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The decentralization and softwarization of modern industrial control systems
such as the electric grid has resulted in greater efficiency, stability and reliability
but these advantages come at a price of higher likelihood of cyberattacks due to
the resulting increase in cyberattack surface. Traditional cyberattack detection
techniques such as rule-based anomaly detection have an important role to
play in first response. However, given the data-rich environment of the modern
electric grid, current research thrusts are focused on integrating data-driven
machine learning techniques that automatically learn to detect anomalous
modes of operation and predict the presence of new attacks. Quantummachine
learning (QML) is a subset of machine learning that aims to leverage quantum
computers to obtain a learning advantage by means of a training speed-
up, data-efficiency, or other form of performance benefit. Questions remain
regarding the practical advantages of QML, with the vast majority of existing
literature pointing to its greater utility when applied to quantum data rather than
classical data, which within a smart grid environment include TCP/IP packets or
telemetry measurements. In this paper, we explore a scenario where quantum
data may arise in the smart grid, and exploit a quantum algorithmic primitive
previously proposed in the literature to demonstrate that in the best-case, QML
can provide accuracy advantages of >25 percentage points when predicting
anomalies.

KEYWORDS

smart grids, cyber-physical systems, cybersecurity, anomaly detection, machine
learning, quantummachine learning, quantum computing

1 Introduction

The cyber-enabled power grid, known as the smart grid, is characterized, in part, by its
greater dependence on computing enabling new forms of power system analytics. As such,
data has become the epicentre of decision-making in this (and other) critical infrastructures.
Over the last 15 years, the transformation of the power grid to a more information and
communication technology (ICT)-rich environment has had broad implications enabling
a more adaptable, sustainable and consumer-centric power generation, transmission and
delivery system while increasing its vulnerabilities to cyberattacks. The December 2015 and
2016 cyberattacks on the Ukrainian power grid as well as the May 2021 cyberattack on the
U.S. colonial pipeline have demonstrated the damage and devastation, that is, possible when
malware infiltrates critical infrastructure, that is, growingly dependent on ICT.
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Traditional cybersecurity techniques such as rule-based
cyberattack detection have an important role to play in protecting
the smart grid; however, history has taught us that these manually
designed controls are insufficient to account for all the possible
ways that an attacker can infiltrate the system especially when it
comes to recognizing novel attack signatures. Data-driven machine
learning techniques are under investigation and implementation
as a possible first line of defense against cyberattacks given their
propensity to model complex relationships (not easily described
through explicit rules) to automatically discover (new) cyberattack
patterns and anomalous modes of operation. Machine learning for
the security of general cyber-physical systems (Lukens et al., 2022)
as well the more specific security of the smart grid is an active
area of research (Ashrafuzzaman et al., 2020; Karimipour et al.,
2019; Khaw et al., 2020; Jahromi et al., 2020, Jahromi et al., 2021;
Zhang et al. 2021) that has already shown promising results.
The authors in Ashrafuzzaman et al. (2020) develop an ensemble
technique that can classify different kinds of cyberattacks; the
technique works well, but there is potential for improvement in the
case of very heavily imbalanced data.Theworks in Karimipour et al.
(2019); Khaw et al. (2020); Jahromi et al. (2020), Jahromi et al.,
(2021); Irfan et al. (2023), on the other hand, make use of
unsupervised anomaly detection methods such as autoencoders
and Boltzmann machines that cannot classify different kinds of
cyberattacks, but handle data imbalance better because they train
on normal and not cyberattack data. Zhang et al. (2021) provides
a good survey of techniques for anomaly detection in smart grid
time-series data, including a section on possible future directions
such as transfer learning (Niu et al., 2020), a technique that fine-
tunes models trained on different but closely related tasks to achieve
data efficiency, and the use of generative adversarial networks
(Creswell et al., 2018) to generate realistic synthetic data(Luo et al.,
2018; Zhang et al., 2020). The authors in Irfan et al. (2023) provide
a very recent survey specifically related to the detection of FDI
attacks, and touch on important topics such as the localization of
these attacks in addition to their detection.

Concurrently, the recent rise of quantum computers and
quantum information processing devices (Nielsen and Chuang,
2002) that can outperform classical computers in tasks such as
cryptographic code-breaking (Gisin et al., 2002; Pirandola et al.,
2020) and simulation of quantum dynamics (Brown et al., 2010)
has naturally led to questions as to whether quantum computers
may be useful for machine learning. This is, again, an active area of
research with some work specifically focusing on the application of
quantum machine learning in smart grids (Zhou and Zhang, 2021;
Ullah et al., 2022), but thus far, existing results in the literature have
been a mixed bag. The first era of quantum machine learning aimed
to provide exponential speedups to machine learning algorithms
that make heavy use of Linear Algebra by performing the linear
algebraic subroutines in logarithmic time instead of polynomial time
(Harrow et al., 2009; Kerenidis and Prakash, 2016; Lloyd et al., 2013)
as is typical for classical machine learning. However, the theoretical
speedups afforded by these algorithms required that the input data
would be provided in the form of a quantum state. If one accounts
for the time needed to transform classical data to a quantum state,
and also allows classical machine learning algorithms to exploit data
preparation assumptions that have a similar time complexity, the
apparent exponential speedup advantage disappears (Tang, 2019;

Chia et al., 2020). There have also been quantum algorithms that
provide small polynomial speedups (most commonly a quadratic
speedup) to machine learning problems (Harrow, 2020); however,
it is doubtful that these theoretical speedups will hold in practice
because of the error correction overhead needed to engineer a
fault tolerant quantum computer (Babbush et al., 2021). Quantum
annealing (Albash and Lidar, 2018) is another proposed quantum
algorithm that relies on a correspondence between finding the
ground energy of a physical system andminimizing an optimization
problem, although there is again no guaranteed practical advantage
(Crosson and Lidar, 2021). The situation is a lot more promising
when one restricts themselves to quantumdata, which is data, that is,
naturally already given as a quantum state. An example may be data
which is captured by a quantum sensor (Degen et al., 2017), which
then transduces a quantum state vector directly into the quantum
computer for learning for which exponential advantages have been
proven (Huang et al., 2021a).

