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Smart grid technologies are based on the integration of the cyber network and the
power grid into a cyber-physical power system (CPPS). The increasing cyber-
physical interdependencies bring about tremendous opportunities for the
modeling, monitoring, control, and protection of power grids, but also create
new types of vulnerabilities and failure mechanisms threatening the reliability and
resiliency of system operation. A major concern regarding the interdependent
networks is the cascading failure (CF), where a small initial disturbance/failure in
the network results in a seemingly unexpected large-scale failure. Although there has
been a significant volume of recent work in the CF research of CPPS, a
comprehensive review remains unavailable. This article aims to fill the gap by
providing a systematic literature survey regarding the modeling, analysis, and
mitigation of CF in CPPS. The open research questions for further research are
also discussed. This article allows researchers to easily understand the state of the art
of CF research in CPPS and fosters future work required towards full resolutions to
the remaining questions and challenges.

KEYWORDS

cyber-physical system, power grid, communication network, cascading failure, resilience,
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1 Introduction

Smart grid technologies have been transforming power grid operation and control
paradigms in the recent decades. Beyond the physical power delivery infrastructure, a
smart grid is equipped with smart sensing devices, advanced communication network, and
powerful computing resources for monitoring operating conditions, transferring data, and
optimizing resource allocation for the grid, respectively. With the integration of the cyber
network, the power grid evolves into the so-called cyber-physical power system (CPPS).

Although the cyber-physical nature of modern power grids is advantageous in many ways, it
poses major challenges on the reliability and resiliency of system operation as well. In CPPS, the
cyber and the physical networks are highly interdependent. As a result, the grid becomes more
vulnerable and prone to natural disasters and man-made attacks. In the CPPS, a small
malfunction/failure in one network can affect the functionality of the other network, which
may in turn affect the former one; this vicious cycle may continue until a cascade of failures
occur with catastrophic consequences. For example, in September 2003, a severe blackout
occurred in Italy due to the initial disconnection of one power station from the grid, which then
led to the failure of several nodes in the cyber network. As a result, the grid could not be
effectively monitored by the cyber network, leading to the failure of additional power stations
and transmission lines (Buldyrev et al., 2010). Similarly, a cyber-attack on the Ukrainian power
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grid caused outages in 2015. The CF effects in the interdependent
CPPS accelerated failure propagation in the grid, resulting in a large-
scale blackout. A detailed survey on the CF in the power grid can be
found in (Haes Alhelou et al., 2019).

Over the past decades, extensive research has been conducted in
the field of cascading failure (CF) of the physical power grid (Guo
et al., 2017) (Nakarmi et al., 2020). However, those studies are not
enough to characterize the CF in CPPS because of the interdependency
between the cyber and physical networks. In recent years, several
failure propagation models have been proposed for analyzing the CF
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in interdependent networks. Some of the models incorporate the
individual network properties whereas others mainly focus on
unifying the mechanisms of failures in different networks
(Buldyrev et al.,, 2010) (Ji et al., 2016). As a typical example of CF
in interdependent networks, the study of CF in CPPS has emerged as
an important research topic, and many interesting works have been
published in the recent years. Despite a few related attempts, a
comprehensive review on the state-of-the-art techniques of CF
modeling, analysis, and mitigation in CPPS remains unavailable to
summarize and guide research in this field. Jufri et al. (2019) reviews
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Overall structure of the review paper.
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the existing research works on enhancing the resiliency of CPPS for
preventing and mitigating CF, but it does not discuss the modeling of
failure propagation in CPPS. The interdependencies and CF in general
cyber-physical systems (CPS) are reviewed in (Li et al., 2019), but it is
does not provide an in-depth coverage on the CPPS, especially with
unique physical properties of power grids compared with other
networks. Liu et al. (2021) provides a concise review of CF
modeling and analysis in future power grids from two major
perspectives: cyber network integration into the grid and high
penetration of power electronics, but it lacks a detailed CF
modeling and mitigation strategy. Guo et al. (2017) presents a
comprehensive survey on techniques for CF modeling and analysis
in physical power grids. Although it discussed the impact of the cyber
network, a systematic review from the cyber-physical perspective
remains missing.

To fill the aforementioned gap, a thorough review of CF modeling,
analysis, and mitigation in CPPS will be provided in this article. First,
background research regarding CF in power grid, communication
network, and general interdependent networks will be reviewed. Next,
the models of various CPPS components adopted by existing CF
analysis will be categorized. They include the models of power flow in
the power grid, the models of data flow (routing) in the
network, the models of cyber-physical
interdependencies, and the models of intra-network and inter-
This will be followed by a
categorization of the CF analysis methods, including simulation-

communication
network failure propagation.

based methods, percolation-theory-based methods, and Markov-
chain-based methods. Subsequently, mitigation strategies for CF in
CPPS is summarized, and the linkage between CF mitigation and the
concept of resilience is introduced. The paper concludes by extensive
discussions on the remaining challenges to be addressed and potential
future research directions. The overall structure of the paper is given in
Figure 1. Overall, the article will answer many of the common
questions regarding CF in CPPS and allow researchers to grasp a
holistic picture of the landscape of this increasingly popular research
field.

The rest of the paper is organized as follows. Section 2 will present
a brief overview of background research on CF analysis in siloed power
grid and communication network, and introduce general concepts and
theories of CF in interdependent networks; essential concepts and
definitions of CF in CPPS will be given in Sections 3, 4 describes in
detail the modeling techniques for various components in CPPS for
CF analysis; several categories of methodologies for CF analysis will be
described in Sections 5, 6 presents CF mitigation strategies as well as
their linkage to the concept of resilience; future research questions are
summarized and discussed in Section 7. Finally, Section 8 concludes
the paper.

2 Background research: Cascading
failure In power grids, communication
networks, and general interdependent
networks

CF is a prominent phenomenon in many complex infrastructures
such as power grid (Schifer et al,, 2018), water system (Sitzenfrei et al.,
2011), gas system (Bao et al., 2021), IoT network (Zhao and Xing,
2020), etc. The main reason of CF is that the components in a complex
network rely on and coordinate with each other for fulfilling the
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functionalities of the network. As a result, a malfunction/fault in one
component may affect the functionalities of other components and
make them fail. This process may start with an insignificant failure in
the network, but continue to fail many more components
progressively, and therefore is referred to as a cascading failure
process. At the end of a CF, a large portion of the network may
collapse, and the remaining portion may be unable to meet the
demand of the operators and the users. The main challenge of CF
research is to understand the mechanisms of CF, identify possible
failure paths, recognize early failures, and take precautions to avoid a
cascading effect. In recent years, the difficulty of modeling and
analyzing CF has been exacerbated by the interdependency
between multiple complex networks. In view of the challenges,
many approaches have been developed for modeling, analysis, and
mitigation of the CF of both individual and interdependent networks.
While this review primarily focuses on CF in CPPS, this section will
first provide a brief description of the CF process in siloed power grid
and communication network; the general concepts of CF in
interdependent networks will also be introduced.

