figure shows that
the MAD for all 16 real PV systems is merely 1.81%, indicating a
good benchmark for short-term PV power forecasting.

In general terms, the now-casting accuracy of all the digital twins
created throughout the year 2020 for all 16 real PV suggests that
their performance is time-independent, indicating that they can be
implemented at any time of the year. However, there are some
exceptions in winter which will be clarified in the following
subsection.

4.3.1 Additional losses’ information and further
improvement

In the interest of accurately parametrizing PV systems based
solely on on-site measured data, this publication aimed to achieve
its overall goal without relying on external data sources. However,
to explore the potential for improving accuracy, additional
information from local weather stations was utilized. Figure 6
shows higher deviations between the digital twin-simulated PV
power and the measured PV power for most of the 16 real PV
systems during the first 5°weeks and the last 5°weeks of the year
2020. Considering this, in this subsection, we took into account
the locally measured snow depth information from the CDC
Deutscher Wetterdienst for all 16 real PV systems’ locations
during the year 2020.

High peaks in the winter of subplot a) from Figure 7 show a good
agreement with the high-deviation peaks of the digital twin now-
casting presented in Figure 6. To get a correlation between the now-
casting high deviation in winter and the snow depth information, we
calculated a simple linear regression between snow deposition and
deviation in W/kWp of each one of the 16 real PV systems.

Next, we use that linear regression to correct the power
forecasted based on the snow information available by location.
In Figure 7, it can be observed that the high deviations in winter have
been reduced by approximately 75% for some specific cases (see

FIGURE 6
Deviation and absolute deviation of 52 days for now-casting for all the 16 real PV systems. In the upper section of the plot, subplots (A) and (B) show
the deviation in W/kWp installed between the power now-casting and the power measured on-site. In the lower section of the plot, subplots (C) and (D)
show the absolute deviation in percentage between the power now-casting and the power measured on-site. Subplots (A) and (C) show the distribution
of the deviation per day and themean value over all 16 PV systems. Subplots (B) and (D) show boxplots representing the distribution of the deviation
per PV system, and high deviations are considered outliers and therefore ignored (see System ID 15, week 4).
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System ID 15). In general, the now-casting mean deviation of all
16 PV systems is −3.22 W/kWp installed, underperforming
constantly more evident for some specific PV systems such as PV
system ID 6, ID7, and ID8. An absolute deviation of 1.02% can be
observed, improving the overall accuracy by 0.79% or 44% relative to
the previous calculation by only including snow deposition
information for all 16 locations.

The results presented in this work suggested that PV systems
with pyranometers as irradiance sensors presented lower deviation
than those with reference cells installed as irradiance sensors. As
suggested by Rivera and Reise, to further improve the now-casting
accuracy and to reduce deviations, corrections can be applied to the
values measured by reference cell sensors (Rivera Aguilar and Reise,
2020).

Moreover, additional loss factors that directly impact the power
production of a PV system, such as degradation, power clipping, and
soiling, could be possibly captured by some of the parameters of the
GA optimization, i.e., nominal power and the DC-to-AC ratio.

Further investigation is required to confirm these assumptions
and improve the model accordingly.

4.4 Limitations

We acknowledge that the GA optimization method presented here
has some limitations. In addition to the loss factors mentioned in the
aforementioned subsections (degradation, power clipping, and soiling),
it is also important to mention that some shading effects, such as inter-
row, can directly impact the optimization results. Furthermore,
measuring G in a different POA will lead to biased PV power
simulation, which ultimately will lead to incorrect parametrization.
Additional filters and flags have to be implemented within the database
to ensure that the on-site measured data are valid. Additionally, special
PV system configurations, such as single- and double-axis tracked
systems and bi-facial systems, require modifications to the PV power
simulation model and optimization logic.

FIGURE 7
Snow deposition information for all 16 real PV systems. Deviation and absolute deviation of 52 days for now-casting for all 16 real PV systems,
considering snow deposition. Subplot (A) shows the snow depth in centimeters (cm) for all the locations of the real PV systems. Subplots (B) and (C) show
the now-casting deviation (in W/kWp) after the snow information has been considered, and the correction has been performed for each of the 16 real PV
systems. Subplots (D) and (E) show the absolute deviation (in %) of now-casting for all 16 PV systems after the correction for snow deposition has
been implemented.
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5 Conclusion

Although solutions such as GA optimization have been available
over an extended period, this work proposes a novel and accurate
implementation method for extracting parameters of PV systems or
subsystems without prior technical information. The parameters
extracted describe the main characteristics of a PV system or
subsystem, which later can be translated to a digital twin. The
basic parameters of a PV system or subsystem digital twin are
defined based on only the on-site measured data in this work.

Based on the experiments presented here, the best
condition–training length combination for the GA optimization
is defined as all-sky conditions and 182 days long, with only on-site
measured data. With the method proposed in this work, a digital
twin is created to now-cast with an accuracy of only 0.91% MAPE
and 3.27 W/kWp MBE for PV power now-casting.

Furthermore, a validation process is presented, demonstrating
the potential of parameterizing a digital twin for each PV plant
within a portfolio. A season-independent digital twin is
parameterized, and each of the 16 real PV plants distributed in
Germany is now-casted with a mean deviation value of −1.14 W/
kWp and an MAD of only 1.81%. The model presented here can be
further improved to achieve an MAD of only 1.02%, if external
locally measured information is considered, i.e., snow precipitation.
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