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Accurate quantitative diagnosis of free-conducting particle faults plays an
important role in improving the reliability of the gas insulated line (GIL) system.
However, the existing fault diagnosis methods cannot accurately identify the free-
conducting particle faults with different quantities and sizes. Motivated by this,
this paper proposes a novel fault diagnosis method based on vibration
signals, which integrates variational mode decomposition (VMD), self-adapting
whale optimization algorithm-multiscale permutation entropy (SAWOA-MPE),
and deep forest (DF). First, the raw vibration signals of free-conducting
particle faults are decomposed via VMD, and the decomposed signals are
reconstructed based on the correlation degree. Afterwards, SAWOA is
employed to optimize the critical parameters of MPE, and the optimized MPE
is further utilized to extract the fault features of the reconstructed signals.
Finally, the extracted feature vectors are trained and tested to construct a valid
DF classification model that identifies the free-conducting particle faults. The
experimental results indicate that the identification accuracy of the proposed
method can reach 99.5%. Moreover, comparative tests based on various feature
vector extractionmethods and classificationmodels further validate the superiority
of the proposed method.
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1 Introduction

Nowadays, with the increasing quantity of new energy vehicles and 5G base stations
(Guo et al., 2022; Li et al., 2022), the contradiction between the demand for power
grid expansion and the rising cost of urban land is intensified. GIL possesses the
characteristics of high operational stability, low environmental impact and large
transmission capacity, which make it as a reliable alternative to overhead lines and
electric cables wherever the geological environment is limited (Qiao et al., 2021; Li et al.,
2022). However, in a GIL system, free-conducting particles are inevitably generated during
the production, assembly, and operation of GIL, which is considered to be one of the direct
causes of GIL accidents (Huang et al., 2020; Wang et al., 2021). Numerous reports have
demonstrated that the free-conducting particles can significantly reduce the insulation
strength of GIL and eventually trigger GIL complete failures (Gao et al., 2020; Gao et al.,
2022). Therefore, reliable and accurate diagnosis of free-conducting particles is of great
importance for the safe operation of the GIL.

The study of fault characteristics is the basis of fault diagnosis methods. Wu et al. (2022)
analyzed the motion characteristics of different sizes of free-conducting particles in AC
GIL. Wiener et al. (2021) reported the behavior of free-moving particles under AC electric
field in different insulating gas mixtures. Ma et al. (2022) studied on movement and
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distribution characteristics of metal particle dust in DC GIL. These
studies clearly indicated that different sizes and quantities of
particles could have different adverse effects on GIL. However,
they have not come up with effective diagnosis methods for particle
faults.

Depending on the signal used, the existing free-conducting
particle diagnosis methods are broadly divided into two
categories, partial-discharge (PD) signal-based and ultrasonic
signal-based methods. Based on extensive experiments, Li et al.
(2020) analyzed the flashover characteristics of free-conductive
particles through PD signals to detect particle faults in 1,000 kV
GILs. Yao et al. (2018) designed nine discharge indexes using PD
signals to diagnose particle defect and other insulation defects.
Gao et al. (2018) presented the PD intrinsic characteristics,
including the time-domain and frequency-domain
characteristics, to classify particle defect and other typical
defects. Furthermore, based on ultrasonic signals, Zhang et al.
(2017) investigated the characteristics of particle faults through
ultrasonic signals and estimated the size of free-conducting
particles within GIL.

To sum up, two major drawbacks are embodied in the
aforementioned diagnosis methods. First, the above signals have
their own limitations in particle fault diagnosis. The PD generated
by particle fault is unstable and random, so the PD signals lack
sufficient sensitivity to particle fault (Luo et al., 2020; Li et al.,
2022). Also, due to the equipment structure and operating
environment of GIL, ultrasonic signals are very susceptible to
interference during propagation and thus cannot accurately
reflect the fault characteristics of free-conducting particles (Fei
et al., 2020; Ilkhechi et al., 2021). Second, different sizes and
quantities of particles indeed have different degrees of influence
on the GIL, but till now, to the author’s knowledge, there is a lack
of diagnosis methods that can accurately quantify different sizes
and quantities of particles. In order to fill these gaps, this paper
develops a vibration signal-based diagnosis method to exactly
identify different sizes and quantities of particles within GIL.
Several primary contributions are made:

(1) Vibration signals are introduced to free-conducting particle fault
diagnosis in this study. Until now, very few studies have been seen
on the use of vibration signals for particle fault diagnosis.
Compared with PD signals and ultrasonic signals, vibration
signals have some advantages: 1) vibration signals contain
richer fault information; 2) vibration signals due to the direct
collision are more sensitive to free-conducting particle fault; 3)
strong anti-interference ability.

