
A combined model based on
secondary decomposition
technique and grey wolf optimizer
for short-term wind power
forecasting

Zhongde Su, Bowen Zheng and Huacai Lu*

Key Laboratory of Electric Drive and Control, Anhui Polytechnic University, Wuhu, China

Short-term wind power forecasting plays an important role in wind power
generation systems. In order to improve the accuracy of wind power forecasting,
many researchers have proposed a large number of wind power forecasting models.
However, traditional forecasting models ignore data preprocessing and the
limitations of a single forecasting model, resulting in low forecasting accuracy.
Aiming at the shortcomings of the existing models, a combined forecasting
model based on secondary decomposition technique and grey wolf optimizer
(GWO) is proposed. In the process of forecasting, firstly, the complete ensemble
empirical mode decomposition adaptive noise (CEEMDAN) and wavelet transform
(WT) are used to preprocess the wind power data. Then, least squares support vector
machine (LSSVM), extreme learning machine (ELM) and back propagation neural
network (BPNN) are established to forecast the decomposed components
respectively. In order to improve the forecasting performance, the parameters in
LSSVM, ELM, and BPNN are tuned by GWO. Finally, the GWO is used to determine the
weight coefficient of each single forecasting model, and the weighted combination
is used to obtain the final forecasting result. The simulation results show that the
forecasting model has better forecasting performance than other forecasting
models.
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1 Introduction

As a clean and pollution-free renewable resource, wind energy has attracted much attention
because of its abundant resources, wide distribution and great development potential (Hua
et al., 2022; Khazaei et al., 2022). However, due to the intermittent and strong variability of wind
power (Yin et al., 2021; Duan et al., 2022). Therefore, it is necessary to develop a method that
can accurately forecast wind power, reduce the negative impact of wind power grid connection,
ensure the safe and stable operation of the power system, and improve the utilization rate of
wind power in the power system (Hu et al., 2021a; Lin and Zhang, 2021; Meng et al., 2022).

In recent years, many scholars have done a lot of research in the field of wind power
forecasting, and proposed many wind power forecasting methods. These forecasting methods can
be divided into three categories: physical methods and general statistical methods and artificial
intelligencemethods (Xiang et al., 2019; Zhang et al., 2019; Hu et al., 2021b). Physical methods does
not need the support of historical data, its principle is to use the wind speed, wind direction and
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temperature of numerical weather forecasting information as input data,
and then combined with the surface information around the fan to
establish a mathematical model for solving (Du et al., 2017). The
calculation process of physical method is complicated and the cost is
high, so it is suitable for long-term forecasting, and the error is large in
short-term wind power forecasting (Soman et al., 2010; Zhang et al.,
2020). In contrast, general statistical methods and artificial intelligence
methods only need to use historical wind power data for wind power
forecasting, which is easy to implement andmore suitable for short-term
wind power forecasting (Tascikaraoglu and Uzunoglu, 2014; Zhou et al.,
2022). General statistical methods mainly include the autoregression
(AR) method (Huang and Chalabi, 1995), the autoregressive moving
average (ARMA) method (Erdem and Shi, 2011) and grey models (GM)
method (Bahrami et al., 2014). Artificial intelligence technology has
outstanding advantages in dealing with non-linear problems, and many
researchers have applied artificial intelligence methods to the field of
wind power forecasting (Ogliari et al., 2021; Wang et al., 2021; Chen
et al., 2022a). Artificial intelligence methods mainly include BP neural
network (BPNN) (Zhu et al., 2022), support vector machine (SVM) (Li
et al., 2020), extreme learning machine (ELM) (Peng et al., 2017),
generalized regression neural network (GRNN) (Ding et al., 2021)
and Long-term and Short-term Memory network (LSTM) (Xiong
et al., 2022) etc. Ren et al. (Ren et al., 2014) proposed an IS-PSO-BP

wind speed forecasting model, which achieved good forecasting
performance. Liao et al. (Liao et al., 2021) introduces fuzzy seasonal
index into fuzzy LSTM model has better performance in terms of
forecasting accuracy.

In the past few decades, researchers have proposed many wind
power forecasting methods, which have improved the wind power
forecasting accuracy to a certain extent. However, considering the
non-stationarity of wind power data, direct use of raw data for
forecasting will lead to large errors. The usual method is to use
empirical mode decomposition (EMD), ensemble empirical mode
decomposition (EEMD) and wavelet transform (WT). Zhang et al.
(Zhang et al., 2017) proposed an EEMD combined with cuckoo search
optimization algorithm to optimize the wavelet neural network for
wind speed forecasting and the experiments show that EEMD can
make a great contribution to the forecasting accuracy. Liu et al. (Liu
et al., 2014) proposed a wind speed forecasting model based on wavelet
transform and genetic algorithm to optimize support vector machine.
Wavelet transform can eliminate the random fluctuation of wind
speed sequence and improve the accuracy of wind speed forecasting.

The limitations of the above methods are summarized as follows:

1) Physical methods are suitable for long-term forecasting rather than
short-term forecasting.

TABLE 1 The main terminologies mentioned in this paper.