Quantum sensors show promise in a wide variety of domains
ranging from improved cancer detection to improved geological
exploration, although their application in a smart grid context
remains an under-explored area of research.The general expectation
is that the availability of this data in a real-world scenario lies
in the medium to long term. However, the exciting possibilities
offered by quantum data leads us to take a proactive approach
and through academic-power utility collaboration propose a
preliminary scenario for how it may arise in the smart grid. After
proposing a viable scenario, we generate appropriate synthetic
quantum data and study quantum learning advantages. The studies
performed on this synthetic data aim to highlight general principles
and are not expected to perfectly translate to imminent results
obtained on real-world smart grid quantum data when it becomes
available. Through this first step, we aim to define a scenario which
can then be progressively refined in subsequent work as the future
of quantum data in smart grid unfolds.

The rest of this paper is organized as follows: given that an
intended audiences of this paper are smart grid researchers or
professionals whomay not be familiar with quantum computing, we
first briefly introduce the topic and explain why quantum machine
learning for classical data can be problematic in Section 2. Next, we
define the quantum data scenario in Section 3, and then formulate
the problem and explain how we can incorporate a previously
proposed algorithm in the theoretical quantum machine learning
literature that “rigs” datasets to show a quantum advantage within
our proposed smart grid quantum anomaly detection framework
in Section 4 and Section 5. The main contribution of this paper is
presented in Section 6, where we propose a differential evolution
algorithm that can be used to generate noisy finite Fourier series
that exhibit a large quantum advantage.We then show that quantum
machine learning can achieve a stunning >25 percentage points
advantage in accuracy on the generated datasets in Section 7, and
conclude highlighting potential future work and improvements in
Section 8.

2 The case for QML for quantum data

At a simple level, quantum mechanics can be thought of as an
alternative to classical probability theory (Aaronson, 2004), with
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a quantum state vector being different in two mains ways from a
classical probabilistic vector:

1. Regular probabilities that fall between 0 and 1 are replaced with
probability amplitudes that can, in general, be complex numbers.

2. Regular probability theory requires that the ℓ1 norm of the
probability vector under consideration be conserved under
transformation, which implies that a valid classical probabilistic
evolution consists of repeated multiplications by stochastic
matrices. Quantum mechanics requires that the ℓ2 norm of
the probability amplitude under consideration be conserved,
which instead intimates that a valid quantum evolution consists
of repeated multiplications by unitary matrices. The only
exceptions are the measurements at the end of the evolution
which define the statistics of the observations.

If one has two quantum state vectors ψ ∈ ℝ2n
,ϕ ∈ ℝ2m

, then their
joint vector is described by the vector ζ ∈ ℝ2n

⊗ℝ2m
obtained from

the tensor product ζ = ψ⊗ϕ.
Quantum computing uses quantum state vectors and their

evolutions to define quantum analogues to elements of the familiar
circuit model of computing:

1. Bits are replaced by qubits; these are realized by any object
which is physically described by a two-dimensional quantum
state vector (for example, the polarizations of a photon). Usually,
all qubits are initialized to objects described by the blank state
|0⟩: = [1,0]⊤ at the start of a computation. The joint space of n
blank qubits is described by the vector ⊗ni=1|0〉.

2. Logic gates are replaced by quantum gates, which are the unitary
transformations acting on the state vector of a collection of
qubits. Usually, these gates are restricted to act on one or two
qubits only. Note that after the application of some quantum
gates on n blank qubits, it may no longer be possible to write
the joint state vector as the tensor product of n two-dimensional
quantum state vectors. This is a fundamental phenomenon
called entanglement, and it is the reason why large quantum
computations cannot be easily simulated on a classical computer.

3. A collection of qubits are measured at the end of a circuit. This
measurement is simply a probabilistic operation that returns a
collection of classical bits.

The small changes to the standard circuit model of computation
result in a surprisingly more powerful theory from the point of view
of computational complexity theory, with quantumalgorithms being
able to solve problems such as prime factorization in polynomial
time (Shor, 1999), while classical computers are widely believed to
take exponential time.

Because of the recent explosion surrounding machine learning,
it is natural to consider whether quantum algorithms can provide an
advantage to learning problems.Asmentioned in Section 1, there are
manyways of tackling this question, such as through the use of linear
algebraic algorithms that make use of quantum circuits in some
way. However, the two algorithms that are most straightforward to
relate to classical machine learning approaches are quantum neural
networks (Benedetti et al., 2019) and quantum SVMs (Schuld and
Killoran, 2019). A quantum SVM is simply a regular SVM that
makes use of a quantum circuit as part of its feature map, and a
quantum neural network is simply a regular neural network with
a (fixed or parametrized) quantum circuit as part of its layers. A

parametrized quantum circuit is one in which one of the quantum
gates is dependent on a parameter. For example, a valid one-qubit
gate involves rotation about the x-axis; here, the gate’s rotation angle
can represent the parameter, that is, adjusted (through the use of
gradient descent) for learning. We also note that a quantum neural
network may have all quantum layers without any classical layers.

However, as mentioned in Section 1, QML for classical data (i.e.,
data that does not naturally take the form of a quantum state vector)
can be problematic. We provide intuition as to why this is the case
by highlighting two factors:

1. Quantum information is fragile, especially when compared
with classical. The state vector represented by quantum qubits
decoheres (i.e., collapses into a classical state vector) quickly,
which implies that quantum error correction to mitigate this
decoherence is essential. Previous studies have shown that
quantum error correction algorithms impose a large constant
overhead on quantum algorithms (Babbush et al., 2021).

2. When subjected to rigorous theoretical analysis, the vast
majority of practically useful QML for classical data algorithms
only offer a small polynomial speedup compared to their
classical machine learning counterparts. For example, a QML
algorithm might have to conduct O(n) operations whereas the
classical machine learning algorithm would have to execute
O(n2) operations, with n being the size of the data input.
Even quantum algorithms which were previously thought to
offer exponential advantages for big classical data were later
shown to only offer polynomial advantages if one removes some
unrealistic data loading assumptions (Chia et al., 2020; Tang,
2019, Tang, 2021).

One may argue that small polynomial speedups are still useful
speedups, but the problem is that the big O notation neglects the
constant overhead. As an example, an algorithm that requires 2n
operations to complete and an algorithm that takes 108n operations
to finish would both be denoted O(n). Moreover, big O notation,
which is concerned with asymptotic limits (as n→∞) suggests
that an algorithm which takes 108n operations to finish would
be superior in terms of complexity to an algorithm that takes n2

operations. However, in the practical world, say n ∈ [0,107]; here, n2

operations are at least an order of magnitude lower than 108n, even
though n can be large. It is possible to argue that for sufficiently large
data sets, 108n operations are lower complexity than n2. While this
is true, for an n of this size, 108n itself may be infeasible albeit it is
better than n2.

