
Fault detection in a distribution
network using a combination of a
discrete wavelet transform and a
neural Network’s radial basis
function algorithm to detect
high-impedance faults

Vyshnavi Gogula and Belwin Edward*

Department of Electrical Engineering, Vellore Institute of Technology, Vellore, India

High Impedance Fault detection in a solar photovoltaic (PV) and wind generator
integrated power system is described in this paper using discrete wavelet
transform and a neural network with radial basis function (NNRBF). For this
paper, the integration of solar photovoltaic and wind systems was modelled in
a MATLAB/Simulink environment to create an IEEE 13-bus system. Microgrids
(MG’s) are mostly powered by renewable energy. Uncertainty about renewables
has shifted attention to ensuring a steady supply and long-term viability. It has
been addressed in the paper whether or not a small-scale distant end source
connection may be made at the terminal of a radial distribution feeder. Some
typical power system problems compromise the reliability of the grid’s power
supply. To solve this problem, this study suggests a criterion algorithm based on
the neural network with radial basis function (NNRBF), and a defect detection
method based on the discrete wavelet transform (DWT). The MATLAB/Simulink
model of the system is then used to produce fault and travelling wave signals. The
db4 wavelet is used to deconstruct the travelling wave signals into detail and
approximate signals, which are then combined with the data from the two-
terminal travelling wave localization approach for fault detection. After that, the
optimal maximum coefficients of the wavelets are extracted and fed into the
proposed radial basis function neural network (NNRBF). The results show that both
the criterion algorithm and the fault detection algorithm are reliable in their
assessments of whether or not faults exist in the power system, and that
neither algorithm is particularly sensitive to variations in fault type, fault
detection, fault initial angle, or transition resistance. After that, the optimal
maximum coefficients of the wavelets are extracted and fed into the proposed
radial basis function neural network (NNRBF). Overhead distribution system faults
are simulated inMatlab/Simulink, and the technique is rigorously validated across a
wide range of system situations. It has been shown through simulations that the
proposedmethod can be relied upon to successfully and dependably protect high
impedance fault (Hi-Z).
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1 Introduction

The widespread recognition of the negative effects of fossil fuel
consumption on the environment is a primary cause of this issue.
Use of sustainable materials. Hydroelectric power, PV power, wind
power, and micro-turbines are all examples of renewable energy
sources that can help meet the growing demand for electricity
without increasing pollution. Although wind and PV energy
show the most promise, their utilization is limited by the fact
that they are unpredictable and intermittent, which results in
unreliable economic dispatch (Kroposki et al., 2017; Qazi et al.,
2019). MG’s in remote places that run on renewable energy sources
like wind and solar PV are becoming more reliable thanks to the
installation of energy storage (Billinton and Karki, 2001; Kroposki
et al., 2017). The complementary nature of solar photovoltaics and
wind power is an inherent benefit (Al-Masri and Ehsani, 2015).
Maximum power point (MPP) extraction is used to get the most
efficient amount of energy from the wind and sun. Maximum power
point for solar is found using the incremental conductance (De Brito
et al., 2012) scheme, whereas for wind it is found using the
estimation based perturb and observe (EP&O) (Xiao et al., 2011)
scheme. Traditional P&O, MPP schemes perform poorly under
conditions of rapid change in the surrounding environment,
which can cause tracking to lag or even fail (Ahmed and Salam,
2018). Since the control parameter is an incremental step, it struggles
to deliver sufficient dynamic performance. Finding the sweet spot
for parameter size can be tricky. The inverter output fluctuates
because of the dominating oscillation close to the MPP. EPO offers a
more in-depth evaluation of the MPP than what is available through
the standard P&O technique. Due to the extremely non-linear
nature of the wind, the MPP can only be attained by a
combination of the perturb procedure’s exhaustive search of the
search zone and the estimate procedure’s compensation for the
perturb procedure’s inefficiencies as the wind speed varies.
Therefore, PV and wind power together can help with the issue
of long-term intermittency. This makes it all the more important to
design a solid protection architecture capable of detecting and
categorising system failures in order to ensure MG’s safe and
reliable functioning. Numerous studies were conducted to
identify faults, categorize them, and isolate them to lessen the
frequency and duration of outages in the transmission and
distribution networks. HIF is an annoying system anomaly. A
HIF is formed whenever an electrical conductor comes into
contact with a high-resistance item, such as a branch, sand, or
asphalt. In a grounded system, its fault current is typically between
0 and 75 A, displaying asymmetrical, intermittent, and non-linear
arcing behavior (Costa et al., 2015; Wang et al., 2016). Due to the
lower current magnitude, the over current relay often fails to detect
the HIF in the system, leading to a cascading failure of the system
and putting people and their belongings in danger (Sedighi et al.,
2005a). Furthermore, the spread of HIF to otherwise functional
areas of the grid might cause a domino effect of failure throughout
the entire system (Kavi et al., 2018; Santos et al., 2017). To
investigate the impact of HIF on distribution networks, a
mathematical model is proposed in (Yu et al., 2008) in the form
of a non-linear partial differential equation.