List of terminologies

GWO Grey Wolf Optimizer

CEEMDAN Complete Ensemble Empirical Mode Decomposition Adaptive Noise

IMF Intrinsic Mode Functions

WT Wavelet Transform

LSSVM Least Squares Support Vector Machine

ELM Extreme Learning Machine

BPNN Back Propagation Neural Network

AR Autoregression

ARMA Autoregressive Moving Average

GM Grey Models

SVM Support Vector Machine

GRNN Generalized Regression Neural Network

LSTM Long-term and Short-term Memory Network

EMD Empirical Mode Decomposition

EEMD Ensemble Empirical Mode Decomposition

SDT Secondary Decomposition Technique

SLFNs Single-hidden Layer Feed Forward Networks

CWT Continuous Wavelet Transform

DWT Discrete Wavelet Transform

LPF Low-pass Filter

HPF High-pass Filter

NNCT No Negative Constraint Theory
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2) General statisticalmethods are suitable for linear data, but not for non-
linear data; A single artificial intelligence forecastingmethod is difficult
to get rid of the problems of local optima and low convergence.

3) The traditional single data processing method cannot completely
solve the non-linear and non-stationary components of the
original wind power data.

4) The limitations of a single forecasting model make it difficult to
ensure accurate forecasting for all wind power datasets.

Based on the analysis above, a developed combined wind power
forecasting model that is based on the complete ensemble empirical
model decomposition adaptive noise (CEEMDAN) and wavelet
transform (WT) secondary decomposition technique (SDT), grey wolf
optimizer (GWO) and three individual forecasting models. First,
CEEMDAN is used to process wind power data, and WT is used for
secondary decomposition of themost complex IMF1 component. Then the
forecasting models of GWO-LSSVM, GWO-ELM and GWO-BPNN are
established. Finally, a weight optimization method based on GWO
algorithm is developed to combine the results of three individual
forecasting models to obtain the final forecasting results.

The primary contributions and innovations of this study are
described as follows:

1) CEEMDAN is used to process the wind power series, andWT is used
to decompose the IMF1 component with the highest complexity,
which effectively reduces the volatility and non-stationarity of wind
power data and improves the forecasting performance.

2) Three machine learning methods LSSVM, ELM and BPNN are
proposed to forecast the processed wind power. In order to
improve the forecasting accuracy, GWO algorithm is used to
optimize the hyperparameters of these threemachine learningmodels.

3) A weight determination method of combined forecasting model
based on GWO algorithm is proposed to find the weight of each
individual forecasting model.

4) The novel combined forecasting model based on three individual
machine learning models effectively utilizes the advantages of each
individual forecasting model and improves the forecasting
accuracy of short-term wind power.

The structure of this paper will be described in detail below.
Section 2 introduces data preprocessing methods and the principles of
three machine learning forecasting models. Section 3 introduces the
principle of the optimization algorithm and the process of building a
combined forecasting model. Section 4 presents the dataset sources,
performance evaluation metrics, and testing methods of this study,
and the comparison results of the proposed model and other models
are analyzed in detail in Section 4 to verify the forecasting performance
of the combined forecasting model. Finally, Section 5 presents the
research conclusions of this paper. The main terminologies mentioned
in this paper are show in Table 1.

2 Methodology

2.1 CEEMDAN

EMD is a method for processing non-stationary signals. The signal
is decomposed into IMFs of different frequencies through a screening
process. The EMD method has the disadvantage of modal mixing and

cannot accurately extract the effective feature information of the signal
(Hu et al., 2013). In order to solve the modal mixing problem of EMD
decomposition, the EEMDmethod is to add a Gaussian white noise to
the sample data during the EMD decomposition process, and
eliminate these noise signals by averaging (Hu et al., 2013; Nguyen
and Phan, 2022). However, after limited iterations, the reconstructed
signal still contains a noisy signal. In order to eliminate residual noise,
Torres et al. proposed to add adaptive auxiliary noise signals in the
process of EMD decomposition. Compared with EMD and EEMD,
this method effectively eliminated the problem of mode mixing (Chen
et al., 2022b). The decomposition steps of CEEMDAN are as follows:

Step1: Assuming x(t) that is the original wind power data, add
Gaussian white noise to the original signal.

y t( ) � x t( ) + η0z t( ) (1)
Where η0 denotes a noise coefficient.

Step2: Signal y(t) is repeatedly decomposed for L times, and then
the mean is calculated to obtain the

First IMF of CEEMDAN.

IMF1 t( ) � 1
L
∑L
i�1
IMFi

1 t( ) (2)

Step3: Calculate residuals r1(t).
r1 t( ) � x t( ) − IMFi

1 t( ) (3)
Step4: Use EMD to decompose signal r1(t) + η1E1(z(t)) and

calculate the second IMF.

IMFi
2(t) �

1
L
∑L
i�1
E1(r1(t) + η1E1(z(t))) (4)

Where E1() represents EMD decomposition.
Step5: Calculate the kth residual component.

rk t( ) � rk−1 t( ) − IMFi
k t( ) k � 2, 3,/, L (5)

Step6: Repeat the calculation process of step 4 to obtain the
kth IMF.