2.1 Cascading failure in power grid

In a power grid, CF can be viewed as a series of outages followed
by an initial outage of a component. It can be analyzed with power
flow models based on physical laws (e.g., Kirchhoff’'s Law and
Ohm’s Law) and the capacity constraint of the grid components. In
a power grid, electric power is transferred from generators to loads
via transmission/distribution lines, i.e., branches. In this process,
the power is distributed among different branches according to the
power flow model. However, when disturbances occur and cause a
branch failure, the power flow will be redistributed among the
remaining active branches to create a new equilibrium. In this
process, the redistributed power may overload (i.e., exceed the flow
capacity of) some active branches and/or cause under- or
overvoltage at some buses, resulting in further failures in
sequence due to the triggering of overcurrent or under- or
overvoltage relays (Simpson-Porco et al, 2016). Additionally,
due to the increased penetration of renewable energy resources
(RES), power grids experience low-inertia conditions prone to
frequency instability and CF in the system (Jalali et al., 2019). A
number of CF events in power grids have been reported over the
past few decades. They were initially triggered by a wide variety of
mechanisms such as line overloading, device malfunction, and lack
of coordination between operation and planning (Haes Alhelou
etal, 2019). As the causes and propagations of CF are complex and
diverse, many models and methodologies are present to study the
CF in power grids. Among them, two main categories will be briefly
reviewed here: simplified statistical models, and detailed physics-
based models.

The simplified statistical models render a fast and approximate
overview of probable CF paths neglecting the detailed physical
properties of a grid. As a result, these statistical models can
simulate CF in a large-scale grid with tractable complexity. For
example, the CASCADE model studies the loading effect of grid
components on CF with several simplified assumptions of power
grid properties (Dobson et al., 2004). CASCADE simulates CF with
several iterative failure stages. The model initializes a disturbance and
checks the loading conditions of all the grid components. A failure is

frontiersin.org


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1095303

Islam et al.

triggered if an overloaded component exists, and the loads of the failed
components are equally distributed among all other components.
Then the next stage of failures starts by checking and loading
conditions of all the remaining components again. This model
shows that the distribution of the failed components follows a
quasi-multinomial joint distribution and presents an analytical
solution to calculation of the probability distribution of the number
of failed components due to an initial failure. Similar to the CASCADE
model, the Branching Process (BP) model provides an analytical
solution to the calculation of the probability distribution of the
number of line outages and amount of load shedding due to CF by
estimating the influence of a failed component on the following stage
of failures using stochastic processes (Qi et al, 2013). The CF
simulation using the BP model is shown to yield fair approximate
results with respect to those achieved using more complex models, but
with significantly lower computational complexity.

Obviously, the main limitation of the simplified statistical models
is inaccuracy. In contrast, the detailed physics-based models study the
CF incorporating the physical properties of power grids. Within this
category there are two subcategories of models: static and dynamic. In
static models, the power grid dynamics are neglected, and the steady-
state operational condition is typically analyzed using DC power flow
models. For example, the ORNL-PSERC-Alaska (OPA) model
considers the standard DC power flow and solves an integer linear
programming (ILP) problem for generation and load redispatch after
line outages due to overloading (Carreras et al., 2003). This model runs
iteratively to find failed lines based on a probabilistic model with
respect to overloading conditions. The static models with DC power
flows are adopted in many CF analyses (Soltan et al.,, 2017) (Yan et al.,
2015) and mitigation strategies (Das et al., 2022). In dynamic models,
the dynamic behavior of the grid is captured throughout the CF
process. For achieving compatible accuracy levels, AC power flow
models are often adopted (Noebels et al., 2022). For example, the
Cascading Outage Simulator with Multiprocess Integration
Capabilities (COSMIC) model uses differential equations to
represent the dynamics of generators and loads (Song et al., 2016).
This model helps understand the CF caused by dynamic grid events
such as switching and high volumes of load or generator
disconnection or reconnection. Both static and dynamic models
have benefits and drawbacks. The static models are relatively faster
than the dynamic models. However, in practice, the power grid
responds to an initial outage with real-time control and protection
mechanisms, which may result in a different steady state than the
predicted one by static models. Therefore, dynamic models can
capture more failure mechanisms and predict the propagation of
CF more precisely.

Other than the above-described methods, there are several models
to study the CF in power grids, which can be categorized based on their
properties, such as topological models, modified topological models,
stochastic simulation models, etc. Some of the specific examples from
all the above models are the multi-timescale quasi-dynamic model
(Yao et al., 2016), the improved OPA model (Mei et al., 2009), and the
Markov transition model (Wang et al., 2012) (Rahnamay-Naeini et al.,
2014). Recently, machine learning-based data-driven models have also
been used to predict the CF propagation path in the power grid
(Shuvro et al., 2019) (Pi et al., 2018). Detailed information about these
methods can be found in the existing review papers (Guo et al., 2017)
(Abedi et al., 2019) (VaimanBellChenChowdhuryDobsonHines et al.,
2012) and will not be elaborated here.
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2.2 Cascading failure in communication
network

Communication network has become an inseparable part of
modern societies. Each individual infrastructure, e.g., power grid,
water system, etc., is equipped with a communication network to
allow for situational awareness and control. However, the
communication network itself can suffer from a CF, deteriorating
the performance of the infrastructures dependent on it
Communication networks transfer data among different devices
(data sources and sinks) via links and routers. Routers find paths
and forward data via links between sources and destinations. Links
and routers have limited data transfer capacities, and they may
malfunction when the volume of data flow surpasses their
capacities. Because of the initial failure of a few components (links,
routers), data flows could be redistributed to the other active
components, leading to further failures. This process is repeated
until a significant portion of the network fails. In this subsection,
the methodologies for CF analysis in communication networks will be
introduced first, followed by various network examples such as
wireless sensor networks (WSN) and the internet of things (IoT).

The CF models for communication networks can be categorized
into deterministic models and stochastic models (Lehmann and
Bernasconi, 2010). In deterministic models, the data load of the
failed components is distributed to other active components with
some deterministic rules. For instance, (Wang and Chen, 2008)
provides a load redistribution model in which the data load of a
failed edge is redistributed to its neighboring edges based on their
weights (i.e., flow capacities). Based on this model, the authors
investigate the robustness of weighted networks against cascading
failure and identify the appropriate weights that provide the best
robustness in typical communication network models, including
small-world and scale-free networks. Wang et al. (2020a), on the
other hand, employs a global load redistribution model in which the
load in the network is set to the node’s betweenness centrality after an
initial failure. The authors use this model to identify the network’s
critical nodes, the failure of which accelerates CF events in the
network. However, since the deterministic load redistribution only
approximates the load in the network for triggering the next stage of
failure due to overload, it may not fully reflect the complete or most
probable set of failures that may occur. Unlike deterministic models,
stochastic models adopt a more comprehensive analytical approach.
For example, (Ren et al., 2018) proposes a conditional Markov state
transition model to describe the failure propagation in a network due
to node overloading and also shows how the failures are temporally
dependent.

Although the general deterministic and stochastic models largely
reflect the CF behavior of communication networks, a few adjustments
are required to describe the CF in WSN and IoT networks since they
have some distinct features and utilize low-capacity components. As
the use of WSN and IoT networks have increased significantly in
recent years, the study of CF in these networks receives special
attention in the literature (Fu et al, 2020) (Xing, 2021). To study
the CFin WSN, (Hu et al., 2015) sets the node traffic to its betweenness
centrality and considers traffic overload and invalid connectivity of the
nodes as the causes of failures. With these assumptions, (Hu et al.,
2015) describes a CF model for WSN considering the dynamic load
change in the network. Fu et al. (2021) considers both node and link
capacities in CF analysis and assumes that a node can self-recover after

frontiersin.org


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1095303

Islam et al.

a certain time as may occur in WSN. With the rising concept of
internet of thing (IoT) many devices are being connected, and it
becomes necessary to study the CF of IoT infrastructures. A detailed
review on CF analysis and reliability for IoT infrastructures is provided
for a wide range of IoT applications in (Xing, 2021). Fu and Yang
(2021) considers the layered architecture and realistic characteristics
of IoT, and presents a CF model driven by overload in relay nodes,
base stations, and communication links.