According to Figure 1, the most common causes of failures in an
urban distribution system are external variables, natural factors, and

improper maintenance and operation. The presence of a path to
ground is not required for a Hi-Z fault to occur, and the presence of
such a path has no bearing on the detection of a Hi-Z fault. Current
paper, however, employs a DWT and NNRBF for a distribution
network to detect HIF in wind and solar PV power networks.
Overhead power lines are the typical method of delivering
electricity to homes and businesses. Due to exposure to varying
climatic conditions, these are more likely to have power outages. It
may be possible to readily detect and localize a subset of these
malfunctions. However, there are not many malfunctions that
cannot be spotted by standard safety measures (AsghariGovar
et al., 2018). Equipment attached to the supply line can be
harmed if the distribution system is allowed to run for hours or
days with unidentified HIF. Furthermore, the analysis reveals that
electric arcs emit a random, unpredictable, and unbalanced current
that is then followed by HIF (Chen et al., 2016). Because distribution
infrastructure is often located near densely inhabited regions, deaths
from electrical arcs are all too often. Despite the fact that the
detection of HIFs has been a topic of study since the early 1970s,
more work remains to be done to shed light on the process. Using
the ratio of harmonics at lower orders, as described in (Emanuel
et al., 1990). One problem of this type of method is that it requires
setting a number of threshold values, which might negatively impact
the detection method’s efficiency. Methods based on time-frequency
analysis have shown promising results in the identification
procedure (Samantaray et al., 2008; Ghaderi et al., 2014).
However, the rate of erroneous detection is demonstrated to be a
significant barrier to real-world implementations. Faults can be
identified by comparing the current or voltage signal before and
after the fault occurred, using techniques that operate in the time
domain. There are minimal problems associated with an unbalanced
network when using the mathematical morphology-based time
domain methods presented in (Gautam and Brahma, 2012; Sekar
andMohanty, 2017). Since the DWT can identify both the frequency
component and its temporal position, it has found widespread
application in signal processing. There has been more than a
decade of experience protecting electrical grids with these
techniques. Although DWT based techniques are providing a
good detection rate with linear loads (Sarlak and Shahrtash,
2011), there is no evidence of non-linear loads inclusion with the

FIGURE 1
Causes of HIF.
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systems while detecting HIFs except in (Chen et al., 2016). All the
way through the power distribution networks, the number of non-
linear loads (NLLs) has been steadily rising in recent years. While
NLLs are a key part of the puzzle when it comes to modelling and
building viable HIF detection algorithms, a large proportion of
currently available methods ignore them. Similarities between
NLL and HIF features will reduce the efficacy of current
approaches. The majority of current proposals for defect
diagnosis can be broken down into two groups: frequency
domain feature identification methods and adaptive detection
techniques. Three of the most common methods for finding
features in the frequency domain are the Fourier transform, the
wavelet transform, and the Hilbert-Huang transform. These days,
adaptive detection strategies typically use either expert systems or
neural networks. These theoretical studies have produced useful
insights, but they are not without their faults. While the single-ended
travelling wave fault location approach is commonly used, detecting
the wave head is difficult, and placement accuracy is low (Santos
et al., 2016). Empirical mode decomposition (EMD) was optimized
using integrated EMD (see (Mahari and Seyedi, 2015)). While this
approach did not suffer from modal aliasing, it did introduce fake
components, which led to poor placement precision. An approach to
fault phase selection is proposed in (Sedighi et al., 2005b) that makes
use of the high-order multi-resolution singular entropy of active
fault components. Though this method works regardless of fault
type, fault detection, or transition resistance, finding the right cutoff
value can be challenging. When compared to the Fourier transform,
the wavelet transform is a marked improvement. Since the Fourier
transform is unable to fully express the time-frequency localization
property of non-stationary signals, the wavelet transform is used
instead. In addition to its strength as a general tool for waveform
analysis, the Wavelet Transform excels at analyzing waveforms at
the time-frequency level. As a result, it can quickly and accurately
identify the signal’s focal point, analyze its degree of distortion, and
extract precise information from the time and frequency domains
(Bakar et al., 2014; He et al., 2014). Fault detection in the fars power
distribution system was given a boost in accuracy and efficiency
thanks to wavelet transform’s application in (Soualhi et al., 2015).
When conducting signal analysis using a wavelet transform,
extracting both approximation and detailed features is a crucial
step. Find the best decomposition level, partition features as finely as
feasible, and keep errors isolated from features. Both feature
component extraction and fault detection accuracy suffer from

the current approaches’ reliance on either manually set threshold
control or testing with retrieved trend via wavelet transform. With
the neural network serving as a model for the neuron network in the
human brain, the values of the input layer neurons are mapped to
the values of the output layer neurons, establishing an implicit
function relationship between the input and the output. An
asymmetrical fault line searching and locating scheme is
developed using the fault direction distinguishing method and its
associated communication system. A more up-to-date method for
locating faults in a distribution network that includes DG units is the
multi-layer perceptron neural network (MLPNN) (Jiang et al., 2003;
Gafoor et al., 2014). As a result of the MLPNN’s structure and
training algorithm, however, its speed is not ideal for applications
requiring rapid and precise fault finding (Kordestani et al., 2016;
Bayrak, 2018). Non-linear, prior-data-driven processing is
employed by the network. Compared to traditional methods of
diagnosis, it gives room for more imaginative data manipulation. In
contrast, the neural network can learn quickly and tolerates errors
better during diagnosis. However, it is not without its flaws. When it
comes to power system failure diagnosis, gathering enough data to
train a neural network is difficult. It was easy for the neural network
to get mired in a cycle of local minima. This study suggests a fault
detection system based on wavelet transform and the chaotic neural
network as a solution to these problems. The chaotic neural network
avoids the drawback of getting stuck at the local optimum. It also has
excellent error-handling and associative memory features. With the
advent of the internet of things and the cloud-edge-collaboration
framework, the authors of (Tonelli-Neto et al., 2017) introduce a
DWT and NNRBF for detecting HIF by fusing together information
from different distribution networks. To identify HIF in an IEEE 13-
bus distribution network, the authors (Rezaei and Haghifam, 2008)
opted on a fault-based strategy.