IMFk � 1
L
∑L
i�1
E1(rk(t) + ηkEk(z(t))) (6)

FIGURE 1
Three-level decomposition of signal by WT.
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Step7: Finally, the decomposition result is as follows.

p t( ) � rk t( ) + 1
L
∑L
i�1
IMFi

1 t( ) (7)

2.2 WT

Wavelet transform is a data decomposition method, which has
been successfully applied in various fields, including image processing,
signal denoising and time series analysis (Bento et al., 2019). Wavelet
transforms can be classified into two categories: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The CWT
causes a large amount of computation because of repeated calculation,
and the DWT has better computational efficiency. Therefore, this
paper uses the DWT to process wind power data. The three-layer
decomposition of wind power data by discrete wavelet transform is
shown in Figure 1. The original signal is broken into two components
by high-pass filter (HPF) and low-pass filter (LPF), namely
approximation component (Ai) and detail component (Di). Then,
the approximation component is decomposed by the second layer to
obtain the approximation component and detail component, and so
on to obtain the third-layer decomposition.

DWT a, b( ) � ∑T−1
t�0

x t( )ψ t − b · 2a
2a

( ) (8)

Where T is the total length of the original signal x(t), a and b are the
scaling and translation parameters respectively and t is discrete time.

2.3 LSSVM

The least squares support vector machine is an improved
algorithm based on the support vector machine. The principle is to

map the data to a high-dimensional space through a non-linear
function and perform linear regression (Zhang and Li, 2022). The
established regression function is:

y � wT · φ x( ) + b (9)
Where w is the weight vector, b is the bias term.

According to the principle of structural risk minimization, the
objective function can be expressed as:

min J w, e( ) � 1
2
wTw + 1

2
γ∑n
i�1
e2i (10)

Such that:

yi � wT · φ xi( ) + b + ei, i � 1, 2, ..., n (11)
Where γ is error penalty function, ei is slack variable.

Construct the Lagrange function L:

L w, b, e, α( ) � 1
2
wTw + 1

2
γ∑N
i�1
e2i −∑N

i�1
αi{wTφ xi( ) + b + ei − yi} (12)

Where αi is the Lagrangian multiplier.
According to KKT conditions:

zL

zw
� 0 → w � ∑n

i�1
αiyiφ xi( )

zL

zb
� 0 → ∑n

i�1
αi � 0

zL

zei
� 0 → αi � γei

zL

zαi
� 0 → wTφ xi( ) + b + ei − yi � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(13)

After eliminating w and e, the linear equations can be obtained as
follows:

0 IT

I ZZT + I

γ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ b
α

[ ] � 0
y

[ ] (14)

Where Z � [ϕ(x1)Ty1,/,ϕ(xN)TyN], I � [1,/, 1]T,
y � [y1,/, yN]T, and α � [α1,/, αN]T.

According to the Mercer condition, the kernel function k(xi, xj) is
equivalent to the scalar product calculation in the above equation to
linearize the non-linear problem.

K xi, xj( ) � ϕ xi( )Tϕ xj( ) (15)

The LSSVM model expression is:

y x( ) � ∑N
i�1
αiK x, xi( ) + b (16)

The performance of LSSVM is affected by regularization
parameters, kernel function types and parameters. The RBF
kernel function has the advantages of good generalization
ability, simple expression and wide convergence region. In this
paper, the RBF kernel function is selected as the kernel function of
the LSSVM model.

TABLE 2 The pseudo code of GWO.

The pseudo code of GWO

Parameters: t the current iteration number

M the maximum number of iterations

Initialize the grey wolf population Xi (i = 1, 2, . . ., n)

Initialize a, A and C

Calculate each the fitness function (RMSE) of search agent

Xα = the best search agent; Xβ = the best search agent; Xδ = the best search agent

While (t < M) for i =1: n

update the position of each wolf according to Eq. 35

end for update a, A and C

calculate each the fitness function of search agent

update Xα , XβXδ

t = t+1

end while

return Xα
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2.4 ELM

ELM is a kind of single-hidden layer feed forward networks
(SLFNs) proposed by Huang et al., which consists of input layer,
hidden layer and output layer (Huang et al., 2006). After initialization,

the input weight between the input layer and the hidden layer and the
bias value of the hidden layer are randomly selected, and then the
output weight can be calculated according to the generalized inverse
operation on the output matrix. Compared with traditional feed-
forward neural networks with single hidden layer, ELM has the

FIGURE 2
Combined forecasting model strategy.

FIGURE 3
Framework of the proposed forecasting model.
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advantages of fast operation speed, simple structure and small error,
and is widely used in many fields.

Given any N samples (xi, ti), where the input sample is
xi � [xi1, xi2,/, xin]T ∈ Rn, the output sample is
ti � [ti1, ti2,/, tim] ∈ Rm, L is defined as the number of neurons in
the hidden layer, and g(x) is the activation function, the SLFNs model
can be expressed as follows:

∑L
i�1
βigi xi( ) � ∑L

i�1
βig wi · wj + bi( ) � oj, j � 1, 2,/, N (17)

Where wi � [wi1, wi2,/, win]T is the input weight, βi �
[βi1, βi2,/, βim]T is the output weight, bi is the bias, oj is the
output value of the model, and wi · wj is the inner product of wi

and wj.
The learning mechanism of SLFNs is realized by the zero error

between the output value and the sample, expressed as∑N

j�1‖oj − yj‖,
so Eq. 17 can be expressed as:

∑L
i�1
βig wi · wj + bi( ) � yj, j � 1, 2,/, N (18)

Eq. 18 can be expressed in matrix form as:

Hβ � T (19)
Where H is the hidden layer output matrix of ELM, β is the weight
matrix, and T is the network output matrix.