QML for classical data suffers from the challenge described
above because of the large constant overhead imposed by quantum
error correction and the fact that the vast majority of proposed
algorithms only offer small polynomial speedups. Ifn is large enough
to make QML more attractive than classical ML, we argue that the
QML algorithm itself will likely also be impractically slow. QML for
quantum data, however, does not suffer from this problem, since
it can offer exponential advantages over classical ML for quantum
data.We note that there is an important caveat here: not all quantum
datasets offer exponential advantages for quantumdata, even though
the advantage is likely to occur.

At the heart of the quantum versus classical debate is the notion
of “value for investment”, and this holds for QML for quantum
data too.Quantum systems, undoubtedly, pose additional challenges
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such as infrastructural costs. However, one must look at the larger
picture. When a quantum system promises a potential exponential
advantage, it is not just discussing a slight edge or a quicker
solution, it is about turning otherwise infeasible problems into
achievable tasks. For example, the accurate analysis of quantum
data collected from quantum infrastructure in a future smart grid
could provide better cyberattack detection performance, better
and cheaper maintenance, and faster reponses to outages. In such
scenarios, the “cost” of quantum computing, both financial and
computational, becomes a necessary investment in order to ensure
optimal grid operations.

3 Smart grid quantum anomaly
detection scenarios

The effect of quantum technology on the smart grid remains
to be seen, but one can reasonably conclude that devices like
quantum sensors (Degen et al., 2017; Crawford et al., 2021) are
likely to play a pivotal future role given their increased sensitivity
and performance. We assert that defining a general, relatively
unconstrained framework for studying the effects of quantum
technology on the grid is a valuable approach to shed tangible
insights as the field develops.

It is desirable to enlist within our framework select facets of the
current smart grid infrastructure to ground the model in real world
characteristics. One such aspect is the prevalence of periodicity
in classical Operational Technology (OT) data: current classical
grid infrastructure is comprised of periodic waveforms (such as
time-dependent voltage and current readings) stemming from the
alternating current (AC) nature of the power grid backbone. Given
the prohibitive cost of completely replacing legacy AC power
grid components, this periodic characteristic of signals is likely
to hold in a quantum-enabled future smart grid. Hence, we aim
to incorporate information periodicity in our proposed anomaly
detection scenario.

An example of a potential scenario is shown in Figure 1, which
presents an interaction between a generic real-time current/voltage
measurement device (RTMD), which outputs samples from noisy
periodic waveforms, and envisioned future quantum infrastructure.
The measurements of the RTMD, in accordance with practical
measurement devices, are distorted by some level of noise. Since
currents and voltages are sinusoidal in nature, the RTMD outputs
a noisy periodic waveform; this waveform is sampled and fed
as a control signal to a quantum device. A simple cyberattack
scenario is one in which the attacker compromises the RTMD and
causes it to output anomalous samples that are classically difficult to
differentiate from the regular noisy samples and which cause the
quantum device to malfunction. By classically difficult, we mean
that a function which effectively differentiates a regular noisy signal
from anomalous samples must necessarily be quantum in nature.
Based on our discussions above, this could be modeled as inputting
the noisy/anomalous signal in question into quantum infrastructure
in some way and then inferring based on outputs from that
infrastructure. Specifically, if we let q(x):ℝu→ℝm be the function
that describes the dynamics of the quantum infrastructure, then
differentiating between noisy or anomalous signals requires learning
some function a(q(p)):ℝu→ {normal , FDI}. Such a scenario lends

itself to the availability of quantum data within smart grid
infrastructure; such data depends on the behaviour of the theoretical
quantum infrastructure. In practice, the attacker can either target
the physical dynamics of the device generating the waveform
or the sampling device directly. Given that quantum smart grid
infrastructure does not currently exist making it difficult to form
specific assumptions as in the classical infrastructure case, we simply
assume that it can produce useful quantum state vectors through
the use of entangled operations. We assert that this fundamental
condition is likely to be satisfied by all useful quantum devices since
non-entangled operations can be efficiently simulated on classical
devices.

Hence, the goal is to train a machine learning algorithm to
distinguish between noisy or anomalous samples arising from
a compromised RTMD, which is illustrated in Figure 2. Given
the focus on quantum data, we assert that it is likely that a
quantummachine learning supervisor results in exponentially better
cyberattack detection than a classical counterpart. In this paper, we
explore the potential of QML in this context through the evolution
of random Fourier functions as discussed in Section 6.

4 Problem formulation

We are focused on False Data Injection (FDI) attacks, as shown
in the scenario of Figure 1, which involves the differentiation of
legitimate noisy sampled data and anomalous, attacker-supplied FDI
data in the quantum infrastructure.This is accomplished by training
an ML/QML algorithm to classify real-time data into normal
and FDI classes. More formally, the problem can be formulated
analytically as follows:

1. We define points

pnormal = {pnormal
i }n

i=1

belonging to a class Cnormal which represent normal, non-FDI data,
and points

pFDI = {pFDI
j }

m
j=1

belonging to a class CFDI which represent FDI data. Each point
pi represents (xi,yi) horizontal and vertical axis values sampled
from the waveform outputted by an RTMD. Usually, the sets pnormal

and pFDI would be created in a constructive way; however, in this
paper, pnormal and pFDI are created through the assignment algorithm
presented in Section 5, which defines a function

a (q (p)) : ℝu→ {normal , FDI}

that takes in points {pk}
n+m
k=1 , pk ∈ ℝ

u and splits them into two sets
pnormal and pFDI.

2. We set up the assignment problem by creating a waveform f(x)
and sampling points

{pk = (xk,yk = f (xk))}
n+m
k=1

from it to use as an input to the assignment problem. We search for
an f(x) that results in an assignment problem that shows an optimal
cyberattack detection separation between aQMLandML algorithm;
our methodology is presented in Section 5.
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FIGURE 1
An example of the proposed cyberattack structure of a future hybrid quantum-classical smart grid. The cyberattack scenario occurs when an attacker
compromises the real-time measurement device and causes it to output anomalous false data that cause the quantum device to malfunction, with the
anomalies being classically difficult to differentiate from the regular noisy samples.