2.3 Cascading failure in general
interdependent networks

From the discussion of CF in siloed power grids and
communication networks in the previous two subsections, it is seen
that the network components may fail due to the redistribution of
loads of the failed component within the same network. In the case of
interdependent networks, the process of CF could be even more
complicated. In addition to intra-network failure propagation,
inter-network failure propagation may also occur. Unlike intra-
network failure propagation, load redistribution does not take place
across networks; rather, inter-network failure propagations are caused
by the dependence of components in one network on the
functionalities of the failed components in the other network. Due
to the mutual dependency between the two networks, failures may
propagate back and forth between networks and lead to a multi-
network CF. There are several general methodologies for
characterizing CF propagation in interdependent networks. In this
subsection, we will review some of those methods and mention a few
specific examples of CF in interdependent networks.

For the general modeling and analysis of CF in interdependent
networks, it is challenging to incorporate the detailed physical
properties of each network into the study. Rather, generic probabilistic
analysis is usually adopted. Some of the methods for interdependent CF
analysis are described below. i) Percolation-theory-based methods. Any
complex network can be represented as a graph, where the nodes
represent the components of the network and the edges represent the
connectivity among the components. Two complex networks can be
coupled to create interdependent networks by considering dependency
among the nodes of the two networks. As the percolation theory provide a
probabilistic framework for capturing the interaction among nodes and
links in graphs, it is used for the CF analysis in many interdependent
networks (Buldyrev et al., 2010). ii) Markov-chain-based methods. The
CF is a sequence of failure events occurring one after another, which can
be analyzed using Markov chain models with the assumption that the
current failure events only depends on the failure events that immediately
preceed them (Rahnamay-Naeini and Hayat, 2016); iii) Branching-
process-based methods. The branching process can be used for CF
analysis assuming that each failure component in the current stage
will affect the next-stage failures with a probability (Qi et al, 2017).
iv) Machine-learning-based methods. With the advancement of artificial
intelligence, there are increasing attempts of using data-driven methods to
analyze CF in interdependent networks (Maghsoodi and Khansari, 2021).
It has the prerequisite of a large training dataset for learning the cascading
failure paths within and cross the networks.

CF can occur in many real-world cases of interdependent networks
where two or multiple networks depend on each other for proper
operation. For electric power grid, the counter dependent network can
vary from water supply systems to natural gas networks and others. In
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interdependent electric power-water infrastructures, pump stations,
control units, and storage tanks in water network are dependent on
power supply from nearby electric substations (Zhang et al., 2016) (Wang
et al,, 2022). Meanwhile, several types of power plants, such as coal-fired
power plants and nuclear power plants, depend on water supply for
proper operation. Similarly, in electric power-gas infrastructures, the two
networks are coupled through electricity-driven gas compressors and gas-
fired electricity generators (Bao et al,, 2020). As a result, a malfunction in
one network may affects the production process of the counter one. A
catastrophic CF in power-gas infrastructures occurred in Texas,
United States in February 2021, affecting millions of people and
causing hundreds of billions of capital losses (Extreme winter weather
causes u.S. Blackouts, 2022) (Busby et al., 2021). Aside from the electric
power grid, there are many other interconnected networks of significance.
For instance, a syncretic railway network (SRN) comprising regional
railway network and urban rail transit network is studied in (Liu et al,
2022a). A CF analysis is performed for interdependent road-channel
network to assess urban flood propagation on the road network due to
channel failure (overflow), where the channel is responsible for dumping
the road’s rainfall runoff (Dong et al., 2020).

3 Cascading failure in CPPS

The previous section reviews the background research of CF in
power grids and communication networks, and introduces the general
concept of CF in interdependent networks. This section will now
concentrate on discussing the CF in CPPS. The CPPS model will be
defined using graph theory and the CF propagation paths will be
discussed in detail.

3.1 CPPS model

An abstract diagram of an interdependent CPPS is presented in
Figure 2A. The power grid and the cyber network are represented by two
separate graphs each having nodes and edges. Note that the
communication network comprises networking devices (e.g., routers)
and communication media, whereas the cyber network comprises
communication networks, sensors, and controllers. The nodes in the
power grid represent the buses at substations and the edges represent
branches such as transmission/distribution lines and transformers. The
nodes in the power grid are heterogeneous and include generation buses,
transmission/distribution buses, and load buses. Similarly, the nodes in the
cyber network represent control centers, controllers, sensors, and routers,
and the edges represent the data transfer media, i.e., communication links.
The terminal devices (sensors/controllers) are installed at different buses
in the power grid, which monitor and control the power grid and
communicate with the control center via intermediate routers in the
cyber network. In Figure 2A, terminal devices are shown in the cyber
network and are coupled with routers to enable communication. The
interdependence between the two networks is shown in dashed lines. Both
unidirectional and bidirectional dependencies are shown, where the
terminal devices of the cyber network and the nodes of the power grid
have bidirectional dependencies, and routers have unidirectional
dependencies on the power grid (Abdelmalak et al,, 2022). The reason
for this consideration is that the power grid supplies power to both
terminal devices and routers, whereas only the terminal devices monitor
and control the power nodes.
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Failure propagation in interdependent CPPS. (A) Example CPPS model with interdependency. (B) Failure propagation in the power grid due to an initial
failure in the power grid, i.e., intra-domain failure in the power grid. (C) Power-dependent cyber network failure, i.e., inter-domain failure in the cyber network.
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3.2 Failure propagation in interdependent
CPPS

The power grid depends on the cyber network for proper
operation and control, whereas the cyber network depends on the
power grid for energy supply. Sensors monitor the operating
conditions of the power grid and report measurements to the
control centers using available routes in the cyber network. After

Frontiers in Energy Research

analyzing the received data, the control centers send control
commands to controllers via available routes. When power grid
nodes cannot be monitored and controlled due to the failures of
cyber nodes, it is referred to as inter-domain failure in the power grid
(Zhang and Yagan, 2020). Similarly, when a cyber node shuts down
because it does not receive energy supply from the power grid, it is
referred to as inter-domain failure in the cyber network (Zhang and
Yagan, 2020). Additionally, after a failure in the power grid, the load of
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TABLE 1 Summary of CPPS modeling.

CPPS modeling

Power flow modeling in power grid

Types

Deterministic DC/AC power
flow-based model

Ref

Liu et al., 2022a; Dong et al., 2020; Abdelmalak et al.,
(2022); Zhang and Yagan, (2020); Cetinay et al., (2018)

10.3389/fenrg.2023.1095303

Comments

Utilize power flow models based on physical
laws e.g., Kirchhoff’s law and Ohm’s law

Deterministic simplified

Busby et al. (2021)

Utilize topology information to approximate

model

Probabilistic model Li et al. (2018a)

power flow

Incorporate stochasticity into load flow

Intra-domain failure modeling in Deterministic model

power grid

Cetinay et al., (2018); Pan et al., 2020

Bus fails due to over/under voltage and branch
fails due to overcurrent flow

Stochastic model

Gao et al, (2021); Prusty and Jena, (2017)

Bus/branch fails probabilistically as per the
uncertainty of load flows

Global information-oriented
model

Data flow in communication
network

Pan et al. (2020); Prusty and Jena. (2017); Li et al. (2021)

Utilize global topology information for routing

Decentralized information-
oriented model

Cetinay et al. (2018); Gao et al. (2020)

Utilize only neighboring node information for
routing

Intra-domain failure modeling in Data flow based model

communication network
Simplified model
Unidirectional

Interdependencies

Bidirectional i) One-to-One

ii) One-to-multiple

iii) Multiple-to-multiple

Gao et al. (2021); Li et al. (2021)