The following outlines the primary inspiration and contribution
of this work.

• Electrical Distribution to Rural Areas: Using RESs with energy
storage makes it economically feasible to bring electricity to
rural areas. Solar PV array, wind turbine, and battery all work
together to minimize maintenance costs and maximize clean
energy production. When the sun, the wind, the batteries, and

FIGURE 3
PV system configuration using MPPT and DC–DC boost
converter (Yahya and Yahya, 2023).

FIGURE 2
PV cell circuit model (Chatrenour et al., 2017).
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FIGURE 4
WECS configuration (Vas, 1999).

FIGURE 5
Electrical circuit schematic that depicts the PMSG, rectifier, and boost converter (Mishra and Panigrahi, 2019).

FIGURE 6
MPPT P&O flowchart.

Frontiers in Energy Research frontiersin.org04

Gogula and Edward 10.3389/fenrg.2023.1101049

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1101049


the load all align, the adopted control will carry out the
specified action.

• One MG based on VSI control is created. In addition, a diode
rectifier is used to change the AC current produced by
PMBLDCG’s wind turbines into DC current. Therefore, the
overall system cost has decreased thanks to this topology.

• The PMBLDCG saves money by not requiring expensive
sensors for MPPT control (like speed/position/wind speed
sensors). As the MPP and power converter control become
independent, the large operating range and control
dependability of a second stage solar design are worth the
additional components.

FIGURE 7
IEEE-13 Bus system with the solar PV system & WECS (Mishra and Yadav, 2019).
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• Renewable energy source used are maintenance free and
having high efficiency.

• A neural network called NNRBF is proposed as the basis for an
algorithm to select fault phases. An NNRBF neural network is
trained on fault features extracted using wavelets, and its
output is correlated with inputs to determine the fault type.
When it comes to fault and transition resistance, the algorithm
is stable.

• There is a proposal for a wavelet-transform-based fault
detection algorithm with two terminals. The db4 wavelet is
used to detect the travelling wave head to diagnose the issue.
This algorithm’s fault-detection accuracy is excellent, and it is
robust against variations in fault type and transition resistance.

2 Solar PV energy: A brief description

Non-linearity in the I-V curve is a feature of PV cells, and it
changes as the cells are exposed to more or less sunlight and are
heated or cooled. An ideal solar cell is a circuit that includes a diode
and a parallel current source. Yet, we model the losses caused by
these cells using the series resistance (Rse) and the parallel resistance
(Rsh). This is why the PV cell’s orbital model under real-world
conditions is shown in Figure 2. RSH has a much higher market
value than RS does. Similarly, the Iph source current is zero in total
darkness (Zayandehroodi et al., 2010a; Zayandehroodi et al., 2010b).

2.1 The PV module

In a cell, losses are proportional to the resistance in the
corresponding circuit. Losses in a cell occur due to multiple
processes, including the reflection of incident light at the cell
surface, the absorption of photons without electrons and free
holes, and the redistribution of electrons and voids. The
following equation expresses the solar cell’s distinctive behavior
as shown in Figure 2 (Chatrenour et al., 2017).

Ipv � Iph − ID − ISH (1)

Where current PV (Ipv), diode current (ID), and diode voltage
(Vd). ISH = Vpv + Ipv, where Ipv is the output current, Vpv is the
input voltage, RS and RSH are the solar cell’s corresponding series
and parallel resistance, and RS/RSH is the leakage current.
Shockley diodes have a voltage-current characteristic, and that
characteristic can be written as a formula for the diode
current, ID.

ID � IO e
vD
aVt − 1( ) (2)

Here, Io is the reverse saturation current; VD = Vpv + IpvRS is the
diode voltage; a is the diode ideal constant;

Vt � Ns ·kb
e T T is the operating temperature of the solar cell; Ns is

the number of series cells; kb is the Boltzmann constant; e is the
electron charge; and T is the diode’s thermal voltage. Adding Eq. 2 to
the first equation yields the solar panel’s defining equation, which is
as follows:

IPV � Iph − Io e
VPV + IPVRS

aVt
− 1( ) − VPV + IPVRS

RSH
(3)

The value of the photovoltaic current Ipv is related to the
variations in light intensity and temperature as shown in Eq. 3.

2.2 DC to DC boost converter configuration

In order to maintain a constant load voltage between the PV
array and inverter, a DC-DC boost converter is employed
(Necaibia et al., 2017). As the voltage produced by PV systems
is typically insufficient to power loads directly, this is an essential
component of PV applications. In this study, a novel ANN
control based MPPT approach was implemented to maximize
power output from a DC-DC boost converter before feeding it
into the input of an RS MLI. By calculating the duty cycle for the
converter switch and running at a high switching frequency,
Maximum Power Point Tracking (MPPT) is a technique for
getting the most power out of PV panels. If the converter is in
continuous conduction mode, the current through the inductor is

FIGURE 8
(A) Characteristics of the current-voltage curve of a PV array, (B) power-voltage characteristics of PV array.
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always present (Abdullah et al., 2012). We provide duty cycle,
inductor (L), and capacitor (C) formulas below.