FIGURE 2
Scenario where a classical or quantum ML algorithm observes samples from the waveform and predicts whether these are regular noisy samples or
anomalous samples injected by an attacker. This is done by learning the function a(q(p)):ℝu→ {normal , FDI} discussed in the scenario for Figure 1.

3. We define a classical learning algorithm Lclassical and a quantum
learning algorithm Lquantum to learn the function a(q(p)):ℝu→
{normal , FDI} and we evaluate them in Section 7 through the use
of the accuracy metric.

The definition of a(q(p)):ℝu→ {normal , FDI} is an entirely new
contribution of this feature, and results in a previously unseen
dataset so it is not straightforward to compare our experimental
results to previous literature. However, this paper provides a
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starting foundation for comparing the many candidates for the
cyberattack detection algorithms Lclassical and Lquantum which have
previously been proposed in the literature on the newly generated
datasets pnormal and pFDI we provide here. We leave this to future
work.

5 FDI attack construction

The scenario of Figure 1 relies on differentiating between
legitimate noisy samples pnormal and anomalous, attacker-injected
samples pFDI in the quantum infrastructure. When generating a
corresponding supervised learning dataset, there are two questions
to consider:

1. What kind of noisy waveform should be considered?
2. Suppose that the waveform is sampled. How does one decide

which samples correspond to the regular noisy process and
which samples correspond to a cyberattack? In other words, how
is the function a(q(p)) defined in the scenario in Figure 1?

Question (1) can be momentarily deferred. Assume that the
waveform is given. For example, consider the 60 Hz waveform
shown in the upper left of Figure 3. Suppose that something
goes wrong with the measurement process, and the wavefunction
becomes noisy after x = 0.1. In addition, suppose that there are 30
randomly spaced samples {pk}

30
k=1 from this noisy function (These

correspond to the {pk}
n+m
k=1 discussed in Section 4). This is shown in

the upper right of Figure 3.
To keep things simple, let Cnormal and CFDI have the same number

of points. The goal is to split {pk}
30
k=1 into {pnormal

i }15i=1 and {pFDI
j }

15
j=1

(Corresponding to pnormal and pFDI in Section 4). This function
visibly changes behaviour and becomes much more noisy at x = 0.1,
so the trivial labelling would be to assign the samples which are
less than or equal to 0.1 to Cnormal and the others to CFDI. However,
recall that we aim to explore the maximum cyberattack detection
advantage of Lclassical over Lquantum. Our proposed trivial labelling
will likely not result in an advantage; in fact, such a labelling
does not require any machine learning at all and can be done
by just visually examining the waveform. Moreover, the labelling

FIGURE 3
Generated waveforms: Noise-free, with half noisy region, and with quantum-colored sampled points. Green points represent samples belonging to
∖operational and red points represent samples belonging to ∖malfunction.
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approach did not include the notion of quantum infrastructure
making the trivial data sets under consideration classical, not
quantum.

Fortunately, there is a way to optimally solve the assignment
problem to pnormal and pFDI to maximally separate Lclassical and
Lclassical. Given {xk}

n+m
k=1 , the first step is to define a new dataset X ∈

ℝn×2 where each row is a tuple (xk,yk = f(xk) . In other words, X is
simply a dataset of samples from the graph of the function f. The
next step is to useX as an input to a quantum algorithmic primitive
proposed in the literature (Huang et al., 2021b) which makes use
of the theory of classical (Müller et al., 2018) and quantum kernels
(Schuld and Killoran, 2019) to automatically assign labels to a
dataset in such a way as to provide a quantum predictive advantage
(if one exists)1. As mentioned in Section 2, a quantum kernel is
simply a kernel that makes use of a quantum device in order to
estimate a feature map, that is, difficult to compute on a classical
computer.This algorithmic primitive can be thought of as depending
on a theoretical quantum device and we can thus think of it as
playing the role of the function a(q(p)) discussed in the scenario in
Figure 3.

The primitive works as follows: suppose that X is the dataset
described above, kC is a classical kernel, and kQ is a quantum kernel.
Let GC be the Gram matrix associated with X and kC, and let
GQ be the Gram matrix associated with X kQ. Note that if one is
given a datasetX ∈ ℝn×m and a kernel function k:ℝm ×ℝm→ℝ, the
associated Gram matrix G is an n× n matrix with Gij = k(X (i),X (j))
with X (i) and X (j) respectively denoting the ith and jth rows of X .
We refer the reader to (Huang et al., 2021b) for a proof, but the
continuous label vector showing the maximal quantum advantage
according to the given kernels is

l = √GQv (1)

where v is the eigenvector of M = √GQ(GC)−1√GQ corresponding
to the eigenvalue ∥ √GQ(GC)−1√GQ∥∞. Note that ∥M ∥ ∞ is the
Schatten ∞-norm which corresponds to the induced 2-norm, i.e.,
the spectral norm. This label vector is continuous: since our area of
interest is binary classification problems, we can transform the label
vector to our use-case by defining the binary classification labels to
be lbk = (lk >median(l)) and potentially adding some noise to make
the problem more difficult. The dataset {pk, l

b
k}

n+m
k=1 represents the

generated supervised learning problem; the entries pnormal where lk
is equal to 0 correspond to the normal points, and the entries pFDI

where lk is equal to 1 correspond to the FDI points.
In this paper, we generate the labels by setting the classical

kernel to be the radial basis function kernel kC(X (i),X (j)) =
exp{−γ ∥ X (i) −X (j)∥22} and setting the quantum kernel to be
a projected quantum kernel introduced in Huang et al. (2021b)
and defined as kQ(X (i),X (j)) = exp{−γ ∥ ρ(X (i)) − ρ(X (j))∥22} with
ρ(X (i)) being a quantum feature map. The specific quantum feature
map ρ(X (i);ntrotter) that we use is the 1-reduced density matrix
(Nielsen and Chuang, 2002) on all qubits of

V(X (i)/ntrotter)
ntrotterU1qb|0〉 (2)

1 Note that the work in Huang et al. (2021b) does not mention smart grids or
waveforms, but rather deals with general quantum dataset creation given an
arbitrary matrix X ∈ ℝn×m.

where |0⟩ is the computational basis state (Nielsen and
Chuang, 2002), U1qb is a wall of random qubit rotations, and

V(x) = e
−i∑

k
X (i)k (XkXk+1YkYk+1ZkZk+1) with X (i)k indicating the kth entry

of X (i), and Xk,Yk,Zk representing the Pauli gates acting on the
kth qubit. We set ntrotter = 10 and add noise by random flipping
5% of the labels when computing lb = (l >median(l)). We chose
this quantum feature map (called a Hamiltonian evolution ansatz)
because it shows a large quantum advantage in Huang et al. (2021b),
but other choices are also valid.