(2) Different from the existing studies, this paper can achieve
an accurate diagnosis for different sizes and quantities of
particle faults. To fully capture fault characteristics of free-
conducting particles, an integrated diagnosis approach is
proposed, which incorporates four algorithms, variational
mode decomposition (VMD), multiscale permutation entropy
(MPE), self-adapting whale optimization algorithm (SAWOA),
and deep forest (DF).

(3) The SAWOA is employed to optimize the critical parameters of
MPE. In the MPE algorithms, unreasonable parameters setting
will make MPE unable to effectively characterize the feature
information of the signals (Jin et al., 2021; Wang et al., 2021).

SAWOA, as an improved algorithm of WOA, could exert the best
quantification performance of MPE.

The structure of this study is organized as follows. Section 2
introduces the principle of VMD, MPE, SAWOA and DF, and it also
describes the complete structure of the proposed method. Section 3
describes the experimental platform and the collection process of
experiment data. Section 4 presents the experimental results and
contrastive analysis. Section 5 concludes this study.

2 Related methods

2.1 Variational mode decomposition

In contrast to the popular signal-processing methods, such as
empirical mode decomposition (EMD) (Chen et al., 2022) and wavelet
transform (WT) (Wang et al., 2022), VMD can effectively alleviate the
phenomenon of model aliasing (Qi et al., 2022). It decomposes the
original signal to several mode components with a specific sparsity
bandwidth. The constrained variational model is

min
uk{ }, ωk{ }

∑K
k�1

zt δ t( ) + j/ πt( )( )uk t( )[ ]e−jωkt
���� ����22⎧⎨⎩ ⎫⎬⎭

s.t.∑K
k�1

uk � f t( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

where uk{ } � u1, . . . , uK{ } and ωk{ } � ω1, . . . ,ωK{ } indicate the
decomposed models and the corresponding center frequencies,
respectively; K is the number of the components; zt denotes the
gradient calculation; d(t) indicates a pulse function; f(t) is the raw signal.

Equally, The Lagrange multiplier λ(t) and quadratic penalty
parameter α has been applied to address reconstruction constraint
presented in Eq. 1, and the augmented Lagrange function can be
expressed as

L uk{ }, ωk{ }, λ( ) � α∑
k

zt δ t( ) + j/ πt( )( )uk t( )[ ]e−jωkt
���� ����22

+〈λ t( ), f t( ) −∑
k

uk t( )〉 + f t( ) −∑
k

uk t( )
���������

���������
2

2

(2)
In this paper, the saddle point is obtained via the alternate

direction method of multipliers (ADMM). The following VMD
iterative operation is as follows:

(1) Initialize û1k{ }, ω1
k{ }, λ̂1, n = 0

(2) Update û1k{ }, ω1
k{ } and λ̂

n+1
according to Eqs 3–5

ûn+1
k ω( ) �

f̂ ω( ) − ∑
i< k

ûn+1
i ω( ) − ∑

i≥ k
ûn
i ω( ) + λ̂

n
ω( )
2

1 + 2α ω − ωn
k( )2 (3)

ωn+1
k � ∫∞

0
ω ûn+1

k ω( )∣∣∣∣ ∣∣∣∣2dω
∫∞
0
ûn+1
k ω( )∣∣∣∣ ∣∣∣∣2dω (4)

λ̂
n+1

ω( ) � λ̂
n
ω( ) + β f̂ ω( ) −∑

k

un+1
k ω( )⎛⎝ ⎞⎠ (5)

(3) Repeat step (2) until Eq. 6 is satisfied:
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∑
k
ûn+1
k − ûn

k

���� ����22/ ûn
k

���� ����22 < ε (6)

where ε is the convergence stopped condition.