Vout

Vin
� 1
1 −D

(4)

inductor L( ) � Vin × D × T

ΔiL
(5)

Capacitor C( ) � Vout × D

R ×ΔVout × f
(6)

Vin and V0 are the boost converter’s input and output voltages;
D is the duty cycle. D > 1 means output voltage > input voltage.
Figure 3 depicts a DC-DC boost converter with PV integration and
the ANN control based MPPT approach for maximizing PV duty
cycle.

When a boost converter is used in conjunction with a PV array,
it is discovered that the average current from the PV array increases
as the duty cycle rises, resulting in a decrease in the voltage from the
PV array as a whole. In order to raise the PV array’s break-even
point, D modifies its V-I characteristic. When D is decreased, the
average current from a PV array drops while the voltage is raised. If

the PV array’s operating point moves to the right, it means the
array’s output has been modified. In order to keep the DC voltage
output at the VSC terminal constant, the DC-DC converter’s value
of D is automatically adjusted using the perturb and absorb MPPT
approach.

In (Yahya and Yahya, 2023), DC-DC boost converter
technology to track the maximum power of a photovoltaic (PV)
system using a maximum power point tracking (MPPT) controller
based on a modified version of particle swarm optimization
(MPSO). A DC-DC boost converter was utilized to increase the
input DC voltage of the PV module. The boost converter supplied
power for the DC-AC multilevel PWM inverter, which supplied
the output AC voltage to a single inductive load. It is common
practise to employ cascaded multilayer inverters to condition
power in renewable energy applications due to its simplicity
and low cost. Modulations in the DC link capacitor voltage
result in low order harmonics and inter harmonics at the
output of the multilevel inverter. The lowest number of
harmonics is achieved using phase disposition pulse width
modulation (PDPWM). Energy from the inverter cells.

FIGURE 9
(A) HIF model (James et al., 2017) (B) Typical HIF voltage-current features.
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2.3 Description of wind source

Solar and wind power dominate the renewable energy market due
to their low environmental impact and high irradiation and kinetic
energy output, respectively. Figure 4 depicted wind energy conversion
system (WECS), purpose of WECS is to exploit the kinetic energy of
wind for use in mechanical power generation. Low efficiency, non-
linearity and unpredictability in wind speed, and high construction cost
are all factors that prevent widespread adoption of wind energy
(Manwell et al., 2010). Therefore, a control algorithm is necessary to
optimize performance and cut expenses. Using a wind turbine, one can
convert wind energy into electricity DWT. DWT are made up of blades
and amotorized device. AnAC-DC andDC-DC converter are required
on the control side. In this study, a horizontal wind turbinewith variable
speed was used. Since variable speed turbines can generate electricity at
varying wind speeds, they have a higher efficiency rating than fixed
speed turbines (Nurzaman et al., 2017). In this study, a permanent-
magnet synchronous generator is used (PMSG). PMSG’s high efficiency
at low speeds has made it a popular choice for use in small-scale wind
turbines. On the control side, an ANN control based MPPT algorithm
locates andmaintains the turbine’s maximumpower point, maximizing
its efficiency. Here, we present a DC-DC boost converter that is
managed by a ANN control based MPPT algorithm and integrated

into a wind power generation setup. In this paper, we’ll go over the
results of a simulation test of ANN control based MPPT controllers for
a residential wind turbine run through the Simulink MATLAB
modelling environment.

Wind turbines’ peak mechanical power, stated as (Abdullah
et al., 2011)

P max � 1
2
ρCpAV

3
w (7)

Where ρ is the density of the air (in kg/m3), A is the swept area of the
rotor blades (in m2), and Vw is the speed of the wind (in metres per
second). Cp is the power coefficient, is written as (Gite and Pawar,
2017).

cp � c1
C2

λi
− C3β − C4( )e5−Cλi + C6λ (8)

1
λi
� 1
λ + 0.08β

− 0.035

β3 + 1
(9)

λ � ωm*
R

Vw
(10)

C1 to C6 are rotor-specific. In this paper, C1 = 20, C2 = 140,
C3 = 0.4, C4 = 28, C5 = 21, and C6 = 0.068.

FIGURE 10
Schematic representation of the fault tolerant classification.
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2.4 Combined boost converter, rectifier, and
PMSG in series

Figure 5 is an electrical circuit schematic that depicts the PMSG,
rectifier, and boost converter all in one convenient location. This
model’s goal is to find the relationship between DC grid load current
and turbine.

The current in dq reference frame represented as

d

dt
isd
isq

[ ] � −
Rs

Lsd
−Lsd

Lsq
ωe

Lsd

Lsq
ωe

Rs

Lsq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ isd
isq

[ ] +
1
Lsd

0

0
1
Lsq

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ vsd
vsq

[ ] (11)

Thus, the expression for the mechanical equivalent torque of an
electromagnetic force and the mechanical torque of a machine can
be written as

Te � N Ψf + Lsd − Lsq( )isd{ }isq (12)

Tm � P

ωm
� 1
2
ρπR2CP

V3
w

ωm
(13)

Hence the rotor speed can be calculated

dω

dt
� Te − Tm − Bωm

jt + jp
(14)

2.5 MPPT

A MPPT algorithm known as P&O is utilized to improve
performance is shown in Figure 6. The turbine will be operating
at its maximum possible efficiency with the help of MPPT. P&O
algorithms function by modifying a control parameter and
observing the resulting change in output (Kavaskar and
Mohanty, 2019). This algorithm is simple, effective, and does not
call for any additional hardware or sensors.