The hidden layer output weights can be obtained by solving the
least squares solution of the following equation:

min
β

Hβ − T
���� ���� (20)

FIGURE 4
Input and output matrix format for combined model.

FIGURE 5
The original wind power series. (A) Wind power of dataset A. (B) Wind power of dataset B.

TABLE 3 Statistical characteristic of two datasets.

Dataset Samples Numbers Min Max Mean Std

Data A All data 1248 1.41 140.63 38.9131 30.1982

Training data 960 1.41 140.63 36.3435 32.7796

Testing data 288 9.69 105.54 47.4786 16.6188

Data B All data 1248 4.18 125.99 31.8886 22.2772

Training data 960 4.18 91.44 29.1956 19.7888

Testing data 288 4.39 125.99 40.8651 27.2519

Frontiers in Energy Research frontiersin.org06

Su et al. 10.3389/fenrg.2023.1078751

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1078751


FIGURE 6
Decomposition results of wind power by CEEMDAN. (A) Wind power of dataset A. (B) Wind power of dataset B.

FIGURE 7
Decomposition results of IMF1 by WT. (A) Wind power of dataset A. (B) Wind power of dataset B.
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FIGURE 8
Comparison of the multi-step forecasting performance of Experiment 1 for dataset A.

FIGURE 9
Comparison of the multi-step forecasting performance of Experiment 1 for dataset B.
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The solution is:

β
∧ � H+T (21)

WhereH+ is the Moore–Penrose generalized inverse matrix of the
hidden layer output matrix.

2.5 BPNN

Back propagation neural network is a kind of multilayer
feedforward neural network trained by error back propagation. BP
neural network is composed of input layer, hidden layer and output
layer. The hidden layer of the network can be one or more layers, each
layer is composed of one ormore neurons. The neurons of neighboring
layers are connected to each other, and each neuron only receives the
input of the neuron of the previous layer, while there is no connection
between neurons of the same layer. Only the input information
processed by neurons in each layer can become the output of the
output layer. The training process of BP neural network is as follows:

The output of the hidden layer can be expressed as:

Hj � g ∑n
i�1
wijxi − aj⎛⎝ ⎞⎠, j � 1, 2,/, l (22)

Where l is the number of hidden layer nodes, n is the number
of input layer nodes, w is the weight between the input layer and
the hidden layer, x is the input variable, a is the hidden layer
threshold, and g(x) � 1

1+e−x is the activation function.
The output of the output layer can be expressed as:

Ok � ∑l
j�1
Hjwik − bk, k � 1, 2,/, m (23)

Where m is the number of output layer nodes, w is the weight
between the hidden layer and the input layer, and b is the output
layer threshold.

The forecasting error is calculated by the expected output Y
minus the output O of the output layer, and the expression is:

ek � Yk − Ok, k � 1, 2,/, m (24)
From the forecasting error ek, the updated expressions for the

weights and thresholds can be obtained:

wij � wij + ηHj 1 −Hj( )x i( )∑m
k�1

wjkek, i � 1/, n; j � 1,/, l (25)

wjk � wjk + ηHjek, j � 1, 2,/, l; k � 1, 2,/, m (26)

aj � aj + ηHj 1 −Hj( )x i( )∑m
k�1

wjkek, j � 1, 2,/, l (27)

bk � bk + ek, k � 1, 2,/, m (28)
Where η is the learning rate, and x(i) represents the i-th input
variable.

3 Wind power forecasting model

3.1 Grey wolf optimizer

Grey wolf optimizer is a new swarm intelligence optimization
algorithm. It is optimized by simulating the predation behavior ofTA
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the grey wolf population and by tracking, surrounding, pursuing and
attacking the wolves (Mirjalili et al., 2014). The algorithm has the
advantages of simple principle, less parameters to be adjusted, easy
implementation and strong global search ability. In recent years,
researchers have applied GWO to many research fields, such as
image processing (Rajput et al., 2019; Rajput and S-GWO-FH,
2022), path planning (Dong et al., 2022; Zhang et al., 2022), power
scheduling and forecasting (Lu et al., 2020; Wang et al., 2020; Jalali
et al., 2022), and other related fields.

The wolves are divided into four groups according to the social
rank: α, β, δ andw, α as the optimal solution, β and δ as the suboptimal
solution, and w is the candidate solution.

In the process of hunting, the behavior of wolves surrounding prey
can be expressed as follows:

D � �C ·Xp
�→

t( ) − �X t( )
∣∣∣∣∣ ∣∣∣∣∣ (29)

�X t + 1( ) � �XP t( ) − �A · �D (30)

Where t is the number of current iterations, Xp
��→

is the position
vector of prey, �X is the position vector of grey Wolf, �A and �C is the
coefficient vector. The expressions of �A and �C are:

�A � 2 �a · r1→− �a (31)
�C � 2 · r2→ (32)

Where r1
→ and r2

→ are random vectors between [0,1], �a is the
convergence factors, and linearly decrease from2 to 0 in the iterationprocess.