Busby et al. (2021)

Cetinay et al. (2018)

Busby et al. (2021); Cordova-Garcia et al. (2019); Sabbah
et al. (2014); Han et al. (2018); Cai et al. (2016)

Node/link fails due to over data flow or RTT
threshold exceedance

Node fails due to its isolation from connected
giants

Either power grid or cyber network depends
on the other

Power grid and cyber network depend on each
other

Interdomain failure propagation Shao et al. (2011)

modeling

Power-to-cyber

Power grid failure propagates into cyber
network

Cyber-to-power
Gao et al. (2020)

Power-to-cyber and Cyber-
to-power

the failed power transfer path is redistributed to the other active paths
leading to further overloading and power outages, which is referred to
as intra-domain failure in the power grid. Similarly, a failure in the
cyber network may result in additional failures in the network, which
is referred to as intra-domain failure in the cyber network. Although
the scale of the initial failures may be small, the process progressively
triggers a cascade of failures with catastrophic consequences due to
both intra-domain and inter-domain failure propagations. The
mechanisms of failure propagations are explained with an example
shown in Figures 2B-E. For demonstration, it is considered that a fault
occurs to a generator node in the power grid. Due to this fault, the
generator cannot supply power to two of its neighboring nodes which
leads to load shedding (Figure 2B). As the loads at two power nodes fail
due to the failure in the power grid, it is an intra-domain failure in the
power grid. Subsequently, the counter dependent nodes in the cyber
network fail as they loss their power supply, which is referred to as the
inter-domain failure in the cyber network (Figure 2C). Then, the failure
propagates within the cyber network because some of the cyber nodes
become disconnected from the network, which is an intra-domain
failure in the cyber network (Figure 2D). This triggers the failure of
generators at power nodes due to the lack of monitoring and control
from the failed cyber nodes, which is the inter-domain failure in the
power grid (Figure 2E). This process continues until the system
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Pan et al. (2020); Prusty and Jena. (2017); Li et al. (2021);

Chen et al. (2018)

07

Cyber network failure propagates into power
grid

Failures in either network propagate into the
other

stabilizes again, ie., when no new failure is triggered, and the
system ends up operating in a significantly degraded state.

4 Cascading failure modeling in CPPS

With the advent of the CPPS, the study of dynamic interactions
between the power grid and the cyber network has drawn the attention
of research communities. With proper modeling, the characteristics of
the interdependent systems can be captured, and further analysis can
be performed to identify the vulnerabilities and reduce the
catastrophic consequences of CFs. There are several important
components to be considered in the CF modeling in CPPS. In this
section, we will study the CPPS modeling techniques adopted by
recent literature on CF analysis. These techniques are summarized in
Table 1.

4.1 Modeling of the power flow in power grid
When a power branch/bus fails, the topology of the power grid

changes, and the load of the failed branch/bus redistributes to the
active branches/buses following the power flow model based on
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physical laws (e.g., Kirchhoff’s Law and Ohm’s Law in AC circuits) and
control laws (e.g., automatic generation control and economic
dispatch). After the occurrence of the faults, the updated operating
condition associated with the new topology can be obtained by power
flow analysis. For analyzing CF, power flow models with varying
accuracy and computational efficiency are considered. They can be
broadly categorized as DC power flow models and AC power flow
models (Cetinay et al., 2018). The DC models can approximate the
power flow in the system with lower computational complexity when
the voltage magnitude differences or phase angle differences along the
branches are small. However, it leads to approximation errors in
power flow solutions especially when there are large differences of
voltage magnitudes or phase angles between two terminal buses of a
branch, which typically happens under heavy loading conditions (Li
et al., 2018a). Some methods have considered DC optimal power flow
(DCOPF) to obtain the maximum benefits from the DC power flow
optimal

analysis, as power

computational intensive (Chen et al,, 2019a) (Pan et al, 2020). To

flow problems are inherently
obtain the accurate operating conditions of the system, AC power flow
models are more effective but at the expense of higher computational
complexity (Li et al., 2018a) (Gao et al., 2021). Instead of using the DC
or AC models, it is assumed in (Zhang and Yagan, 2020) that the load
of the failed branch is redistributed globally and equally among the
active lines arguing that it is a reasonable assumption under the DC
power flow model and also follows the long-range nature of the
Kirchhoff’'s Laws. With the assumptions, (Zhang and Yagan, 2020)
shows that the obtained simulation results match the analytical ones
derived in the article. (Prusty and Jena, 2017) thoroughly reviews the
probabilistic load flow models, uncertainty characterizations, and
uncertainty handling methods and proposes an analytical model
for estimating the probabilistic load flow results while accounting
for the photovoltaic generation and load demand uncertainties.

4.2 Modeling of intra-domain failure
propagation in power grid

When the current of a branch exceeds its power flow capacity, the
branch will fail if no control action is taken within a certain time limit
because of the activation of relay protection (Kilickiran et al., 2018).
After the initial failure, the load of the failed branch will be
redistributed to the other active branches, which may overload the
active branches, resulting in additional failures. The modeling of
failure propagation within a power grid can be classified into two
categories
deterministic models, a branch fails instantly when there is an

namely deterministic and stochastic models. In
overcurrent flowing along the branch (Li et al, 2021), and a bus
fails when the voltage of the bus exceeds the allowable thresholds (Gao
et al., 2021). However, (Gao et al,, 2020) argues that as the power grid
is equipped with an increasing number of renewable resources and
controllable loads, the power flow will become more uncertain, and the
deterministic model cannot generate the accurate behaviors of failures.
With this argument, the authors propose a stochastic failure model for
estimating the failed components in the grid. In this model, it is
assumed that every electrical component can fail with a certain
probability at any minuscule time and a model is developed for
determining the number of failed components at any given time.
Besides failures due to overcurrents along branches and over/
undervoltages at buses, there are other types of failures as such as
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over-heating failure and hidden failure (e.g., malfunction of protective
devices) (Li et al., 2021). According to (Cordova-Garcia et al,, 2019),
the use of automatic active control strategies may lead to more
frequent reconfiguration of the grid in order to maximize grid
operating conditions, which may induce overheating in the grid
and increase intra-domain failure propagation.

4.3 Modeling of data flow (routing) in
communication network

The proper modeling of routing is one of the important
requirements for modeling, analysis, and mitigation of CF in CPPS.
In CPPS, as fast and secure communication is required between the
terminal devices (sensors/controllers) installed at power grid nodes
and the control center, different routing algorithms are presented in
the literature to fulfill the requirements (Sabbah et al., 2014). The
routing algorithms find the minimum-cost paths between sources and
destinations. The algorithms can use either global information or
decentralized information about the network to generate data transfer
paths. In the case of global information-oriented algorithms, the
routers or a central controller of software-defined network (SDN)
gathers and stores the global topology information for determining the
optimal paths of data flows; whereas in decentralized information-
oriented algorithms, each router/node finds paths based on the
information obtained from its neighboring nodes. Han et al. (2018)
determines the routing paths centrally by applying the Flued-Marshal
algorithm for finding the overall weighted shortest path between a
terminal device and the control center, where the weights are the
queue length of packets along the path. Li et al. (2021) uses the
publish-subscribe network (PSN) strategy to create a multicast tree
between the control center and the terminal devices fulfilling the delay
and the bandwidth requirements. The global information is also used
in (Cordova-Garcia et al,, 2019) to minimize the packet transmission
delay, propagation delay, and the expectation of service delay along the
path. Gao et al. (2021) considers decentralized information to
construct the least-score paths from the source to the destination,
where the scores are the weighted sum of the queue length of packets at
the neighboring nodes of the source and the shortest hop count from
the neighboring nodes to the destination. Instead of using the direct
score, (Cai et al., 2016) uses probabilistic score values for selecting the
routes.