ΔP � P k( ) − P k − 1( ) (15)
Delta D rises when P is positive and Vs. is negative. If P and the

voltage change are positive, delta D will fall. Delta D decreases for a
positive voltage change and negative P. If both P and the voltage
change are negative, then delta D is too (Alsafasfeh et al., 2012).

3 Systematic illustration of the IEEE-
13 bus

The proposed NNRBF classification performance was measured
using an IEEE 13-bus network model with high impedance fault,
symmetrical and unsymmetrical faults, switching events (heavy load
and capacitor bank), and transformer current. The MATLAB/
Simulink software environment was used to design the system,

FIGURE 11
DWT decomposition of signal (Daubecheis, 1992).
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which includes a 300 kW solar PV unit (operating under STC) and
several load facilities. In this study, an IEEE 13-bus network model
was used to evaluate DWT and NNRBF classifiers under high-
impedance, symmetrical, and asymmetrical failure conditions.
MATLAB/Simulink was used to generate the IEEE 13 bus
network model in Figure 7. The test system is connected to the
grid with a 200 kVA, 4.16 kV/25 kV transformer (100 MVA, 25 kV,
50 Hz). For the purpose of validating the proposed RNN based
classifier’s ability to recognize HIF, it was subjected to a battery of
tests across a wide range of operating conditions, including normal
operation, switching events (capacitor bank and heavy load),
transformer inrush current, and abnormal operation
(symmetrical and unsymmetrical faults: single line ground,
double line, double line to ground, and three-phase fault). The
300 kWp of solar PV comes from three 100 kW PV modules. Each
solar cell in the PV array and its specific configuration are described.
(Samet et al., 2017). Provides details on modelling transmission line
parameters and load. Both normal and unusual circumstances were
used to test the classifier’s capacity to identify HIF (symmetrical and
unsymmetrical faults: single line ground, double line, double line to
ground and three-phase fault).

3.1 The characteristics curve of the PV
module

Both the input voltage and output current of the PV array play a
role in the I-V and P-V curves that define the PV module.
Insulation-voltage and potential-voltage plots. This graphic
depicts as MPP at a given temperature and radiation level (where
25°C is assumed for the temperature and 100 W/m2 is assumed for
the radiation level). This is the sweet spot for maximizing both
power output and efficiency from a PV module. In this case, the
MPP is the general maximum, which is another name for the MPP.

Solar cell current (a) and power output (voltage) (b) are shown
as a function of solar irradiance (W/m2) in Figure 8. The two most
important parts of a PV system are the DC-DC boost converter and

the DC-AC VSI. As a result of the boost converter, the 280 V DC
maximum power point of the PV unit is increased to 480 V (to
500 V). To achieve maximum power tracking, the MPPT
controller’s incremental conductance approach was used to vary
the DC-DC boost converter’s duty cycle in response to changes in
solar irradiance. We analyzed a three-level IGBT bridge circuit for a
PV inverter (VSI) using pulse width modulation (switching
frequency of 1980 Hz). The inverter uses synchronous reference
frame theory and two-control to regulate the AC voltage at the
output. The inverter’s 260 V AC output is increased to 4.16 kV so
that it can be connected to the IEEE-13 bus power system network.

4 High impedance fault model

Based on the Emanuel model (Gomes et al., 2018), (James
et al., 2017) and illustrated in Figure 9, an anti-parallel diode
model is used to simulate the waveform features of the HIF
current. The ideal HIF V-I characteristics are achieved by
adjusting the HIF model parameters Vp, Vn, Rp, and Rn from
550 to 7500 V, 1,100–9000 V, 110 to 4,000, and 120 to 4,000,
respectively. HIF’s current and voltage waveforms when sampling
at 600V, 1100V, and 120R are depicted in Figure 9A and
Figure 9B, respectively. Current waveform is found to be non-
linear, asymmetrical, and contain harmonics when HIF model is
taken into account. In addition, FFT examination revealed that
there was a 3.94% and 11.7% content of second- and third-order
harmonics, respectively.

4.1 Methodology proposed for the detection
of HIF

Using a Figure 10 diagram of the MV distribution power
system’s solar PV and wind integrated power network, this part
discusses the identification of HIF using intelligent classifiers
following the below 4steps.

FIGURE 12
A generic architecture of the NNRBF.
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• Create disturbances in MATLAB/Simulink to obtain faulty
existing data.

• To train the classifiers, we have taken samples of the current
indicative of a fault using the mother wavelet daubechies4 and
then use those samples’ standard deviation (SD) values as the
features.

• Data gathered from the discrete wavelet transform (DDWT)
during various power system disturbances was used to train
artificial intelligence-based classifiers.

• To ensure the classifiers can distinguish the HIF from other
power system disturbances including three-phase faults, line-
to-ground faults, line-to-line faults, and double line-to-ground
faults, they are put through their paces with a variety of test
cases. In order to ensure the system’s continued security and
dependability, this procedure is repeated during each cycle of
operation. Furthermore, as the protective relay is insensitive to
fluctuations, the system continued to function normally when
the irradiance of the solar and the speed of the wind both
fluctuated without triggering any abnormalities.