2.2 Multi-scale permutation entropy

As an effective fault information quantification method, MPE can
quantify the fault feature information of vibration signals (Liu et al.,
2021). It aims to measure the randommutation behavior of time series
at different scales, which is suitable for analyzing vibration signals
produced by the random collision of free-conducting particles. The
calculation process of MPE can be described as.

(1) For a given time series X � x(i), i � 1, 2,/, N{ }, the coarse-
grained time series y(s)

j can be obtained by using coarse
graining processing as follows

y s( )
j � 1

s
∑js

i� j−1( )s+1
xi, j � 1, 2,/ N/s[ ] (7)

where s and N are the scale factor and the length of time series,
respectively.

(2) Through reconstructing the phase space of coarse-grained time
series, the l-th reconstructed component can be obtained as
follows

Y s( )
l � y s( )

l , y s( )
l+τ ,/, y s( )

l+ m−1( )τ{ } (8)

where m is the embedding dimension; τ is the delay time.

(3) Considering the numerical relationship, the Y(s)
l is arranged in

ascending order as

y s( )
l+ l1−1( )τ ≤y

s( )
l+ l2−1( )τ ≤/≤y s( )

l+ lm−1( )τ (9)

Then the corresponding symbolic sequence S(r) � (j1, j2,/, jm)
can be obtained. There are m! possible permutations, and the
probability of each permutation Pr(r � 1, 2,/, R) is counted.

(4) The permutation entropy Hp(m) of each coarse-grained sequence
is normalized as follows

Hp m( ) � −∑R
r�1
Pr lnPr (10)

Hp � Hp m( )/ln m!( ) (11)

where Hp is the normalized permutation entropy.

2.3 Self-adapting whale optimization
algorithm

WOA is a new meta-heuristic optimization algorithm proposed
by Mirjalili et al. (2016). It can provide a good global search with
few adjustment parameters by imitating the bubble-net feeding
maneuver of humpback whales. The calculation process of this
method consists of two phases: the exploitation phase and the
exploration phase. However, this algorithm cannot adjust the
parameters according to position variation, causing great
randomness of results. Also, it often gets stuck in a local
optimum in the late iteration period (Jiang et al., 2020). Thus, a

FIGURE 1
Flowchart of the proposed SAWOA-MPE method.
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self-adapting strategy for weight coefficient identification and
search scheme (Kong et al., 2020) is proposed as follows:

(1) Self-adapting weight adjustment strategy: in the exploitation
phase, WOA assumes that the current best agent is the
position of the target prey or nearest to the optimum. Then
other search agents will gradually surround the best search
agent to update their positions. The encircling prey behavior is
represented as follows

M t + 1( ) � M* t( ) − A ·D (12)
where D � |C ·M*(t) −M(t)|; M(t) represents the current position
vector;M*(t) is the target prey; t is the current number of iterations; A
and C are coefficient vectors defined as A � 2a · r − a and C � 2 · r,
where the value of a is linearly decreased from 2 to 0, r is a random
vector in [0, 1].

To mimic the spiral movement of humpback whales, shrinking
encircling and spiraling upward model are designed. The spiral
equation used for updating position of the search agents can be
expressed as

M t + 1( ) � d t( ) · ebh · cos 2πh( ) +M* t( ) (13)
where d(t) � |M*(t) −M(t)|, b is a constant as the shape
parameter of the logarithmic spiral; h is a random number
between [−1, 1].

When |A|< 1, the algorithm assumed that the shrinking
encircling mechanism and the spiral behavior are performed
with the probability of 50%, respectively. In order to enhance

the optimization ability and convergence speed of WOA, the
weight coefficient ψ and the updated position of search agents
can be described as

ψ � φ1 · Xu
i −Xl

i( )/t + φ2 · Mw
i −Mb

i( ) (14)

M t + 1( ) � ψ ·M* t( ) − A ·D if p< 0.5
d · ebh · cos 2πh( ) + ψ ·M* t( ) if p≥ 0.5

{ (15)

where Xu
i and Xl

i are the upper and lower limit of the variable,
respectively;Mw

i is the current worst position vector;Mb
i is the current

best position vector; φ1 and φ2 are constants; p is a random number
in [0, 1].