4.4 Modeling of intra-domain failure
propagation in communication network

When a fault occurs in the communication network, it may
propagate within the network and affect its overall performance.
The initial failure can occur due to internal faults of the devices,
external disasters, or cyber-attacks. With the initial fault in the
network, the data flows of the faulty nodes reroute to the other
active nodes, which may increase congestion in the active nodes
and cause overloading. As a result, the active nodes may
malfunction and drop data packets (Gao et al., 2020). This process
may continue and propagate to the entire network until additional
measures are taken. Han et al. (2018) consider the concept of the
round-trip time (RTT) in the data transfer and assume that the
network malfunctions when the data cannot be transferred within
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the RTT threshold. The intra-domain failure in the network is
simplified in (Zhang and Yagan, 2020) with the assumption that a
node remains functioning as long as it belongs to the largest connected
components (giants) in the network.

4.5 Modeling of interdependencies

In CPPS, the power grid and the cyber network are coupled
together; where the power grid depends on the cyber network for
its monitoring and control and the cyber network depends on the
power grid for the energy supply. In literature, different types of
dependency are considered between the two networks namely
unidirectional and bidirectional interdependency. Gao et al. (2021)
consider the unidirectional interdependency between the power grid
and the cyber network, where only the power grid depends on the
cyber network for its operation and control, but the cyber network is
independent of the grid, arguing that the network has backup power
sources installed. In the case of bidirectional interdependency, the
following interdependencies are considered for analyzing the
robustness of CPPS. I) One-to-one interdependency: each grid
node is related to each cyber node (Zhang and Yagan, 2020); ii)
one-to-multiple interdependency: each grid node is related to multiple
cyber nodes or vice versa (e.g., redundant control) (Chen et al., 2018);
iii) multiple-to-multiple interdependency: multiple nodes of one
network are related to multiple nodes of another network (Shao
et al., 2011). There are some other interdependencies within the
above three categories such as topological-characteristic-based
interdependency and random interdependency. In topological-
characteristic-based  interdependent models, an assortativity
coefficient is defined to find the nodes with similar topological
characteristics (e.g., degree, betweenness) to couple them together
(Liu et al.,, 2022b). To compare the performance of different types of
2012) defines a

interdependent

interdependencies, (Yagan et al, random

interdependency, where the networks are
partitioned into multiple subgroups with an equal number of nodes
for each subgroup. Then, each node of an interdependent subgroup is
correlated with j (j is within the range of 0 to the number of nodes in
the subgroup) other nodes with a probability. Abdelmalak et al. (2022)
describes the modeling techniques for CPPS interdependence in detail
considering the power grid as a distributed and autonomous system. It
provides evaluation criteria for interdependence modeling, and
describes potential applications of CPPS interdependence modeling
techniques. Clearly, cascading failure analysis is one of the domains for

application.

4.6 Modeling of inter-domain failure in power
grid and communication network

The inter-domain failure occurs when the failure/malfunction of
one network affects the other network due to the interdependent
nature of CPPS. A common practice regarding inter-domain failure
research is that the cyber node fails instantly when the corresponding
grid node fails and vice versa. However, a few studies assume that the
power or cyber node does not necessarily fail instantly due to the
failure of a node in the counter system but imposes a probability of
failure (Qu et al., 2019). Gao et al. (2021) define a threshold of average
transmission time in the cyber network and assumes that when the
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data cannot be transferred within the threshold, the control center
would lose the control of the grid nodes with a certain probability.
Cordova-Garcia et al. (2019) argue that the control-command transfer
from the control center to the grid nodes is asynchronous, i.e., time-
varying, which can escalate further failures in the power grid. To
reduce the effect of asynchronous control, the authors propose a load-
shedding scheme to shed large loads at those nodes, where the control
action can be performed with low delay. Cai et al. (2016) use the
overcurrent relay operating time as the threshold and assume that the
overloaded grid branch will trip when the data-exchanging model
requires more time steps for the data transfer than the threshold. They
also assume that due to the failure of a grid node, the dependent node
in the cyber network will fail with a low probability. Li et al. (2021) and
Han et al. (2018) use the RTT as a threshold to identify the failed grid
nodes when the data transfer delay exceeds the threshold. Although
most of the above models consider cyber failure propagation to the
power grid, there is modeling of failure propagation in the opposite
direction as well. Das et al. (2017) proposes an influence model based
on a networked Markov chain framework to incorporate the power-
dependent failure into the cyber network. In this model, the
functionality state of a cyber node is modeled by combining its
internal state with that of the related grid node. Qu et al. (2019)
considers both power and cyber nodes to fail due to capacity overload,
thereby failing the counter system’s dependent node. Based on the
assumption, the paper presents an optimal load allocation strategy in
both the power grid and the cyber network to limit the effects of
the CF.

5 Cascading failure analysis in CPPS

The modeling of different components in the CPPS is described in
the previous section. Based on the models of different components,
several categories of methods have been proposed in the literature to
analyze the CF in CPPS. The objective of CF analysis is to examine the
behavior of CPPS, especially the propagation of failures and their
consequences, in the event of initial failures due to internal or external
disturbances. These studies allow us to understand how the CPPS will
respond during any failure events and what measures should be taken
to mitigate the impacts based on the identified vulnerabilities. In this
section, we will categorize the existing methods for CF analysis and
describe the concepts and features of each category in detail. The
summary of the methods is provided in Table 2.

5.1 CF analysis based on deterministic or
probabilistic simulation

The most widely used category of analyses in practice is numerical
simulations. They find out the paths of CF propagation based on
computations of system operation conditions using pre-determined
CPPS models with detailed physical and the operational properties,
e.g., power flow analysis in the power grid and routing analysis in the
cyber network. The simulation of the CF process begins with a selected
initial failure of the devices in either the power grid or the cyber
network, and the sequence of failures to occur is determined using
both intra-domain and inter-domain failure propagation models.
After the propagation of the failures, the final states of the systems
are obtained and the consequences are quantified. This process can be
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TABLE 2 Comparison of cascading failure analyses in CPPS.

Cascading failure  Ref Assumptions

analysis in CPPS

10.3389/fenrg.2023.1095303

Objectives Advantages Disadvantages

Deterministic or
probabilistic simulation
based method

Busby et al. (2021); Pan et al.
(2020); Gao et al. (2021); Liu
et al. (2022b)

Consider both power flow
and data flow modeling and
interdependency modeling

Cordova-Garcia et al.
(2019); Yagan et al. (2012);
Qu et al. (2019); Das et al.
(2017)

Percolation Theory
based method

Consider interdependency
modeling, but ignore power
flow and data flow modeling

Markov Chain based
method

Xing. (2021); Shao et al.
(2011); Boyaci et al. (2022)