4.2 The DWT analysis for data collection

The DWT is a powerful method for separating a transient signal
into its constituent parts, which it then displays in the domain of
time-frequency instead of the conventional time domain (Elkalashy
et al., 2008). The basic concept is to analyze the signal by expanding
and contracting it. A continuous signal f (t) is defined in both
CDWT and DWT, with the definition provided by Eq. 16.

CWT a, b( ) � 1��
a

√ ∫∞
−∞

f t( )*h t − b

a
( )dt

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (16)

The mother wavelet is the initial point from which a wavelet
feature is formed. CDWT is an alternate method for avoiding the
same resolution issue that plagues STFT. In contrast to the DWT
technique, however, this one has low redundancy during signal
reconstruction. The DWT is an effective data technique for signal
analysis because it permits the signal to be sampled with distinct
peaks. For decades, this sophisticated and powerful instrument has

FIGURE 13
Implementation procedures in the training of the NNRBF.
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been employed to regulate the safety switches. There are other ways
to compute time and frequency information, such as with a fast
Fourier transform (FFT), a short-time Fourier transform (STFT), or
a continuous- (CDWT), but DWT has been utilized because of its
quick computing speed and precision (Chen et al., 2016). Since this
is the case, we can express DWT as Eq. 17.

DWT m, k( ) � 1���
am0

√ ∑
n

f n( )*h k − nam0
am0

( )⎡⎣ ⎤⎦ (17)

Algorithm

Below (Chen et al., 2016) we display the various decomposition
levels of the signal X(n). Here are the procedures for signal
decomposition:

First, through a denoising process, the original X(n) is
decomposed into a series of levels.

Choosing a subset of levels from which to reconstruct the signal
is the second stage.

Third, re-create the signal using the values you’ve chosen.
In Step 4, you’ll choose the sampling rate, window size,

decomposition levels, and mother wavelet.
Where n and m are integers, h is the wavelet function, am0 and

nam0 are sizing and interpretation constants, respectively. By using
DWT, one can separate a signal into its low-frequency g(n) and
high-frequency h(n) approximation and detailed coefficients,
respectively as shown in Figure 11. This process of successive
approximation is repeated until the signal has been decomposed
into a large number of low-resolution sub-signals. In comparison to
the Haar wavelet, the Daubechies 4 (db4) is a more effective
frequency extractor, it was chosen as the mother wavelet for fault
detection in this work. And unlike Coiflet and Meyer wavelets, it
reduces signal redundancy and satisfies Parsevall’s theorem
(Daubecheis, 1992). The condition shown in Eq. 18 represents
the optimal decomposition of L-levels

N � 2L (18)
Where N is the level, and L is the length.

B � F

2L+1
(19)

From Eqs. 19, B is the level-to-level bandwidth in hertz, and F is
the sample rate in hertz. In order to divide the signal into its
component parts, a sampling rate of 20 kHz is being considered,
with each phase of the current signal receiving 800 samples over a
length of 5,000 points. Using Eq. 18, we can determine the different
band frequencies that were captured at each level, and they are as
follows: Approximation is made using the detailed coefficient d4,
which represents frequencies from 5 to 2.5 kHz, 2.5 to 1.25 kHz,
1.25 to 0.625 kHz, and 0.625 to 0.3125 kHz, respectively. In the
proposed study, the mother wavelet of db4 is used with detailed
coefficients on 5 levels for varied fault current signals captured
throughout each cycle.

4.3 The effectiveness of NNRBF for fault
detection in a DG-enabled distribution
network

NNRBFs are trained with data sets generated from short circuit
simulations at all line sections accounting for four different types of
failures, and then applied to the problem of fault detection in a
simulated DG-based distribution system. By analyzing the three-
phase currents coming from the main source at the feeding
substation, it is possible to identify a single-phase-to-ground
fault, a phase-to-phase fault, a two-phase-to-ground fault, or a
three-phase fault. In order to standardize the fault currents in the
three-phase output at the main source or feeder substation, the
maximum fault currents for each fault type are calculated. This
equation is used to standardize currents (Yu et al., 2008):

FIGURE 14
The three-phase current waveform observed for the period of
0.25–0.5 s in case of HIF fault and single line to ground (LG). (A) HIF
Voltage (B) HIF Current (C) HIF voltage magnitude (D) HIF current
magnitude (E) HIF occurred in phase-a 0.25 sec to 0.5 sec (F) LG
fault occurred in phase-a from 0.25 sec to 0.5.
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Inormal � I

I max
(20)

The maximum fault current, or Imax, is the product of the fault
current and the fault type, and it varies depending on the nature of
the defect. The normalized three-phase fault currents are used to
classify various fault types. With k input neurons and m hidden
neurons, the NNRBF is a three-layer feed-forward neural network.
The input layer feeds data into the hidden layer, while the hidden
layer is made up of neurons with radial basis activation functions. In
Figure 12 we see a typical NNRBF, and in Figure 12 we see an
NNRBF used for training.

There are several calculations taken into account during NNRBF
training. Input k-dimensional vector X is used to calculate a scalar
value by the network, which is then output.

Y � f X( ) � w0 +∑m
i�1
wiϕ Di( ) (21)

Where (Di) is the RBF and (w0) is the bias, (wi) is the weight parameter,
(m) is the number of hidden-layer nodes, and (m) is the bias.

The Gaussian function is used as the RBF in this investigation,
and it is given by.