The proposed strategy adjusts the weight coefficient from two
aspects. In early iteration period, φ1 · (Xu

i −Xl
i)/t is not affected by the

population distribution, which could obtain a bigger weight to avoid
the algorithm falling into small-scale search. It could enhance the local
searching ability of the algorithm. With the increasing of iteration
times, the effect of φ1 · (Xu

i −Xl
i)/t on the weight becomes smaller. If

the optimal solution is not obtained in late iteration period, φ2 ·
(Mw

i −Mb
i ) could improve convergence speed of the algorithm by

getting larger step size.

(2) Self-adapting search adjustment strategy: when |A|≥ 1, humpback
whales will search for prey in a random manner depending on the
position of each other. For avoiding getting stuck in a local
optimum, the probability threshold F is used to optimize the
randomly selected search scheme. The probability threshold is
expressed as

F �
�f − fb

∣∣∣∣ ∣∣∣∣
fw − fb

∣∣∣∣ ∣∣∣∣ (16)

where �f, fb and fw are the average fitness, the best fitness and worst
fitness of the current population, respectively.

Then, a random number f in [0,1] is compared with F. If f<F, the
position of randomly selected whale individual is updated according to
the Eq. 17 and the positions of other whale individuals remain
unchanged.

M t + 1( ) � Mrand − A ·D′ (17)
where Mrand is a randomly selected search agent; D′ � |C ·Mrand −
M(t)|.

Otherwise, the positions of other whale individuals are updated
according to the Eq. 18

FIGURE 2
Structure diagram of multi-grained scanning.

FIGURE 3
Structure diagram of cascade forest.
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Mrand � Mrmin + γ · Mrmax −Mrmin( ) (18)
where γ is a random number in [0,1]; Mrmax and Mrmin are the
maximum and the minimum value of Mrand, respectively.

The scheme could generate a set of random solutions in
global range with a high probability in the early iteration
period and enhance the global search capability of WOA. The
flowchart of the proposed SAWOA-MPE method is shown in
Figure 1.

2.4 Deep forest

Deep forest (DF), as a kind of deep-learning model, has an
excellent performance in processing small-scale datasets by
adjusting fewer hyper-parameters (Boualleg et al., 2019; Zhou
et al., 2019). Considering the paucity of particle fault data in
practical GIL engineering, this article introduces the DF
algorithm to realize the identification of particle faults of GIL.
The signal processing of DF consists of two parts: multi-grained
scanning and cascade forest. Inspired by the excellent performance
of convolutional and recurrent neural networks in handling feature
relationships, multi-grained scanning is applied to enhance the

classification performance of deep forest. Then, cascade forest, a
deep procedure, is used for signal classification.

(1) Color/Grayscale figures: multi-grained scanning is a crucial part
of deep forest, as shown in Figure 2. It uses sliding windows to
scan raw features, generating the corresponding feature vectors.
A sliding window of length q performs sampling on the
Q-dimensional raw vector. It is supposed that the sliding step
is g, and in total G (G=(Q-q)/g+1) feature vectors of q-dimension
are produced. Then, both random forest and completely random
forest are used to train these subsample vectors. New trained
features from the two forests are concatenated and imported to
the cascade forest for further processing.

(2) Cascade Forest: cascade forest processes features layer by layer,
which resembles the structure of DNNs. In the cascade forest,
each layer receives the feature information processed by the
previous layer, and then outputs the processed feature
information to the following layer. Notably, diversity is
encouraged through the utilization of two kinds of forests,
i.e., completely random forest and random forest. Multiple
random trees are included in both forests. The disparity
between the two forests lies in the strategy of selecting
features, where the random forest splits the feature with the

FIGURE 4
Flow chart of the proposed fault diagnosis approach.
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best Gini value, while the completely random forest arbitrarily
selects a feature to split.

For improving computational efficiency by decreasing the invalid
cascade layer, the coefficient of determination Z2 is used as the index of
cascade layer expansion, which is given as:

Z2 �
∑n
i�1

ẑi − �zi( )2

∑n
i�1

zi − �zi( )2
, i � 1, 2, . . . , k (19)

where zi is the true value; �zi is the average value of the sum of zi; ẑi is
the diagnosis value.

When Z2
i >Z2

i−1, the cascade layer continues to expand, otherwise
the expansion of cascade layer would be stopped. The structure of
cascade forest is shown in Figure 3.