Suppose α, β and δ have a better idea of the potential location of
prey. Therefore, we save the top three best solutions obtained so far
and ask other grey wolf individuals to update their positions based on
the location of the greyest individual. The mathematical expression of
the update process is:

�Dα � �C1 · �Xα − �X
∣∣∣∣∣ ∣∣∣∣∣, �Dβ � �C2 · �Xβ − �X

∣∣∣∣∣ ∣∣∣∣∣, �Dδ � �C3 · �Xδ − �X
∣∣∣∣∣ ∣∣∣∣∣ (33)

�X1 � �Xα − �A1 · �Xα( ), �X2 � �Xβ − �A2 · �Xβ( ), �X3 � �Xδ · �A3 · �Xδ( )
(34)

FIGURE 10
Comparison of the evaluation criteria of each model of Experiment 2.
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�X t + 1( ) � �X1 + �X2 + �X3

3
(35)

Where t is the number of current iterations, �C1, �C2, �C3, �A1, �A2, �A3 are
random vectors.

In the process of hunting, firstly, the distance between individuals
is calculated, and then the direction of individual moving to prey is
determined by the synthesis of Eq. 35, and finally the prey is captured
to complete the hunting. Table 2 shows the pseudo code of GWO.

3.2 Individual forecasting model

The specific steps of the forecastingmodel of GWO-ELMare as follows:
Step1: Initialize the number of wolves and random population

positions, determine the number of hidden layer nodes and the
maximum number of iterations.

Step2: Initialize the fitness value. The root mean square error
(RMSE) is selected as the fitness function, and the individual fitness
function value is calculated and sorted by size to select α, β and
δ wolf.

Step3: Update the position of each wolf in the wolf pack according
to Eq. 35, and calculate the fitness value at the same time.

Step4: Judge whether it meets the given convergence accuracy or
the maximum number of iterations; if not, return to Step2; if yes,
output the optimal solution, namely the position of α wolf.

Step5: According to the position of α wolf, the input layer
weight and hidden layer threshold of extreme learning machine
are obtained, and finally the forecasting model of GWO-ELM is
established.

The process of GWO-LSSVM and GWO-BP forecasting models
are in the similar manners.

3.3 Parameter setting

The population size of GWO set 30, and the maximum
number of iterations set 50. The input layer node of ELM is 6,

hidden layer node is 30 and the output layer node is 3. The input
layer node of BPNN is 6, the middle layer is 8 and the output layer
node is 3.

3.4 Construction of the combined model

Combined forecasting model is a kind of model which is often
used in forecasting field. The key of model establishment lies in
how to determine the weight coefficient of single forecasting model.
By assigning corresponding weights to multiple forecasting models,
the forecasting result of each single forecasting model is multiplied
by its corresponding weight to obtain the forecasting result of the
forecasting model. Finally, the final forecasting result is generated
by adding the results of all forecasting models. The calculation
process is shown in Eq. 36. (Xiao et al., 2015). proposed the theory
of no negative constraint theory (NNCT) to obtain the weight
coefficient.

In this study, the grey wolf optimizer is adopted, the population
size set 30, the maximum number of iterations is 200, and RMSE is
used as the loss function, and the optimal weight coefficient is obtained
by minimizing the loss function.

y � ∑n
i�1
wifi (36)

Where y is the forecasting result of the combined forecasting
model, fi is the forecasting result of the single forecasting model, and
w is the weight coefficient.

The strategy of combined forecasting model is shown in Figure 2,
and the process of combining forecasting model is as follows:

Stage1: Data pretreatment.
Aiming at the problem that forecasting model based on single

decomposition technology can not completely deal with the non-
linearity and non-stationarity of wind power series, a secondary
decomposition technique based on the combination of CEEMDAN
and WT is proposed in this study.

Stage2: Forecasting model.

TABLE 5 Forecasting performance results of each model in Experiment 2.

Dataset Model 1-Step 2-Step 3-Step

RMSE MAE MAPE (%) SSE RMSE MAE MAPE (%) SSE RMSE MAE MAPE (%) SSE

Dataset A EEMD 2.011 1.422 3.527 388.111 2.959 2.236 5.491 840.322 3.355 2.501 6.170 1080.613

CEEMDAN 1.567 1.183 2.933 235.823 2.564 1.849 4.653 631.002 2.739 2.028 5.236 720.198

WT 1.113 0.859 2.283 118.997 2.673 2.087 5.605 685.648 3.652 2.916 7.874 1280.433

WPD 1.334 0.943 2.431 170.761 2.952 2.129 5.634 836.727 4.351 3.134 8.454 1817.145

Proposed Model 0.991 0.749 1.972 94.331 1.981 1.418 3.630 376.704 2.411 1.732 4.456 558.082

Dataset B EEMD 2.633 1.843 3.799 665.552 3.904 2.658 5.363 1462.939 5.275 3.475 6.887 2670.861

CEEMDAN 1.514 1.036 2.237 220.120 2.348 1.715 3.625 529.145 2.984 2.099 4.442 854.554

WT 1.141 0.788 1.662 125.061 2.430 1.683 3.542 566.659 3.137 2.290 4.858 944.599

WPD 1.485 1.038 2.283 211.814 3.021 2.149 4.643 876.278 4.142 3.038 6.561 1646.910

Proposed Model 0.812 0.602 1.325 63.276 1.726 1.219 2.693 285.496 2.554 1.664 3.538 626.111

The bold part is the evaluation criteria of the proposed model.
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Three machine learning models with good forecasting
performance, LSSVM, ELM and BPNN, are selected for wind
power forecasting, and the GWO algorithm is used to optimize the
hyperparameters of these three machine learning models to further
improve the forecasting accuracy. The data pretreatment results in
Stage1 are combined with the three forecasting models to forecast
wind power, and the process is shown in Figure 3. The two datasets
selected in this study are both 1248 data points, among which the first
960 data points are training data sets and the second 288 data points
are validation and testing data sets. The first 960 data points are input
into the forecasting model and 288 data points are output. The input
and output matrix format of multi-step forecasting in this paper is
shown in Figure 4.