Consider interdependency
modeling, but ignore power
flow and data flow modeling

Estimate accurate failure
propagation path

Find failure propagation
paths by repeated
numerical simulation

Computationally heavy

Determine a transition
threshold triggering
cascading failure

Approximate failure
propagation path with light
computational complexity

Less trustworthy due to its
negligence of system intrinsic
properties

Determine next stage of
failures depending on
current state of the
networks

Closely approximate the
simulation based results
without exhaustive
simulation

Many parameters to learn for
capturing state transition
from current state to the next

repeated many times to find out a representative or critical set of
failure propagation paths under various operating conditions, initial
failure scenarios, or random sampling results. The existing simulation-
based methods described i)
Asynchronous-model-based analysis. In this category, failures

can be in several categories.
propagate in either the power grid or the cyber network at each
stage. Once the failure propagation in one network is completed, the
next stage of the failure in another network starts with the
incorporation of both intra-domain and the inter-domain effects.
Zhang and Yagan (2020) uses the asynchronous model to evaluate
the robustness of CPPS against CF initiated by random attacks. It
covers intra-domain failures in both networks, but only power-
cyber network

interdependency. However, this model simplifies the power flow

dependent failure in a is included for
model and ignores the data flow model in cyber network. On the
contrary, considering AC power flow, Boyaci et al. (2022) uses the
asynchronous model to estimate the blackout probability triggered by
attacks on both grid buses and branches. ii) Deterministic-model-
based analysis. In this category, the assumption for CF analysis is that
the occurrence of a failure can be deterministically calculated with
physical laws. Li et al. (2021) considers deterministic failures in the
power grid when the power flow exceeds the branch capacity and
studies the probability of load loss ratio in the grid. iii) Stochastic-
model-based analysis. Unlike deterministic models, the CF analysis is
performed to incorporate the stochastic nature of the failures. Gao
et al. (2020) considers the stochasticity in power flow due to increased
renewable penetration and develops a model for analyzing the CF
under uncertain power flow patterns. Simulation-based analysis is the
most practical and accurate method for understanding the behaviors
of CF in CPPS once the operating conditions, initial failure conditions,
and failure propagation models are determined. However, the
astronomical number of possible conditions, scenarios, and random
samples make it very challenging to scale the methods to large systems.
Therefore, efficient screening of critical cases is a significant challenge

to address for scalability of simulation-based methods.

5.2 CF analysis based on percolation theory

The application of the percolation theory in complex networks is a
well-established research direction. With the help of statistical physics
principles and game theory, the percolation theory analyzes the phase
transition of a network to determine the giant clusters that appear
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within the network (Li et al., 2021). In the context of cascading failure,
percolation theory is also extensively used to determine the transition
threshold above which there will be a catastrophe and cascading failure
will happen. For a given graph G (v, e), if we consider the failure
probability of edges e as ¢, then there presents a threshold of ¢ between
0 and 1 when a giant failed/sustained component appears and the
threshold can be determined using the percolation theory. When the
failure probability is considered only for the edges, it is called bond
percolation, whereas, the consideration of failure in nodes is called site
percolation (Li et al., 2021). With the defined control threshold of
interdependency, (Chen et al., 2018) measures the critical point (the
initial failure fraction of the entire network) for CF in CPPS using
percolation theory and found that both increasing the
interdependency and decreasing the control threshold enhance the
robustness of the system. In (Huang et al., 2013), the size of the
functioning components after CF is calculated in a k-to-n
interdependency model (each grid node is controlled by k cyber
nodes, each cyber nodes control n grid nodes) and a relationship
between robustness and cost is deduced to help determine a tradeoff
between the two parameters for building a reliable smart grid
infrastructure. The percolation-theory-based methods provide a
unique perspective and in-depth insight into the occurrence of CF
in CPPS without extensive repeated simulations. However, these
methods usually overlook the detailed physical and operational
properties of both the power grid and the cyber network during
the CF, and it requires careful examination whether the generic
simplified probabilistic model can truly represent the failure
propagation patterns in a real-world CPPS (Parandehgheibi et al,
2014).

5.3 CF analysis based on Markov chain

The Markov chain (MC) model is a stochastic model used to
describe a sequence of linked events, where each event depends only
on the immediately preceding event. Rahnamay-Naeini and Hayat
(2016) describes an Inter-Dependent Markov Chain (IDMC) model
for CF analysis, where two separate MC models are coupled to describe
the inter-domain and intra-domain failures in CPPS. It considers two
separate probabilities to relate power-dependent communication
failure and communication-dependent power failure, respectively,
which can be used to control the level of interdependency between
the two networks. It also provides an analytical solution to describe the
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Resilience curve of CPPS.

steady state of the cyber-physical IDMC model. Simulation results
show that two reliable networks may be combined into an unreliable
one because of the interdependency. The MC model is also used to
analyze the CF in cyber networks considering both the intra-domain
and inter-domain failures (Das et al., 2017). The article also considers
the repairability of both cyber and power nodes, where a failed node
can recover from failure with a probability. Based on the simulations, it
shows the impact of intra-domain and inter-domain failures on cyber
networks and the positive impacts of adding node repairability.
Similarly, (Shuvro et al, 2017) studies the impact of cyber failures
on power grid reliability based on the MC model. It defines a power-
cyber interdependence function to capture the influence of cyber
failures on the grid based on the hop distance to the control center
and the degree centrality of cyber nodes. Based on the simulation
results, the key insight of the article is that the cyber dependency of the
grid has a significant impact on the probability of blackout. Similar to
the percolation theory, the Markov chain model provides elegant
results for the entire profile of CF propagation paths with guided
simulations. However, the simplified assumptions about the
characteristics of the power grid and the cyber network may lead
to inaccurate results and miss severe individual failure cases.
Furthermore, the assumptions about failure probabilities play a
critical role in Markov chain models and must be carefully derived
and verified.

6 Cascading failure mitigation in CPPS

The ultimate goal of modeling and analyzing CF is to prevent its
occurrence or mitigate its impact. In order to discuss the mitigation
strategies against CF, the concept of resilience will be introduced first.
According to the US National Infrastructure Advisory Council
(NIAC), the resilience of infrastructure systems is defined as “their
ability to predict, absorb, adapt, and/or quickly recover from a
disruptive event such as natural disasters” (Wu and Li, 2021). In
case of CPPS, the resiliency can be explained by its functionality curve
F (t) as shown in Figure 3, which can be divided into three stages:
preparedness, response, and recovery stages. In the preparedness
stage, the system maintains its normal functionality, F (f,). In the
response stage, the system initially manages to sustain its full
functionality at F (t,) under certain failures by utilizing redundant
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components in the system. However, if the failure propagation
continues and a CF is triggered, the functionality of the system
starts to degrade sharply. As the system stabilizes upon the
completion of failure propagation, the functionality degrades from
A to B at time t,, as shown in Figure 3. Points A and B can be used to
quantify the vulnerability of CPPS during the response stage. Finally,
in the recovery stage, adequate measures are taken to quickly restore
the system’s functionality to its initial operation at time f;. In this
subsection, CF mitigation strategies will be described in accordance
with different stages of the resilience curve in Figure 3. The methods
are summarized in Table 3.

6.1 System hardening

Hardening refers to preplanning measures during the design of
CPPS to handle a certain level of failure in the system without
initializing the CF, which takes place in the preparedness stage of
the resilience curve in Figure 3 (Ghanbari et al., 2018) (Chen et al,,
2019b). In the power grid, branches and generators should have
headroom capacities over their normal loads so that when any
failure occurs, the active components can handle the redistributed
loads (Zhang and Yagan, 2016). Similarly, the cyber network should be
designed such that it can tackle additional data flow through the
nodes/edges after an initial failure. However, as the extension of
capacity requires extensive capital cost, an optimal search for the
critical nodes/edges is necessary for the capacity enhancement to
mitigate CF (Ghanbari et al, 2018) (Wu et al, 2021a). The
topology of the cyber and physical systems also has a great impact
on the robustness of the system. For instance, it is found that the scale-
free cyber network is more robust than the small-world network
against random failures (Li et al., 2021). In (Chen et al., 2019b), the
authors study the impact of different topologies on CF and suggest
modifications of the topologies of both cyber and physical networks
considering their interdependence to limit the scale and impact of the
CF under different cyber-attack strategies.