2.5 The proposed fault diagnosis approach

By incorporating VMD, SAWOA-MPE and DF, a fault diagnosis
approach for free-conducting particles within GIL is proposed. The
flowchart is shown in Figure 4. The specific steps are summarized as
follows:

(1) The raw vibration signal is decomposed by VMD to obtain
multiple intrinsic mode functions (IMFs). The correlation
coefficient between each IMF and the raw vibration signal is
calculated, and the IMFs corresponding to high correlation
coefficients (correlation coefficients are larger than 0.2) are
selected to restructure the vibration signal.

(2) Within the selected search scopes of the critical parameters,
the optimal initial value of each parameter of the MPE is
determined by SAWOA. Using this optimized MPE, the
entropy of the reconstructed vibration signal can be
calculated and used as the feature vectors. Under different
working conditions, feature sample sets can be constructed
using these feature vectors.

(3) The feature sample sets are fed into the deep forest model to
achieve fault identification for free-conducting particles.

3 Experimental platform and data
acquisition

A high-voltage GIL experimental platform is established to
simulate the free-conducting particle faults and collect the

FIGURE 5
High-voltage GIL experimental platform.

TABLE 1 Descriptions of six working conditions.

Type Descriptions

A No free-conducting particle

B Single free-conducting particle (radius is 1.0 mm)

C Single free-conducting particle (radius is 1.5 mm)

D Two free-conducting particles (radius is 1.0 mm)

E Three free-conducting particles (radius is 1.0 mm)

F Five free-conducting particles (radius is 1.0 mm)
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vibration signals, as shown in Figure 5. This platform includes a
high-voltage AC power system (high-voltage transformer, protection
resistance, and coupling capacitance), a GIL experimental cavity, a
semi-closed experimental cavity, a high-speed camera, and a data
acquisition system. The simulation method of free-conducting
particle faults mainly consults the investigations of motion
analysis of free-conducting particles (Wiener et al., 2021; Li et al.,
2022).

The specific circumstances of the working conditions are
summarized in Table 1. When the AC voltage (50 kV) is given, the
free-conducting particles would jump by the electrical field force and
bounce irregularly between the shell and the high voltage electrode.
Figure 6 shows the movement of free-conducting particles captured by
a high-speed camera with LED light.

The data acquisition system in the experimental platform
consists of three vibration acceleration sensors (1A212E) and a
dynamic signal acquisition equipment (DH5922D), which can

effectively collect the corresponding vibration signals. The specific
parameters of the vibration acceleration sensor (1A212E) are listed
in Table 2.

In this study, the data acquisition system collects
1,080 vibration samples (180 samples per working condition),
whose sampling frequency is 20 kHz. Every sample contains
5,000 points. Figure 7 gives the vibration signals under six
working conditions. In the case of Type-A, i.e., No free-
conducting particle, only some background noises are captured
by the data acquisition system. The changes of the signal are
relatively smooth and the maximum amplitude is only 0.025 m/
s2. In other cases, the vibration signals yielded by the free-
conducting particles present disorder and complexity. Under the
same operating voltage, the collision frequency and amplitude will
vary according to the dimension and amount of the free-conducting
particles. The movement of free-conducting particles will cause
corona discharge and air gap discharge, which exacerbates the

FIGURE 6
Movement images of free-conducting particles.

FIGURE 7
Vibration signals under six working conditions.
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background noise of the vibration signals. In addition, due to the
random movement of free-conducting particles in the AC electric
field and the interaction force between the conducting particles, the
random mutation behavior of the corresponding time
series becomes more complex as the quantity of particles
increases. Thus, several similar time-frequency features appear
between the vibration signals of different free-conducting
particle faults, which may cause misleading results to the
diagnosis model.

4 Experimental results and analysis

4.1 Feature extraction

In the VMD algorithm, the penalty parameter α and the
decomposition scale K are two vital parameters, which may affect
the performance of VMD decomposition. With taking the signal-to-
noise ratio (SNR) into account, the penalty parameter α is chosen to be
2000 to ensure the detail retention ability and denoising ability of
VMD (Ren et al., 2019). The optimal K can retain the significant
feature information of raw signals to avoid over-decomposition in the
VMD process. Thus, in this article, the decomposition scale K is
determined by the center frequency method. The variation of center
frequency of different K values under Type-F working condition, for
instance, is shown in Table 3.