Stage3: Calculate the weight of combined forecasting model.
In order to better calculate the weight coefficient of combined

forecasting model, a weight determination method of combined
forecasting model based on GWO algorithm is proposed. Firstly,
288 data points obtained from Stage2 are selected, among which
the first 192 data points are the validation dataset to determine the

weight of the combined forecasting model, and the last 96 data points
are the testing dataset. The dimension of GWO is set as 3, the number
of iterations is set as 200, and the upper and lower limits of weight are
set as [-2,2] to obtain the optimal weight coefficient. According to Eq.
36, the final wind power forecasting result can be calculated.

4 Experiments and analysis

All simulation experiments are carried out on MATLAB R2020b
environment in a personal computer with i7-10750H CPU and
16 GB RAM.

4.1 Data description

In this study, historical wind power data are used from the Belgian
electricity operator Elia, which can be downloaded from its website
(Elia Transmission Company, 2021). Two sets of 13-day wind power

FIGURE 11
Comparison of the evaluation criteria of each model of Experiment 3.
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data are randomly selected from 2019 with a sampling interval of
15min. Each set contained 1248 data points and illustrated in
Figure 5 and the samples of the first 10 days of each dataset are used
as the training dataset, the samples of the first 2 days of the next
3 days are used as the validation dataset to determine the weight
of each model, and the samples of the last 1 day are used as the
test dataset to evaluate the prediction effect of the combined
model. The statistical description of wind power data is shown
in Table 3.

4.2 Secondary decomposition technique

In this study, the secondary decomposition technique is used
to preprocess the original wind power to reduce the non-
stationarity of the wind power series. Firstly, the wind power
series is decomposed into different IMF components and a residual
component Res by CEEMDAN technology, as shown in Figure 6.
Secondly, the highly complex IMF1 component was decomposed
by wavelet. At this stage, IMF1 was decomposed into four
components, namely A3, D3, D2 and D1, which further
reduced the volatility and non-stationary of IMF1 component,
as shown in Figure 7. In the experiment, the parameters of
CEEMDAN and WT is set as follows: Nstd value is 0.2, NR
value is 500, the maximum number of iterations is 5000, and
db5 as the wavelet function.

4.3 Evaluation criteria

The evaluation criteria of the forecasting method are used to
test the accuracy of the forecasting model. The smaller the value of
the evaluation criteria, the better the forecasting performance of
the model. In this study, the evaluation criteria are selected as root
mean square error (RMSE), mean absolute error (MAE), mean
absolute percentage error (MAPE) and square sum of the error
(SSE). The expressions are as follows:

MAE � 1
N

∑N
i�1

YAi − YFi| | (37)

RMSE �

��������������
1
N

∑N
i�1

YAi − YFi( )2
√√

(38)

MAPE � 1
N

∑N
i�1

YAi − YFi| |
YAi

× 100% (39)

SSE � ∑N
i�1

YAi − YFi( )2 (40)

Where N is the number of samples, YAi is the true value of wind
power, and YFi is the forecasting value of wind power.

4.4 Experiment description

Based on the historical wind power, four experiments are
established in this paper, and the combined model established
is compared with other forecasting models through these four
groups of experiments.TA
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4.4.1 Experiment 1
Experiment 1 includes four forecasting models, including SDT-

GWO-LSSVM, SDT-GWO-ELM, SDT-GWO-BPNN and Proposed
Model. Figure 8 is the comparison of forecasting results of dataset A in
Experiment 1, and Figure 9 is the comparison of forecasting results of
dataset B in Experiment 1. The pair of evaluation criteria results of
Experiment 1 is shown in Table 4, in which the bold part is the
forecasting result of Proposed Model.

For dataset A, whether it is 1-step or multi-step prediction, the
proposed combination forecasting model has excellent
performance, and its 1-step, 2-step and 3-step MAPE values are
1.972%, 3.630% and 4.456%, respectively, with the smallest error
compared with other prediction models. Taking the three-step
prediction results as an example, the MAPE value of the
Proposed model de-creased by 0.366%, 0.194% and 0.097%
respectively compared with SDT-GWO-LSSVM, SDT-GWO-
ELM and SDT-GWO-BPNN.

For dataset B, the proposed model has superior prediction effect.
The MAPE values of the 1-step, the 2-step and 3-step are 1.325%%,

2.693% and 3.538% respectively, which has the smallest error compared
with other pre-dictionmodels. Taking the 3-step prediction results as an
example, the MAPE value of The Proposed model is reduced by 0.333%,
0.463% and 0.205% compared with SDT-GWO-LSSVM, SDT-GWO-
ELM and SDT-GWO-BPNN, respectively.

4.4.1.1 Remark
Through the analysis of the prediction results in Experiment 1, no

matter dataset A and dataset B, the three single prediction models have
good prediction performance. The proposed model combines the
advantages of these three single prediction models. In the tests of
the dataset A and B, the RMSE, MAE and MAPE values of the
proposed model in 1-step, 2-step and 3-step are the smallest. The
experimental results show that the proposed model is superior to the
single prediction model in multi-step forecasting.