6.2 Varying the interdependency

As the cyber-physical interdependence heavily affects the paths
and properties of failure propagation, the robustness of coupled
networks against cascading failures is studied under different levels
of interdependencies (Banerjee et al., 2017) (Gao et al,, 2012). There
are several approaches considered in the literature to increase the
robustness of CPPS by varying the interdependency between the
power grid and the cyber network (Yagan et al., 2012) (Liu et al,
2022b) (Kong, 2019). One of the approaches is to increase the number
of autonomous nodes by decoupling the interdependency between the
two networks. In power grid, FACTS devices such as shunt, series, and
unified controllers can be installed to control the voltage of power
node and the active and reactive power flow of power branches within
a certain range without reliance on a cyber network (Han et al., 2018).
Similarly, the interdependency of cyber nodes on the power nodes can
be decreased by installing backup power sources, e.g., uninterrupted
power sources (UPS), on site. Here, effective placement of the FACTS
and backup power sources is necessary, as discussed in (Kong, 2022).
In contrast to the above approach, proper enhancement of cyber-
physical interdependency can also make the CPPS robust against CF
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TABLE 3 Summary of mitigation cascading failure strategies in CPPS.

Mitigation

System Hardening

Varying the
interdependency

Optimal response and

Actions taken

Stage in resilience

10.3389/fenrg.2023.1095303

Resource utilization/

recovery

(Korkali et al., 2017). For instance, both one-to-multiple and multiple-
to-multiple interdependencies are more robust against CF than one-
to-one interdependency (Yagan et al.,, 2012). In these models, a cyber
node can have energy supply from multiple power nodes, and a power
node can be equipped with redundant sensors and controllers at
multiple cyber nodes. The interdependence based on intra-domain
characteristics also impacts the robustness, as shown in (Liu et al,
2022b), where an assortative coefficient metric is defined based on the
different
interdependency between the two networks and used to evaluate
the robustness of the system against CF. In (Kong, 2019), an

intra-domain characteristics to generate levels of

optimal configuration of interdependence is obtained by employing
sufficient power-disjoint communication routes for the data transfer.
Lastly, it should be pointed out that this category of CF mitigation
strategies take place both in the preparedness stage and the response
stage of the resilience curve of Figure 3. On the one hand, the system
needs to be sufficiently prepared before a failure occurs, such as by
installing FACTS devices and backup power sources, which lies in the
preparedness stage. On the other hand, the installed devices must be
properly operated to limit the propagation of failures, which lies in the
response stage. For example, in (Han et al.,, 2018), the power input
from the installed FACTS devices is regarded as a constraint in order
to achieve an optimal cascade mitigation strategy.

6.3 Optimal response and recovery

Following an initial failure in CPPS, response strategies can be
adopted to halt the propagation of the failure in the networks, which
lies in the response stage of the resilience curve in Figure 3. The most
difficult task in this process is determining the precise location of the
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curve Computational complexity

Shuvro et al. (2017); Huang et al. Creating headroom for critical nodes/ = Preparedness stage High

(2013); Wu and Li. (2021) edges

Pan et al. (2020); Parandehgheibi et al. | Optimizing topology of the networks  Preparedness stage Low

(2014)

Li et al. (2021); Wu et al. (2021a) Decoupling interdependency between = Preparedness stage High
networks

Cai et al. (2016); Banerjee et al. (2017) | Increasing interdependency between = Preparedness stage Medium
networks

Han et al. (2018); Zhang and Yagan. | Setting interdependency based on Preparedness stage Low

(2016) intra-domain network characteristics

Li et al. (2021) Finding optimal set point of FACTS = Response stage Medium
devices

Gao et al. (2012) Shedding loads in power grid Response stage Low

Kong (2019) Strategically removing nodes in both = Response stage Low
networks

Korkali et al. (2017) Dynamic programming-based Recovery stage High
recovery

Gao et al. (2012) Heuristic recovery Recovery stage Low

Chen et al. (2021) Reinforcement learning based Recovery stage High
recovery

initial fault in the networks. Tootaghaj et al. (2019) proposes an
optimal response strategy that can stop CF even if the fault
location is unknown or only partially known. Here, the authors
formulate cost flow assignment as a linear programming
optimization problem to minimize the total cost of redispatching
generation and shedding loads in the power grid. Neglecting the
intrinsic properties of the individual network, (Chen et al., 2021)
proposes a strategy for increasing the robustness of interdependent
networks by intentionally removing a few nodes and links after an
initial failure. The authors argue that intentional node and link
removal strategies can effectively interdict the propagation path of
cascading failure, which is economical and efficient.

Although the response stage improves the robustness of the
networks and minimizes the effects of CF, the system performance
may still be partially degraded during a cascading failure. A fast
recovery plan is necessary to bring the system back to its normal
condition, as shown in the recovery stage of the resilience curve in
Figure 3. As the recovery resources are often limited, several
optimization models are proposed for the best allocation of the
the functionality of the network.

Almoghathawi et al. (2019) propose multi-objective restoration

resources to maximize
models for K interdependent networks using the mixed-integer
programming (MIP) to maximize the resilience and minimize the
cost subject to the network flow constraint, interdependence, available
resources, and other related constraints. Zhao et al. (2016) propose a
multi-stage recovery model using integer linear programming (ILP)
and design two algorithms based on relaxation and bounding of the
ILP and dynamic programming for solving the problem in large-scale
interconnected systems. Wu et al. (2021b) proposes an optimization
model that incorporates recovery resources, recovery activity
execution modes, the precedence of damaged components, and the
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availability, cost, and timing of recovery resources to achieve optimal
recovery in terms of system resiliency. The authors solve the
optimization model with a modified simulated annealing algorithm
and quantify the model’s real-time performance with a CF model. Li
et al. (2022) assumes cyber-physical dependency and uses Q-learning
to find the best sequence combination for recovering failed loads with
limited resources. The model incorporates the recovery process within
the framework of the cascading failure model. However, the method
ignores critical power system operational constraints, such as bus
voltage, and necessitates a large amount of memory with high
computational complexity. Overall, although physical power grid
restoration has been extensively studied, research on recovery plans
that account for the impact of cyber networks, especially the
interactions between the two networks in a CF, remain relatively
unmature.

7 Future research directions

Although abundant research work has been conducted on the CF
of siloed power grids, the CF of CPPS is a historically less explored
topic and have received rapidly growing attention in the recent years.
As observed from the literature review, many recent attempts have
been made to understand and tackle various challenges regarding CF
in CPPS. However, as an emerging research topic, there are still many
factors to be carefully addressed towards more accurate, efficient, and
comprehensive solutions. Based on the literature review, possible
future research directions are suggested as follows.