The bottom subfigure of Figure 3 shows the coloring obtained
if one applies the quantum algorithmic primitive to the waveform
and samples shown in the upper right of Figure 3. The coloring
of a sample (x,y) can be thought of as denoting whether the
associated noisy value y = f(x) + ϵ is normal at time x or whether
it represents a cyberattack. Note that, to our classical eyes, these
samples look effectively random but they are in fact close together
in quantum space even though they are far apart in classical space.
We note that if one is simulating a more realistic cyberattack
detection problem, the amount of samples assigned to CFDI has
to be much smaller than that of the points labeled assigned to
Cnormal since anomaly detection tasks typically involve imbalanced
datasets. However, as a first step and for the purposes of this
paper, we keep things simple with a balanced dataset. Our future
work on this topic will certainly include an imbalance and will
feature a thorough study of the performance of QML when faced
with imbalanced domains, along with a comparison to its classical
counterpart.

It is intuitive that, depending on the shape of the waveform and
the sampling rate, different amounts of quantum advantages will be
obtained by QML algorithms. Inalgorithms. In this section, we have
assumed that the waveform of interest was given to us and explained
how an algorithm proposed in the literature can be used to generate
difficult quantum labels that fit the scenario in Figure 2. This paper’s
main contribution, however, comes in Section 6 where we will show
how we can tackle the interesting problem of finding waveforms
that show the maximal quantum advantage through the evolution
of random fourier functions.

TABLE 1 Experimental parameters used. The data points are obtained by
sampling 1000 equally spaced points from [−L/2, L/2].We chose to sample
1000 points since it is a good compromise between having enough data to
learn from for both classical and quantumML algorithms, and showing the
advantages of QMLwhen learning from a small amount of quantum data, a
phenomenonwhich is explored in Huang et al. (2021b).We chose L = 20 in
order to space these 1000 points out slightly and not make them too close. As
mentioned in Section 6, a and b are initially sampled fromN (0,1/(2m+ 1)), so
we simply set their scipy lower and upper bounds to be −4 and 4 times the
normal distribution’s standard deviation and the same logic holds for the ϵ
bounds.

Population size 50

Sampling distribution for ϵ N (0,0.01)

Scipy bounds for a and b [−4/(2m + 1), 4/(2m + 1)]

Scipy bounds for ϵ [−0.04, 0.04]

L 20

Number of data points 1000
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6 Evolving noisy finite fourier series

Section 5 assumes that the noisy waveform of interest is given.
However, since the data is being synthetically generated, this is
obviously not the case in practice and a waveform must be manually
defined. Seeing as the goal behind this paper is to study regimes
where a large quantum advantage is possible, a natural decision is to
automatically explore waveform shapes that result in the maximum
possible quantum advantage. In order to do this, the first thing,
that is, needed is a parametrized function space of waveforms. One
possible way to define this space is to make use of the proposed
random finite Fourier series in Filip et al. (2019), where the authors
define smooth random functions which are periodic on an interval
[−L/2,L/2] as

f (x) = a0 +√2
m

∑
j=1
[aj cos(

2πjx
L
)+ bj sin(

2πjx
L
)] (3)

where λ > 0 is a wavelength parameter and m = ⌊L/λ⌋. Let
a = [a0,a1,…am] and b = [b1,…bm], and let {xi}

n
i=1 be a set of user-

defined points representing a discretization of the domain over
which to evolve the function. A perturbation can be added in order
to evolve noisy functions, so let ϵ ∈ ℝu be vector which contains
an ϵi ∈ ℝ perturbation for all {xi}

n
i=1. Each ϵi can represent either a

perturbation arising from regular noise or a perturbation resulting
from a cyberattack attempt. Let θ = [a,b, ϵ] ∈ ℝ2m+1+n be a vector
concatenation of a,b, ϵ. Then the noisy function can b be written in
the following way:

f (xi;θ) = a0 +√2
m

∑
j=1
[aj cos(

2πjxi

L
)+ bj sin(

2πjxi

L
)+ ϵi] (4)

where the parametrization on θ has been made clear and we have
renamed the function argument x to xi to make its relationship to ϵi
clearer. Then the space to be explored during optimization is

{ f (x1;θ) , f (x2;θ) ,…, f (xn;θ)}θ∈ℝ2m+1+n (5)

One can also choose subsets of R2m+1+n instead of the whole
set. In this formulation, the goal is to explore values of θ which
maximize the potential quantum advantage, and we keep λ as
a user defined parameter. Letting λ be user defined instead of
incorporating it as part of the optimization process has the
advantage of giving the user much greater control in the type
of experiment we perform since it has a drastic effect on the
potential waveform shapes, thus allowing them to easily shoehorn
themselves into particular regions of function space across different
experiments.

This maximization problem also requires some way of
quantifying potential quantum advantage, and luckily, the work
in Huang et al. (2021b) provides a solution: if one is given the
dataset X , the radial basis function and projected quantum kernels
kC and kQ described in Section 5, and uses them to compute the
Gram matrices GC and GQ described in Section 5, the potential for
quantum advantage can be represented by the following quantity:

g(GC | GQ) = √∥ √GQ(GC)−1√GQ∥∞ (6)

The quantity g(GC|GQ) is called the geometric difference between
the classical and quantum kernels. Roughly speaking, g(GC|GQ)
checks whether the dataset points that are close together in the
feature space defined by the quantum kernel align well with the
dataset points that are close together in the feature space defined by
the classical kernel. If g(GC|GQ) is small, it means that there is a good
alignment between the classical and quantumkernels and there is no
potential advantage since the two kernels are essentially “clustering”
the dataset points the same way. However, if g(GC|GQ) is large, then
there exists the potential for a quantum advantage.