∅ Di( ) exp −D2
i

σ2
( ) (22)

Di �
������������∑k
j�1

Xj − Cji( )2√√
(23)

Di is the distance between the input vector X and each data
centre, where is the radius of the cluster represented by the centre
node. Di, the distance between two points, is typically calculated
using the Euclidean norm and is presented as a cypher layer in (Yu
et al., 2008). Figure 13 depicts the training procedures for the
RBFNN and how they are implemented.

The RBFNNs were implemented in the MATLAB software for the
fault detection technique, and training data was generated in the Dig
SILENT Power Factory 14.0.523 software by simulating various faults
created at the 5th BUS of each line.We can extract the fault distance from
each source and the number of defective lines from the RBFNNs’ target
vector by running simulations. Here, we break down the inputs and
outputs of the training data that was used to hone the generatedRBFNNs.

4.3.1 A. First RBFNN
Nine neurons are used as input, and these are the short circuit

currents in each source’s three phases (5th BUS). Three neurons are
used as output, and these are the fault detection in the main source
and two DG units (DS).

4.3.2 Second RBFNN
In this case, there are three input neurons representing the

distances to the three potential sources of the fault, and one output
neuron representing the actual number of faulty wires. There are
about 138 training and testing data sets available, with 80% used for
training the RBFNNs and the remaining 20% used for testing their
efficacy. Mean square error (MSE) is used in neural networks as a
measure of performance. The maximum epoch for training any of
the RBFNNs is set to 100, and the mean square error is kept below
0.0002. The trained RBFNNs are then put through their paces after
fault classification.

5 Results and discussions

Data is gathered for analysis and classifier training/testing after
faults are applied to a number of buses across the 13-bus system.When
doing this research, we used eighty percent of the data for training our
classifiers and twenty percent for testing. Initial network simulations
were performed inMATLAB/Simulink, yielding results for steady-state,

TABLE 1 Ground resistance 20 Ω detection at 5th bus.

S.No Types
of fault

Max.
Coefficient of

phase A
current

Max
coefficient of

phase B
current

Max
coefficient of

phase C
current

Max
coefficient of

ground
current

NNRBF
output
for

phase A

NNRBF
output
for

phase B

NNRBF
output
for

phase C

NNRBF
output for
ground
current

1 ABC-G 4.6350 29.6395 4.6556 15.6281 1.0000 1.0000 1.0000 1.0000

2 ABC 4.6328 29.6454 4.6534 0.1136 1.0000 1.0000 1.0000 −0.000

3 AB-G 4.1035 30.2836 0.2000 16.5877 1.0000 1.0000 −0.000 1.0000

4 BC-G 0.1914 30.2978 4.1178 16.9470 −0.000 1.0000 1.0000 1.0000

5 AC-G 5.6985 0.3533 5.7190 11.9947 1.0000 −0.000 1.0000 1.0000

6 A-G 5.1419 0.1690 0.1835 5.5964 1.0000 −0.000 −0.000 1.0000

7 B-G 0.3738 30.8997 0.3867 32.5315 −0.000 1.0000 −0.000 1.0000

8 C-G 0.1527 0.1699 5.1566 5.5770 −0.000 −0.000 1.0000 1.0000

9 AB 6.9556 22.3087 0.0324 0.0087 1.0000 1.0000 −0.000 −0.000

10 BC 0.0254 22.1506 6.9803 0.0204 −0.000 1.0000 1.0000 −0.000

11 AC 6.9596 0.8563 6.9853 0.0100 1.0000 −0.000 1.0000 −0.000

12 No fault 0.0254 0.0236 0.0324 1.3901e-32 −0.000 −0.000 −0.000 −0.000
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transient and conventional faults (LG, LL, LLG, and LLLG incidence),
as well as HIF.MaximumHIF occurs when the load current exceeds the
fault current. During this instance, theHIFmodel observed a non-linear
connection between voltage and current, which is seen in Figure 14.

5.1 Distinguish between normal fault and no
fault conditions

Table 1 describes that comparison between coefficients of
phase a, b, c currents and NNRBF output of phase a, b, c and

ground resistance of 20 Ω at bus 5. Conventional fault types
like LG, LL, LLG, and both LLLG and HIF occurrence are
used here.

Table 2 describes that comparison between coefficients of
phase a, b, c currents and NNRBF output of phase a, b, c
and ground resistance of 10 Ω at bus 5. Conventional fault
types like LG, LL, LLG, and both LLLG and HIF occurrence
are used here. In no fault case ground current value is
high at 20 Ω when compared to 10 Ω it means when
resistance is high ground current value will be very low and
vice versa.

TABLE 3 Comparison on various methods.

References Classification method Type of fault considered %
accuracy

LG LL LLG LLG LLLG HIF Fault resistance
Rf Ω)

Alsafasfeh et al. (2012) Principal component analysis √ √ √ √ X X 5–100 94.54

Mishra and Yadav
(2019)

DFT + fuzzy (series compensated line √ √ √ √ √ X 0.001–100 99.678

Samet et al. (2017) Improved alienation coefficients method √ √ √ √ √ X 0–70 92.88

Tonelli-Neto et al.
(2017)

WT + fuzzy-ARTMAP X X X X X √ X 97.69

Santos et al. (2017) Energy spectrum of DWT (Considering DG
placement)

X X X X X √ X 70

Gomes et al. (2018) DWT + boosted decision tree X X X X X √ X 98.06

Kavi et al. (2018) Morphological fault detector algorithm X X X X X √ X 100

AsghariGovar et al.
(2018)

Adaptive CWT and extreme learning machine
(considering CT saturation)

X X X X X √ X 100

Proposed method (DWT + NNRBF) — — — — — — (0–100) 100

TABLE 2 Ground resistance 10 Ω location at 5th bus.