4.4.2 Experiment 2
In experiment 2, EEMD, CEEMDAN, WPD and WT data

decomposition methods were respectively used to establish the

FIGURE 12
Comparison of the evaluation criteria of each model of Experiment 4.
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TABLE 7 Forecasting performance results of each model in Experiment 4.

Dataset Model 1-Step 2-Step 3-Step

RMSE MAE MAPE (%) SSE RMSE MAE MAPE (%) SSE RMSE MAE MAPE (%) SSE

Dataset A LSSVM 4.925 3.852 9.505 2328.335 7.089 5.638 14.285 4824.023 9.327 7.471 19.099 8350.860

ELM 5.466 4.104 9.970 2867.756 7.141 5.639 14.182 4894.888 9.607 7.524 19.162 8860.860

BPNN 5.073 4.090 10.288 2470.674 6.892 5.476 13.924 4559.786 9.319 7.554 19.377 8337.270

WNN 4.834 3.754 9.542 2243.241 6.656 5.349 14.022 4252.380 9.135 7.509 18.943 8010.974

DBN 4.915 3.769 9.230 2319.262 7.193 5.756 14.819 4967.103 9.470 7.575 19.571 8609.229

Proposed Model 0.991 0.749 1.972 94.331 1.981 1.418 3.630 376.704 2.411 1.732 4.456 558.082

Dataset B LSSVM 5.146 3.737 7.716 2541.741 7.666 5.574 11.391 5642.268 9.651 6.985 14.092 8941.690

ELM 5.080 3.616 7.452 2476.972 9.056 6.292 12.209 7872.723 10.747 7.476 14.643 11087.056

BPNN 5.050 3.589 7.414 2448.611 8.117 5.787 11.565 6325.667 10.600 7.619 14.962 10787.909

WNN 5.125 3.699 7.732 2521.278 7.569 5.655 11.641 5499.755 10.307 7.365 14.516 10198.928

DBN 4.660 3.445 7.254 2084.606 7.464 5.438 11.177 5347.996 9.619 6.998 14.261 8881.693

Proposed Model 0.812 0.602 1.325 63.276 1.726 1.219 2.693 285.496 2.554 1.664 3.538 626.111

The bold part is the evaluation criteria of the proposed model.
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combined forecasting model and the CEEMDAN-WT secondary
decomposition technique combined forecasting model were
compared to verify the effectiveness of the proposed model.
Figure 10 is the bar chart of the forecasting error of dataset A
and dataset B in experiment 3, and Table 5 shows the comparison
of the evaluation criteria results of experiment 3. In this
experiment, the Nstd value of CEEMDAN is 0.2, the NR value
is 500, and the maximum number of iterations is 5000. The
standard deviation of EEMD is 0.2 and the ensemble number
is set as 100. db5 is the parent wavelet of WPD. db5 is the wavelet
function of the wavelet transform.

For dataset A, in the 1-step to 3-step wind power forecasting,
the CEEMDAN-WT secondary decomposition technique
combined forecasting model proposed has the best forecasting
effect. In the 1-step forecasting, the MAPE values of EEMD,
CEEMDAN, WPD and WT were 3.527%, 2.933%, 2.283% and
2.431%, respectively. It can be seen that the forecasting effect of
WT was better in the 1-step forecasting. In the 2-step and 3-step
forecasting, CEEMDAN combined forecasting had better
forecasting performance, and its 2-step and 3-step MAPE
values were 4.653% and 5.236%, respectively.

For dataset B, according to the four evaluation criteria, it can be
concluded that the proposed combined forecasting model of
CEEMDAN-WT secondary decomposition technique still has the
best prediction effect among 1-step to 3-step forecasting, and the
MAPE values of 1-step, 2-step and 3-step are 1.325%%, 2.693% and
3.538% respectively. In addition, in 1-step and 2-step forecast, WT
combined forecasting has better prediction effect, and its MAPE value
was 1.662% and 3.542%, respectively; in 3-step forecasting,
CEEMDAN combined forecast has better prediction accuracy, and
its corresponding MAPE value is 4.442%.

4.4.2.1 Remark
According to the evaluation criteria in experiment 2, it was

obvious that for all dataset and forecasting steps, the combined
forecasting model of CEEMDAN-WT secondary decomposition
technique had the smallest RMSE, MAE and MAPE values.
Therefore, it can be concluded that the forecasting performance of
CEEMDAN-WT secondary decomposition technique combined
forecasting model is better than other data decomposition
combined forecasting models.

4.4.3 Experiment 3
Experiment 3 includes four forecasting models, including

CEEMDAN-GWO-LSSVM, CEEMDAN-GWO-ELM, CEEMDAN-
GWO-BPNN, and Proposed Model. Figure 11 is the chart of the
forecasting error of dataset A and dataset B in experiment 3, and
Table 6 shows the comparison of the evaluation criteria results of
experiment 3.

For dataset A, in the 1-step forecast, the RMSE, MAE, MAPE and
SSE of the proposed model are 0.991, 0.749, 1.972% and
94.331 respectively. The MAPE of the four forecasting models are
Proposed Model, CEEMDAN-GWO-ELM, CEEMDAN-GWO-
LSSVM and CEEMDAN-GWO-BPNN from low to high, and the
MAPE values are 1.972%, 2.984%, 2.989% and 3.353%, respectively.
TheMAPE values of proposed model in 2-step and 3-step forecasts are
3.630% and 4.456%, respectively. It can be seen that the prediction
accuracy of proposed model is the highest among the 1-step, 2-step
and 3-step forecasts.