Table 3 exhibits that, when K = 9, some IMF components with
similar center frequency begin to appear, such as IMF1 to IMF6,
i.e., over-decomposition occurs in the process. Thus, K is
determined as eight for vibration signals of Type-F working
condition. The time-frequency diagram of IMF components is

shown in Figure 8. Further, the correlation coefficients are
calculated to determine which IMF contains rich fault
information. Once the correlation coefficient exceeds 0.2, the
corresponding IMFs are chosen to reconstruct vibration signals.

To improve the identification performance of free-conducting
particle faults, MPE is extracted to reflect the randomness and
mutability of vibration signals. According to the previous
researches, there are four parameters should be selected with
special care when calculating MPE: the scale factor s, embedding
dimension m, delay time τ, and the length of time series N (Jin et al.,
2021). It should be noted that setting the initial value of the
four parameters is the key to achieving optimal MPE. In the
SAWOA algorithm, the iterative ranges of the four parameters
are set as, s ∈ [2, 18], m ∈ [3, 7], τ ∈ [1, 5], N ∈ [2000, 5000].
Additionally, we set the number of search agents to 50, the
maximum number of iterations to 30, φ1 = 1e−4, φ2 = 1e−4.
Meanwhile, the original WOA algorithm is also applied to this
article. The parameters of MPE optimized by WOA and SAWOA
are illustrated in Table 4.

It can be seen from Table 4, for the same signals, the MPE
parameters optimized by the two algorithms are different.
Additionally, the optimal parameters of MPE under different
working conditions are also different. To intuitively show the
superiority of the SAWOA algorithm, the results of unoptimized
MPE (m = 6, s = 12, τ = 1, N = 5,000) (Zhao et al., 2020)
and optimized MPE (WOA-MPE and SAWOA-MPE) are
shown in Figure 9. The scale factors obtained by the two
optimization algorithms are chosen according to the minimum
value in Table 4.

It can be seen from Figure 9A, the entropy values of
unoptimized MPE under six working conditions are intertwined,
which can hardly distinguish the different states. Since WOA comes
with parameter optimization capability, the MPE curves under
different operating conditions in Figure 9B become more
independent, with only a few intersections. More particles can
cause more complicated motion behavior, which is likely to
produce similar fault characteristics. For this reason, the
vibration signals of working conditions E and F may have a
higher overlapped fault feature space. As shown in Figure 9B,
the MPE curves remain slightly intersected under the working
conditions E and F even after WOA-MPE processing. Therefore,
the entropy calculated byWOA-MPE still not be highly effective for
characterizing the feature information of different free-conducting

TABLE 2 Specific parameters of the sensor (1A212E).

Dynamic indicator Value

Axial sensitivity 49.92/mV/m/s2

Maximum lateral sensitivity <5%

Frequency response 0.2–4,000 Hz

Resolution 0.00005 g

Electromagnetic sensitivity 5 g/T

TABLE 3 Variation of center frequency for different K values.

K IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9

2 24 5,236

3 24 4,600 5,320

4 24 2,816 5,232 6,708

5 24 2,784 4,620 5,314 6,762

6 24 2,780 4,554 5,188 5,518 6,810

7 22 2,156 2,802 4,578 5,112 5,520 6,812

8 22 2,114 2,786 4,104 4,706 5,210 5,530 6,818

9 22 2,114 2,784 4,102 4,702 5,196 5,614 5,702 6,848
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particle faults. Meanwhile, Figure 9C shows that the optimization
effect of SAWOA-MPE is significantly better than that of the
first two methods. Almost all entropy variety curves are
entirely independent, especially the curves under working
conditions E and F are no longer interleaved. In addition, the
distances between entropy curves of different working conditions
increase obviously, which can verify the superiority of
SAWOA-MPE.

4.2 Fault diagnosis

(1) Parameters Selection of Deep Forest: in the experiment of this
article, as shown in Table 1, free-conducting particle faults within

GIL are divided into six categories. 180 groups of sample data are
collected for each fault category, and each group contains
5,000 sampling points. Then the feature vectors of each group
signal are extracted by the VMD-SAWOA-MEP method. The
total 1,080 groups of feature datasets are divided into the training
sample sets and testing sample sets according to the ratio of 4:1,
then fed into the DF model for fault identification.