Let h(k; θ) be the function that first forms the dataset X ∈ ℝn×2

by computing each row X (i) as (xi, f(xi; θ)), and then computes the
Gram matrix G corresponding to the matrixX and the given kernel
k. Then, in order to generate a waveform whose associated dataset

FIGURE 4
Wavefunction evolved in the experiment corresponding to λ = 5, colored according to the labels found by the quantum algorithmic primitive discussed
in Section 5. The function is plotted within its periodic interval of [−L/2,L/2].
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X has the potential for a quantum advantage, we need to solve the
following maximization problem:

max
θ∈ℝ2m+1+n

g(h(kC;θ) | h(kQ;θ)) (7)

This is a fairly complicated problem, but seeing as θ is a
continuous parameter, it can be solved by the popular gradient-free,
black box, high performing and paralellizable differential evolution
algorithm (Storn and Price, 1997). Differential evolution can be
explained through one of its simple variants. We first initialize
a population of N candidate solutions {θ(j)}Nj=1. Each θ(j) can be
initialized by sampling the entries a(j)i and b(j)i fromN (0,1/(2m+ 1))

as proposed in Filip et al. (2019), and sampling ϵ(j) from N (μ,σ)
for some user-defined μ and σ. Then a simple differential evolution
variant iteratively refines the candidates by doing the following for
each θ(i):

1. Randomly choosing 3 candidates θ(1),θ(2), and θ(3) from the
current population and computing θ′ = θ(1) + (θ(2) − θ(3))/2.

2. Randomly swapping components between θ(i) and θ′.
3. Replacing θ(i) by θ′ if and only if θ′ has a better fitness value.

By repeating the above for a particular number of iterations
or until a desired fitness is reached, one arrives at an acceptable

FIGURE 5
Wavefunction evolved in the experiment corresponding to λ = 2.5, colored according to the labels found by the quantum algorithmic primitive
discussed in Section 5. The function is plotted within its periodic interval of [−L/2,L/2].

FIGURE 6
Wavefunction evolved in the experiment corresponding to λ = 1, colored according to the labels found by the quantum algorithmic primitive discussed
in Section 5. The function is plotted within its periodic interval of [−L/2,L/2].
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TABLE 2 10-fold cross validation results for the classical and quantumML algorithms for the first experiment (λ = 5). The result reported is of the form ( ̄s; STD;
MAD) where ̄s ∈ {accuracy, precision , recall , F1score} is themeanmetric across the 10 folds and STD andMAD respectively denote the standard deviation and
median absolute deviation.

Algorithm Accuracy Precision Recall F1 score

Classical 0.833 (0.03,0.017) 0.868 (0.04; 0.035) 0.796 (0.059; 0.044) 0.829 (0.034; 0.014)

Quantum 0.910 (0.023; 0.02) 0.914 (0.041; 0.023) 0.912 (0.038; 0.028) 0.912 (0.023; 0.019)

TABLE 3 10-fold cross validation results for the classical and quantumML algorithms for the second experiment (λ = 2.5). The result reported is of the same form
as in Table 2.

Algorithm Accuracy Precision Recall F1 score

Classical 0.707 (0.038; 0.023) 0.734 (0.060; 0.040) 0.655 (0.084; 0.039) 0.688 (0.051; 0.038)

Quantum 0.903 (0.033; 0.02) 0.901 (0.034; 0.028) 0.911 (0.046; 0.04) 0.905 (0.027; 0.019)

TABLE 4 10-fold cross validation results for the classical and quantumML algorithms for the third experiment (λ = 1). The result reported is of the same form as in
Table 2.

Algorithm Accuracy Precision Recall F1 score

Classical 0.666 (0.066; 0.055) 0.656 (0.063; 0.033) 0.690 (0.115; 0.094) 0.67 (0.081; 0.058)

Quantum 0.914 (0.026; 0.015) 0.904 (0.031; 0.016) 0.927 (0.035; 0.016) 0.915 (0.027; 0.01)

solution, which in our case are the parameters that define
an anomalous waveform having a high potential for quantum
advantage in the scenarios proposed in 3. For our purposes, we
simply initialize the population as described above and use scipy’s
(Virtanen et al., 2020) built-in differential evolution algorithm to
maximize the geometric difference.

7 Experiments and results

As mentioned in Section 6, we use scipy’s (Virtanen et al., 2020)
differential evolution algorithm to optimize the θ parameter. We
consider three different experiments, each corresponding to a
different value of the λ wavelength parameter, and we run the
differential evolution algorithm for 6 h on a colab notebook for each
of these experiments. The rest of the experimental parameters used
in scipy and for the noisy finite fourier series are shown in Table 1
As mentioned.

The optimal wavefunctions found by the differential evolution
algorithm, along with their quantum algorithmic primitive coloring,
are presented in Figure 4; Figure 5; Figure 6. We observe that
although the coloring appears random, the red and green points
are, in fact, separated into two distinguishable clusters in quantum
feature space. The shape of these wavefunctions provide us a sense
of how future waveforms need to be structured to exhibit maximal
quantum advantage within the scenario described in Figure 1. We
then compare the performance of classical machine learning vs.
QML in predicting the labels of the sampled points (green vs.
red). We define the classical algorithm to be a neural network that
takes in normal features which consist of (x,y) samples from the
graph, and we define the quantum algorithm to be a neural network
with the same architecture that takes in the quantum features that
correspond to the 1-reduced density matrix discussed in Section 5.

This approach is meant to optimize the QML advantage while still
providing a somewhat compatible and fair comparison from the
perspective that the hidden architectures are similar. We scaled both
sets separately to have a mean of zero and a unit standard deviation
to facilitate the optimization process. We choose a fully connected
architecture of (128, 64, 32, 16) hidden ReLU neurons followed by a
single sigmoidal neuron.

The networks were trained with a binary cross-entropy loss
for 500 epochs using the ADAM optimizer, and the 10-fold
cross validation results are shown in Table 2; Table 3; Table 4.
The difference in performance grows as the wavelength decreases,
starting from an approximately 7 percentage points difference in
accuracy for λ = 5, and growing to a more than 25 percentage points
difference for λ = 1. In addition, note that the performance of the
QML algorithm stays relatively stable across all wavelengths, and it is
only the classical performance that decreases. These results indicate
that wavefunctions with shorter wavelengths have more potential
for a quantum advantage in the RTMD scenario considered in this
paper. Whether an analogous version of this result holds for higher
dimensional waveforms remains to be seen and is an interesting
topic for a future line of work. The results in this section indicate
a stunning potential difference in performance between QML and
classical ML when it comes to quantum data, and this is the kind of
advantage that must be achieved in order to make QML practical.