For dataset B, the MAPE values of proposed model are 1.325%,
2.693% and 3.538% in 1-step, 2-step and 3-step predictions,
respectively. In the 3-step forecasting, the MAPE value of the
proposed model is 1.302%, 1.796% and 0.938% lower than that of
CEEMDAN-GWO-LSSVM, CEEMDAN-GWO-ELM and
CEEMDAN-GWO-BPNN respectively. The prediction accuracy of
proposed model is still better than the other three models.

4.4.3.1 Remark
As can be seen from the results of 1-step, 2-step and 3-step

forecasting obtained in Experiment 3, the evaluation criteria of the
proposed combined prediction model based on CEEMDAN and WT
secondary decomposition is significantly lower than that based on
CEEMDAN decomposition.

4.4.4 Experiment 4
Experiment 4 includes several classic machine learning prediction

models, including LSSVM, ELM, BPNN, WNN, DBN and Proposed
Model. Figure 12 shows the bar chart of prediction error of dataset A
and dataset B in experiment 4, and Table 7 shows the comparison of
the evaluation index results of experiment 4.

For dataset A, in all the forecasting steps, the evaluation criteria of
proposed model are significantly lower than that of other forecasting
models. In the 3-step forecasting, the MAPE values of LSSVM, ELM,
BPNN, WNN and DBN are 19.099%, 19.162%, 19.377%, 18.943% and
19.571%, respectively. In comparison, the MAPE value of the
Proposed Model is 4.456%, which is reduced by 14.643%, 14.706%,
14.921%, 14.487% and 15.115%, respectively.

For Dataset B, in all the prediction steps, based on the four
evaluation criteria used, Proposed Model is still significantly better
than other prediction models. The MAPE values of 1-step, 2-step and
3-step are 1.325%, 2.693% and 3.538%, respectively, which has the
smallest error compared with other prediction models. Taking the
three-step prediction result as an example, the map value of The
Proposed model decreased by 10.554%, 11.105%, 11.424%, 10.978%
and 10.723%, respectively, compared with LSSVM, ELM, BPNN,
WNN and DBN forecasting model.

4.4.4.1 Remark
In Experiment 4, the forecasting results of proposed model and

other three forecasting models are significantly different. It can be seen
that the combined forecasting model based on secondary
decomposition has better wind power forecasting effect than the
traditional single forecasting model.

5 Conclusion

Short-term wind power forecasting is of great significance to the
operation of power system. However, the intermittence, randomness and
high volatility of wind power limit the development of wind power.
Therefore, it is very necessary to develop an accurate wind power
forecasting model. In this study, a combined forecasting model based
on secondary decomposition data processing technology and parameter
optimization is proposed. Compared with other prediction models, the
main contributions of this model are as follows: 1) Three individual
prediction models are established, which are SDT-GWO-LSSVM,SDT-
GWO-ELM and SDT-GWO-BPNN respectively. The combination
forecasting model is established by using GWO algorithm to

Frontiers in Energy Research frontiersin.org16

Su et al. 10.3389/fenrg.2023.1078751

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1078751


determine the optimal weight coefficient. In experiment 1, the three single
forecasting models are compared with the proposed combination
forecasting model, and the results show that the prediction accuracy of
the proposed combination forecasting model is better than that of the
single forecasting model. 2) Comparing experiment 1 with experiment 3,
the prediction accuracy of SDT-GWO-LSSVM,SDT-GWO-ELM and
SDT-GWO-BPNN prediction model based on secondary
decomposition is improved compared with CEEMDAN-GWO-
LSSVM,CEEMDAN-GWO-ELM and CEEMDAN-GWO-BPNN
prediction model of single decomposition. It is verified that the use of
CEEMDAN andWT secondary decomposition technology to preprocess
wind power data reduces the difficulty of prediction, is conducive to better
extraction of the characteristics of wind power series, and has a better
prediction effect than the traditional single decomposition technology. 3)
In experiment 2, the combination forecasting models of other data
decomposition methods are compared, and the combination
forecasting model based on secondary decomposition proposed in this
paper has better prediction performance in data set An and data set B. this
shows that the CEEMDAN-WT secondary decomposition strategy is
better than other decomposition methods. 4) In experiment 4, the
combination forecasting model is compared with several classical
prediction models, from the point of view of evaluation criteria, the
combination forecasting model is obviously better than other prediction
models. Through the analysis of the results of experiment 1, experiment 2,
experiment 3 and experiment 4, the prediction error of the proposed
combination forecasting model is the smallest. Therefore, the proposed
combination model has a broad application prospect in short-term wind
power forecasting.

The next research work can be carried out from the following
aspects: 1) Adopt relevant strategies to improve the GWO to enhance
the optimization ability of the algorithm and improve the prediction
performance of the model. 2) More single forecasting models are
established to expand the model base, and the artificial intelligence
method is adopted to select the optimal single forecasting model to
construct the combined forecasting model to enhance the robustness
of the combined forecasting model. 3) Adopt a more efficient strategy
to select the optimal weight coefficient of the combination forecasting
model.
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