Deep forest is composed of multi-grained scanning and cascade
forest. According to Table 4; Figure 9, eight-dimension feature
vectors are used as the raw input vectors for deep forest. Thus, in
the multi-grained scanning phase, the dimensions of sliding
windows are set as 2, 4, and 6 (i.e., Q/4, Q/2, 3Q/4, Q is the
dimension of feature vector), respectively. The feature vectors

FIGURE 8
Time-frequency diagram of IMF components.

TABLE 4 Optimized parameters of MPE.

Working condition WOA SAWOA

s m t N s m t N

Type-A 13 3 2 3,442 8 6 4 2,841

Type-B 11 7 4 2064 8 7 3 2,331

Type-C 9 6 3 2004 13 7 5 4,997

Type-D 14 6 3 2,568 8 7 4 2014

Type-E 8 3 3 2015 10 5 5 3,335

Type-F 11 5 5 2,480 14 5 3 3,167
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generated by sliding the window are input into a random forest and
a completely random forest, each of which contains 500 trees.

Similar to the related study (Boualleg et al., 2019), in the cascade
forest phase, random forests and completely random forests are used

to increase the balance between bias and variance in this study.
Notably, the number of forests and trees can significantly affect the
identification accuracy and processing time. However, in most
studies, the number of each type forest and trees are fixed at

FIGURE 9
MPE of the vibration signals under six working conditions.

FIGURE 10
Identification accuracy and processing time of diagnosis model.

TABLE 5 Parameters setting of deep forest.

Parameter Multi-grained scanning Cascade forest

Number of random forests 1 2

Number of completely random forests 1 2

Number of Trees 500 400

Sliding window size [Q/4], [Q/2], [3Q/4] —
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4 and 500, respectively (Zhou et al., 2019; Jia et al., 2021). In order to
achieve a balance between identification accuracy and processing
time, we vary the number of each type forest (No. F = 2 and No. F =
4) and the number of trees contained per forest (100–1,000 with step
size 100). By using five-fold cross validation, the identification
accuracy and the processing time of diagnosis model are shown
in Figure 10.

It can be seen from Figure 10, the highest identification
accuracy of the diagnosis models can reach 99.5%, when the
number of each type forest is set to 2 or 4. In addition, the
training process becomes slower as the number of trees
increases. Consequently, considering the identification accuracy
and the processing time, we set the number of each type forest to
2 and the number of trees contained per forest to 400. The number
of cascade levels is determined by the coefficient of
determination Z2. As shown in Figure 11, the coefficient of
determination Z2 presents an upward trend, i.e., the diagnosis
accuracy of the model is constantly improving. When the levels
of cascade forest increase to 5, the diagnosis accuracy
becomes stable, and the training process of the whole model is
stopped.

(2) Comparative Study: in this comparative study, we compare
the proposed method with some typical learning-based
classification models and fault features. Five-fold cross
validation is used to reduce the risk of overfitting and
handle the potential randomness in the diagnostic

validation stage. Several parameters of the DF model are
shown in Table 5.

Four metrics, including accuracy, recall, precision, and
F1 score, are used to evaluate the robustness and generalization
of different fault diagnosis methods. The diagnostic results of free-
conducting particle faults using MPE feature vectors are shown in
Figure 12; Table 6. It is observed that, due to the random
motion behavior of free-conducting particles in AC electric
field, when the unoptimized MPE is used as a feature vector, it
is difficult to distinguish the different free-conducting particle
faults. The classification accuracy drops as the number of
particles increases. It is because, in AC electric field, the
interaction force between the particles and the distortion degree
of electric field is intensified by an increasing number of particles,
which can cause more complicated particle motion behavior,
richer fault characteristic information, and higher overlapped
feature space. In contrast, the diagnosis model achieves higher
performance using optimized MPE, especially for multi-particle
faults. The detection accuracy using MPE, WOA-MPE and
SAWOA-MPE are respectively 76.8%, 98.6%, and 99.5%. It
should emphasize that, for the five free-conducting particles
fault (Type-F), the detection accuracy is 100% by using
SAWOA-MPE. Thus, the proposed SAWOA-MPE-DF model can
effectively tackle overlapped feature problems between the particle
faults.