(1) Incorporation of heterogenous components and failure
propagation mechanisms. In a CPPS, the power grid and the
cyber network are driven by heterogeneous laws: the power flows
are driven by circuit laws, and the data flows are driven by router
forwarding policies. Furthermore, the components in each
itself, and the
components in different networks, are highly heterogenous.

network interaction mechanisms between
Although the models and analyses of individual networks and
components are relatively mature, the question remains how to
develop a general theory or methodology that covers all
and mechanisms  without
that

accuracy. In fact, this is a major challenge encountered by the

heterogeneous ~ components

unacceptable  simplifications significantly ~ degrades
modeling and analysis of CF in any interdependent networks
(Wang et al., 2020b).
(2) Creditable modeling of failure probabilities under scarce data. As
renewable energy generation and demand-side participation
become more prevalent, power grid operating points and
dynamics become more uncertain and unpredictable.
Therefore, stochastic models and methods are required to
accurately portray the profile of possible or probable failure
propagation paths. However, it is could be difficult to build
trustworthy stochastic models as historical data of failures,
especially large-scale CF, is often scarce (Tomsovic et al,
2005). Furthermore, the historical data of one system cannot
be safely reused to characterize other systems, as the stochastic
properties of the failures are high dependent on system-specific
parameters such as geographical locations, network topologies,
resource distribution, and operating paradigms. Therefore, future

studies should consider how to model and validate the stochastic
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properties of failures in CPPS with high trustworthiness especially
when historical data is scarce (Wu et al., 2021¢) (Dobson, 2012).
Situational awareness during cyber-physical CF. The situational
awareness of the physical power grid is ensured by successful
sensing, communication, and computing via the cyber network.
When failures propagate to the cyber network, the situational
awareness of the power grid may be degraded, which disables
proper and timely decision making and accelerates the cascade of
failures (Panteli et al., 2013). The cascading failure of the power
grid in the Northeast region in North America in August 2003 was
known to be partially attributed to the failure of cyber systems and
the lack of situational awareness (Muir and Lopatto, 2004).
Furthermore, situational awareness is required not only for the
physical power grid but also for the cyber network itself. Hardware
failures or cyber attacks must be quickly detected, identified,
localized, and isolated to allow effective decision making and
prevent wide spreading of failures. Therefore, it is essential to
incorporate the factor of situational awareness into CF models and
investigate effective measures to prevent the spread of failures
under limited situational awareness or to agilely restore situational
awareness (Edib et al., 2021) (Edib et al., 2020). Furthermore, the
impact of the simultaneous failure of multiple networks, such as
the SCADA and PMU networks, is worth further investigation.
Dynamic response to prevent failure propagation. As shown in the
resilience curve in Figure 3, there are three stages to enhance the
resilience of CPPS: preparedness, response, and recovery stages.
The CF mitigation strategies reviewed in Section 6 work mostly in
the preparedness and recovery stages. However, targeting the
preparedness and recovery stages only is not enough. In the
preparedness stage, it is impossible to predict and prepare for
all possible scenarios of failures/disturbances due to their
astronomical numbers. Meanwhile, although a successful
recovery stage is important for shorten the period of outages, it
cannot really stop the failure propagation and limit the scale and
degree of the performance degradation. Therefore, agile response
actions during the CF are the key to preventing failure
propagation and limit the consequences of CF. For instance,
dynamic reconfiguration of the network, as one of the efficient
response actions, has been widely studied for the siloed power
grids and can also be explored for the CPPS (Ding et al., 2017)
(Pournaras et al., 2013). It takes place during the response stage of
the resilience curve, where the system is reconfigured after any
failures such that the existing components can take over the
responsibility of the failed ones without being overloaded.
Additionally, a remedial action scheme (RAS) coordinating
actions such as generation tripping, load shedding, or system
reconfiguration is used to limit the impact of cascading in the
response to contingencies that cannot be constrained with normal
protection and control devices (Mahmoudi et al., 2017). Although
RAS has been extensively researched for siloed power grids, it is
critical to extend RAS methodologies to CPPS.

Scalability of CF analysis to large-scale systems. The existing
simulation-based CF analysis methods, as discussed in Section
5, achieves higher accuracy at the expense of higher complexity
since they consider the physical properties of CPPS during the
analysis. When the scale of the system becomes large, the possible
scenarios become astronomical and it is impossible to enumerate
all possible scenarios via simulation. On the other hand, the
percolation theory-based CF analysis methods, as discussed in
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Section 5, does not consider detailed physical properties of the
components and can provide scalable analytical solutions for
understanding the consequences of CF without enumerate all
possible scenarios. However, due to the lack of consideration of
detailed physical properties, the later methods may yield
inaccurate results. Therefore, scalable yet accurate methods for
CF analysis in CPPS remains a significant gap (Liu et al., 2022¢).
Note that efficient screening of critical initial contingency (failure)
scenarios that may lead to severe CF is a possible solution that has
been extensively studied for siloed power grids (Narimani et al.,
2022). However, more investigation is required to extend the
methodologies to CPPS.
(6) Cyber-physical CF due to malicious cyber attacks. The integration
of a cyber network creates a large surface for cyber attacks against
the power grid. There is growing research on the modeling of and
defense against cyber attacks in power grids (Che et al., 2019).
However, most of the existing literature only focus on hardening
strategies implemented in the preparedness stage, or detection
strategies implemented in the response stage (Clark and Zonouz,
2019). There is still a lack of strategies to suppress the impact of
attacks in the response stage (e.g., attack isolation and data
rerouting) and to recover system performance in the recovery
stage (e.g., security upgrade, malware cleaning, and data recovery)
(Sahu et al., 2021). These aspects require further investigation in
order to establish a holistic framework for handling CF due to
malicious cyber attacks.
(7) Use of distributed energy resources and edge computing resources
to mitigate CF impacts. The CF phenomenon of CPPS is largely
due to the centralized operation paradigm, the interdependency
between different components, and long-distance transfer of
energy and data. Local and distributed operation paradigms
can effectively reduce the complexity and interdependency of
the networks and thus reduce the risks of CF. The decentralization
of CPPS operation can be realized by distributed energy resources
(DERs) in the power grid and edge computing resources in the
cyber network, which can achieve self-sufficiency in local areas
without long-distance transfer of energy and data (Maharjan et al.,
2015) (Li et al., 2018b). For example, in the event of bulk power
grid failures, self-healing cyber-physical microgrids can be formed
with DERs to maintain the power supply to critical loads (Vu
et al,, 2020). Similarly, edge computing resources can fulfill many
real-time monitoring, optimization, control, and protection
requirements without the need of a remote centralized
controller (Liu et al., 2019) (Gai et al., 2019).
(8) Incorporation of human factors in cyber-physical CF. Although
most control and decision-making processes are automated in
CPPS, human is kept in the loop for many applications at the high
level. During a large-scale CF where pre-computed plans or
intelligent real-time decision-making tools are not available or
sufficient, human intervention plays a critical role in determining
the course of the event. In power grids, CF events attributed to or
magnified by human errors have been reported in the past
(Anderson, 2004). Human errors can arise from a variety of
factors, including the environment, lack of
experience and expertise, and the complexity of the tasks (Bao

external a

et al, 2018). Note that failures occurring concurrently in and
propagating across cyber and physical networks significantly
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increase the complexity of operational tasks and hinders
human understanding of the situation and possible measures
to be taken. Although numerous studies have been conducted
to explore human aspects on CF in physical power grids, there is
lack of study on the impact of human behaviors in interdependent
power grids and cyber networks.

8 Conclusion

The increasing interdependency between power grids and cyber
networks leads to the so-called CPPS with higher heterogeneity and
complexity. In recent years, several large-scale CF events have been
observed in CPPS, motivating research on the modeling, analysis, and
mitigation of CF considering the cyber-physical nature of smart grids.
This paper systematically summarizes the state-of-the-art research on
cyber-physical CF in CPPS. It starts with the motivation of the review,
followed by background research conducted on siloed power grid and
communication network, as well as on interdependent networks in
general. Then, existing techniques for the modeling, analysis, and
mitigation of CF in CPPS are categorized, and their linkage with the
concept of resilience is discussed. The literature survey portrays the
vibrant research efforts on this topic, while also revealing many
outstanding questions and challenges to be further addressed. This
paper concludes by discussing possible future research directions and
recommendations.
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