8 Conclusion and future work

In this paper, we have introduced some fundamental scenarios
regarding how quantum data may arise in a future smart grid.
We have explored quantum learning in one of these scenarios by
combining a previously proposed quantum algorithmic primitive
that generates classically-difficult synthetic labels with an original
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differential evolution algorithm to optimize over a space of noisy
wavefunctions. Our results demonstrate that wavefunctions with a
smaller wavelength are more likely to exhibit a quantum advantage,
with this advantage reaching a difference of more than 25 accuracy
percentage points in favor of the quantum learner. This implies that
these types of wavefunctions are a more promising potential avenue
for a quantum advantage in smart grid scenarios that resemble the
one explored in this paper. To the best of our knowledge, this is the
first work that conducts empirical studies onQML for quantum data
in smart grids.

There are many possible lines of avenues for future work.
The first and most obvious is to explore the remaining scenarios
presented in this paper. The second is to extend the ideas and
experiments to other settings such as multivariate waveforms. The
third, and possibly most important line of work, is to generate
synthetic labels by making use of quantum circuit architectures that
are more relevant to the smart grid than the Hamiltonian evolution
architecture used here.

We emphasize that given quantum technologies are still in their
infancy, our goal in writing this paper was not to propose a quantum
algorithm for current deployment, but was rather to propose ways
to effectively nudge QML for smart grids towards quantum data
scenarios. We argue that this is more promising than classical
data scenarios because of the overhead imposed by quantum error
correction. We believe that the potential exponential advantages
offered by a successful transition will prove worthwhile in the years
to come.

Data availability statement

Due to confidentiality requirements established with the
industry funding partner, data is not publicly available for this

paper. Special requests to access the datasets should be directed to
andrew.nader@mail.utoronto.ca.

Author contributions

The ideas and research in this paperwere initiated anddeveloped
by AN with feedback from M-AD and under the supervisor of DK.
All authors contributed to the article and approved the submitted
version.

Funding

Funding is gratefully acknowledged by Mitacs and Hydro-
Québec under the Mitacs Accelerate Cluster program.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Aaronson, S. (2004). Is quantum mechanics an island in theoryspace? arXiv preprint
quant-ph/0401062.

Albash, T., and Lidar, D. A. (2018). Adiabatic quantum computation. Rev. Mod. Phys.
90, 015002. doi:10.1103/revmodphys.90.015002

Ashrafuzzaman, M., Das, S., Chakhchoukh, Y., Shiva, S., and Sheldon, F. T. (2020).
Detecting stealthy false data injection attacks in the smart grid using ensemble-based
machine learning. Comput. Secur. 97, 101994. doi:10.1016/j.cose.2020.101994

Babbush, R., McClean, J. R., Newman, M., Gidney, C., Boixo, S., and Neven, H.
(2021). Focus beyond quadratic speedups for error-corrected quantum advantage. PRX
Quantum 2, 010103. doi:10.1103/prxquantum.2.010103

Benedetti, M., Lloyd, E., Sack, S., and Fiorentini, M. (2019). Parameterized quantum
circuits as machine learning models. Quantum Sci. Technol. 4, 043001. doi:10.
1088/2058-9565/ab4eb5

Brown, K. L., Munro, W. J., and Kendon, V. M. (2010). Using quantum computers for
quantum simulation. Entropy 12, 2268–2307. doi:10.3390/e12112268

Chia, N.-H., Gilyén, A., Li, T., Lin, H.-H., Tang, E., and Wang, C. (2020). “Sampling-
based sublinear low-rank matrix arithmetic framework for dequantizing quantum
machine learning,” in Proceedings of the 52nd Annual ACM SIGACT symposium on
theory of computing, 387–400.

Crawford, S. E., Shugayev, R. A., Paudel, H. P., Lu, P., Syamlal, M., Ohodnicki, P. R.,
et al. (2021). Quantum sensing for energy applications: review and perspective. Adv.
Quantum Technol. 4, 2100049. doi:10.1002/qute.202100049

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath,
A. A. (2018). Generative adversarial networks: an overview. IEEE signal Process. Mag.
35, 53–65. doi:10.1109/msp.2017.2765202

Crosson, E., and Lidar, D. (2021). Prospects for quantum enhancement with
diabatic quantum annealing. Nat. Rev. Phys. 3, 466–489. doi:10.1038/s42254-021-
00313-6

Degen, C. L., Reinhard, F., and Cappellaro, P. (2017). Quantum sensing. Rev. Mod.
Phys. 89, 035002. doi:10.1103/revmodphys.89.035002

Filip, S., Javeed, A., and Trefethen, L. N. (2019). Smooth random functions,
random odes, and Gaussian processes. SIAM Rev. 61, 185–205. doi:10.1137/
17m1161853

Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H. (2002). Quantum cryptography.
Rev. Mod. Phys. 74, 145–195. doi:10.1103/revmodphys.74.145

Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). Quantum algorithm for linear
systems of equations. Phys. Rev. Lett. 103, 150502. doi:10.1103/physrevlett.103.150502

Harrow, A. W. (2020). Small quantum computers and large classical data sets. arXiv
preprint arXiv:2004.00026.

Huang, H.-Y., Broughton, M., Cotler, J., Chen, S., Li, J., Mohseni, M., et al. (2021a).
Quantum advantage in learning from experiments. arXiv preprint arXiv:2112.00778.

Huang, H.-Y., Broughton, M., Mohseni, M., Babbush, R., Boixo, S., Neven, H., et al.
(2021b). Power of data in quantum machine learning. Nat. Commun. 12, 2631. doi:10.
1038/s41467-021-22539-9

Irfan, M., Sadighian, A., Tanveer, A., Al-Naimi, S. J., and Oligeri, G. (2023). False
data injection attacks in smart grids: State of the art and way forward. arXiv preprint
arXiv:2308.10268.