In this comparative experiment, a comprehensive time-
frequency domain feature vector is used as a contrastive feature
vector, which contains nine time-domain features (root mean
square, absolute mean value, mean square, kurtosis, skewness,
waveform factor, peak factor, impulsion index, and margin index)
and five frequency-domain features (mean value, standard deviation,
root mean square, center frequency, and frequency kurtosis). Referring
to the related researches (Wiener et al., 2021; Wu et al., 2022), the
combination of particle collision frequency fc and maximum amplitude
Amax in the time-domain signal is used as another contrastive feature
vector. Then SAWOA-MPE is compared with the two categories
of feature vectors by using the DF diagnosis model. Meanwhile,
the proposed method is compared with the four other diagnosis
models, namely convolutional neural network (CNN), k-nearest
neighbors (KNN), support vector machine (SVM), and random forest
(RF), to verify its superiority. The comparison results of different
diagnosis methods are illustrated in Table 7.

It is observed that there are significant performance differences
among the feature vectors. Based on deep forest, SAWOA-MEP,
achieves the highest performance in classifying free-conducting

FIGURE 11
Relationship between Z2 and the number of cascade levels.

TABLE 6 Diagnostic performance of three methods.

Evaluation metrics MPE-DF WOA-MPE-DF SAWOA-MPE-DF

Accuracy 0.768 0.986 0.995

Recall 0.768 0.986 0.995

Precision 0.783 0.987 0.996

F1 score 0.775 0.986 0.995
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particle faults compared to other feature vectors: SAWOA-MEP
(99.5%), WOA-MPE (98.6%), MPE (76.8%), time-frequency
domain feature vector (70.1%), and the combination of particle
collision frequency and maximum amplitude (48.6%). The
maximum difference of classification accuracy between these
feature vectors is 50.9%. For using SAWOA-MPE, as the feature
vector, deep forest still gets the best performance compared to
CNN, and other typical machine learning-based methods, such as
KNN, SVM, and RF., By contrast, CNN, may lead to overfitting for
small datasets in the learning process, which can hardly process the
task with small-scale training data. In summary, the proposed

diagnosis method has a good application in the field of free-
conducting particle fault detection with small datasets.

5 Conclusion

To accurately identify the free-conducting particle faults with
different quantities and sizes, this paper proposes an effective
diagnosis method based on vibration signals and the VMD-
SAWOA-MEP-DF method. Firstly, the vibration signals are
restructured through the high correlation coefficient IMFs

FIGURE 12
Diagnostic results of free-conducting particle faults.

TABLE 7 Comparison results of different diagnosis methods.

Feature vector Classification model Accuracy Recall Precision F1 score

Time-frequency DF 0.701 0.701 0.717 0.709

[fc, Amax] DF 0.486 0.486 0.476 0.481

SAWOA-MPE CNN 0.894 0.894 0.891 0.892

SAWOA-MPE KNN 0.969 0.969 0.971 0.970

SAWOA-MPE SVM 0.981 0.981 0.981 0.981

SAWOA-MPE RF 0.966 0.966 0.966 0.966

SAWOA-MPE DF 0.995 0.995 0.996 0.995
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decomposed by VMD, which can remove some interference
frequency components. Then, SAWOA is employed to optimize
the critical parameters of MPE. Compared with WOA-MEP
and unoptimized MPE, SAWOA-MEP can extract more
discriminating fault features from the reconstructed vibration
signals. Moreover, Facing the problem of the small-scale fault
feature datasets, the DF shows a robust classification ability only
using a few hyper-parameters, and achieves better performances
than other learning-based classical methods, such as CNN, KNN,
SVM, and RF. Extensive experiments are conducted based on the
high-voltage GIL experimental platform, and the proposed
method is compared with the commonly used fault features and
different classification models. The experimental results show that
the identification accuracy of the proposed method for free-
conducting particle faults with different quantities and sizes
reaches 99.5%, meaning that the proposed method is pretty
effective and superior. At last, this method provides a new
reference for the fault diagnosis of free-conducting particles
within GIL.
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