S.No Types
of fault

Max.
Coefficient of

phase A
current

Max
coefficient of

phase B
current

Max
coefficient of

phase C
current

Max
coefficient of

ground
current

NNRBF
output
for

phase A

NNRBF
output
for

phase B

NNRBF
output
for

phase C

NNRBF
output for
ground
current

1 ABC-G 7.1967 50.2064 7.2319 8.1605 1.0000 1.0000 1.0000 1.0000

2 ABC 7.7044 29.1686 5.0160 3.8938 1.0000 1.0000 1.0000 −0.0000

3 AB-G 5.8851 51.9080 0.3487 29.3847 1.0000 1.0000 −0.000 1.0000

4 BC-G 0.3433 51.9446 5.9073 30.0053 −0.000 1.0000 1.0000 1.0000

5 AC-G 9.8223 0.6148 9.8575 20.7549 1.0000 −0.000 1.0000 1.0000

6 A-G 8.3985 0.2833 0.2978 9.1754 1.0000 −0.000 −0.000 1.0000

7 B-G 0.6513 53.4671 0.6642 56.3076 −0.000 1.0000 −0.000 1.0000

8 C-G 0.2659 0.2801 8.4224 9.1621 −0.000 −0.000 1.0000 1.0000

9 AB 10.8054 37.7852 0.0324 0.0987 1.0000 1.0000 −0.000 −0.0000

10 BC 0.0254 37.5244 10.8374 0.0504 −0.000 1.0000 1.0000 −0.0000

11 AC 10.8034 0.9405 10.8324 0.0700 1.0000 −0.000 1.0000 −0.0000

12 No fault 0.0254 0.0236 0.0324 4.6118e-32 −0.000 −0.000 −0.000 −0.0000
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5.2 HIF voltage and current waveforms

Here, we present the simulation results for the IEEE 13-bus
power network that included both PV and Wind. We simulated
the PV and Wind method we intend to use to detect and identify
HIF in the MV distribution network. To test the viability of the
strategy, we run a MATLAB/Simulink simulation of the
distribution model shown in Figure 7. In Figure 14A, we can
see the time-varying current signal during the typical feeder state,
which lasts for 0.25s. The HIF analysis was run alongside
simulations of various power system failures to prove the
viability of the proposed method. The three-phase current
waveform during this time period is shown in Figure 14B in
the event of an HIF fault and a single line to ground (LG). As can
be seen in Figures 14C, D, the magnitude of the fault current and
voltage in the case of an HIF fault in phase C of a three-phase
system are small. It is shown in Figures 14E, F that if an LG fails in
phase A of a three-phase system, the amplitude of the current
signal is quite large, making it challenging to detect HIF in power
systems. To address these issues in real time, we extracted the
features using a DWT analysis, which decomposes the signal
across the temporal and frequency domains. Every cycle, DWT is
applied to 800 samples of the phase current signal at four different
levels of decomposition. There is a different spectrum of
frequencies represented by each tier; Table 1 displays the
calculated SD values for each of the detailed coefficient levels
and the final decomposed level (d4) (d1, d2, d3, and d4). In this
paper, we present a DWT analysis of the A, B, and C stages of the
system under normal conditions. Table 2 summarizes the results
of the DWT analysis performed on faults with different fault
resistance, such as LL, LLG, and three-phase faults, and the SD
characteristics derived from these faults that were used to train
classifiers to identify HIF in the system. There were 13 buses in
the system, and each one had a fault applied to it so that the DWT
data could be collected and used to train and test the classifiers. In
this research, we used eighty percent of the data for training our
classifiers and twenty percent for testing. The current setup
consists of three input neurons (representing the various
potential root causes of the issue) and a single output neuron
(the precise count of faulty lines). Mean square error (MSE) is a
common metric used to evaluate the efficacy of neural networks.
All RBFNNs are considered well-trained if their MSE is less than
0.0002 and they have undergone no more than 38 training epochs.
After faults are categorized, RBFNNs are put through their
paces. Initial network simulation and data collection were
performed in MATLAB/Simulink, covering both steady-state
and transient conditions as well as the occurrence of common
faults like LG, LL, LLG, and LLLG, and even HIF. As shown in
Figures 14A–F, the normal operation of the power grid results in
an asymmetrical current waveform due to the distribution of
electrical demand.

Table 3 describes the comparison on various classification
methods and % accuracy ‘X’ represents the fault type/parameter

which is not considered for classification, and ‘/’ represents the
occurrence of fault.

6 Conclusion

The detection of the HIF procedure is dependent on a number of
factors, some of which are unique to the characteristics of a given
network. This work considers a more practical PV-integrated IEEE 13-
bus system to analyze HIF using the proposed RNN-based network.
Initially, a MATLAB/Simulink model of a 13-bus distribution network
was built to introduce different types of events (normal operation,
inrush current from a transformer, load switching, and capacitor
switching, and HIF, LG, LL, LLG, and LLLG, all of which represent
malfunctions in the system). Under these conditions, DWTanalysis was
applied to the three-phase current signal using the db4 mother wavelet.
Energy value features for different phases were extracted using the
obtained wavelet coefficients (d1, d2, d3, d4, d5, and a5) to train and test
classifiers.
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