Jahromi, M. Z., Jahromi, A. A., Kundur, D., Sanner, S., and Kassouf, M. (2021). Data
analytics for cybersecurity enhancement of transformer protection. ACM SIGENERGY
Energy Inf. Rev. 1, 12–19. doi:10.1145/3508467.3508469

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1061602
mailto:andrew.nader@mail.utoronto.ca
https://doi.org/10.1103/revmodphys.90.015002
https://doi.org/10.1016/j.cose.2020.101994
https://doi.org/10.1103/prxquantum.2.010103
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.1088/2058-9565/ab4eb5
https://doi.org/10.3390/e12112268
https://doi.org/10.1002/qute.202100049
https://doi.org/10.1109/msp.2017.2765202
https://doi.org/10.1038/s42254-021-00313-6
https://doi.org/10.1038/s42254-021-00313-6
https://doi.org/10.1103/revmodphys.89.035002
https://doi.org/10.1137/17m1161853
https://doi.org/10.1137/17m1161853
https://doi.org/10.1103/revmodphys.74.145
https://doi.org/10.1103/physrevlett.103.150502
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1038/s41467-021-22539-9
https://doi.org/10.1145/3508467.3508469
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Nader et al. 10.3389/fenrg.2023.1061602

Jahromi, M. Z., Jahromi, A. A., Sanner, S., Kundur, D., and Kassouf, M. (2020).
“Cybersecurity enhancement of transformer differential protection using machine
learning,” in IEEE Power & Energy Society General Meeting (PESGM) (IEEE), 1–5.

Karimipour, H., Dehghantanha, A., Parizi, R. M., Choo, K.-K. R., and Leung, H.
(2019). A deep and scalable unsupervised machine learning system for cyber-attack
detection in large-scale smart grids. IEEE Access 7, 80778–80788. doi:10.1109/access.
2019.2920326

Kerenidis, I., and Prakash, A. (2016). Quantum recommendation systems. arXiv
preprint arXiv:1603.08675.

Khaw, Y. M., Jahromi, A. A., Arani, M. F., Sanner, S., Kundur, D., and Kassouf, M.
(2020). A deep learning-based cyberattack detection system for transmission protective
relays. IEEE Trans. Smart Grid 12, 2554–2565. doi:10.1109/tsg.2020.3040361

Lloyd, S., Mohseni, M., and Rebentrost, P. (2013). Quantum algorithms for supervised
and unsupervised machine learning. arXiv preprint arXiv:1307.0411.

Lukens, J. M., Passian, A., Yoginath, S., Law, K. J., and Dawson, J. A. (2022). Bayesian
estimation of oscillator parameters: toward anomaly detection and cyber-physical
system security. Sensors 22, 6112. doi:10.3390/s22166112

Luo, Y., Cai, X., Zhang, Y., Xu, J., and Yuan, X. (2018). Multivariate time series
imputation with generative adversarial networks. Adv. neural Inf. Process. Syst. 31.

Müller, K.-R., Mika, S., Tsuda, K., and Schölkopf, K. (2018). Handbook of neural
network signal processing. CRC Press, 4–1.An introduction to kernel-based learning
algorithms

Nielsen, M. A., and Chuang, I. (2002). Quantum computation and quantum
information.

Niu, S., Liu, Y., Wang, J., and Song, H. (2020). A decade survey of transfer learning
(2010–2020). IEEE Trans. Artif. Intell. 1, 151–166. doi:10.1109/tai.2021.3054609

Pirandola, S., Andersen, U. L., Banchi, L., Berta, M., Bunandar, D., Colbeck, R., et al.
(2020). Advances in quantum cryptography. Adv. Opt. photonics 12, 1012–1236. doi:10.
1364/aop.361502

Schuld, M., and Killoran, N. (2019). Quantum machine learning in feature
hilbert spaces. Phys. Rev. Lett. 122, 040504. doi:10.1103/physrevlett.122.
040504

Shor, P. W. (1999). Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Rev. 41, 303–332. doi:10.
1137/s0036144598347011

Storn, R., and Price, K. (1997). Differential evolution–a simple and efficient heuristic
for global optimization over continuous spaces. J. Glob. Optim. 11, 341–359. doi:10.
1023/a:1008202821328

Tang, E. (2019). “A quantum-inspired classical algorithm for recommendation
systems,” in Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, 217–228.

Tang, E. (2021). Quantumprincipal component analysis only achieves an exponential
speedup because of its state preparation assumptions. Phys. Rev. Lett. 127, 060503.
doi:10.1103/physrevlett.127.060503

Ullah, M. H., Eskandarpour, R., Zheng, H., and Khodaei, A. (2022). IET generation.
Transmission & Distribution.Quantum computing for smart grid applications

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau,
D., et al. (2020). SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat. Methods 17, 261–272. doi:10.1038/s41592-019-0686-2

Zhang, J. E., Wu, D., and Boulet, B. (2021). “Time series anomaly detection for smart
grids: A survey,” in 2021 IEEE Electrical Power and Energy Conference (EPEC) (IEEE),
125–130.

Zhang, J., Zhang, X., Yang, J.,Wang, Z., Zhang, Y., Ai, Q., et al. (2020). “Deep lstm and
gan based short-term load forecasting method at the zone level,” in 2020 International
Conference on Artificial Intelligence in Information and Communication (ICAIIC)
(IEEE), 613–618.

Zhou, Y., and Zhang, P. (2021). Quantum machine learning for power system stability
assessment.

Frontiers in Energy Research 12 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1061602
https://doi.org/10.1109/access.2019.2920326
https://doi.org/10.1109/access.2019.2920326
https://doi.org/10.1109/tsg.2020.3040361
https://doi.org/10.3390/s22166112
https://doi.org/10.1109/tai.2021.3054609
https://doi.org/10.1364/aop.361502
https://doi.org/10.1364/aop.361502
https://doi.org/10.1103/physrevlett.122.040504
https://doi.org/10.1103/physrevlett.122.040504
https://doi.org/10.1137/s0036144598347011
https://doi.org/10.1137/s0036144598347011
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1023/a:1008202821328
https://doi.org/10.1103/physrevlett.127.060503
https://doi.org/10.1038/s41592-019-0686-2
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

	1 Introduction
	2 The case for QML for quantum data
	3 Smart grid quantum anomaly detection scenarios
	4 Problem formulation
	5 FDI attack construction
	6 Evolving noisy finite fourier series
	7 Experiments and results
	8 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

