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Research on electrical load
distribution using an improved
bacterial foraging algorithm

Yi Zhang* and Yang Lv

Jilin Jianzhu University, Changchun, China

This paper proposes an improved bacterial foraging algorithm for electrical load
distribution to impro-ve power plants’ efficiency and reduce energy
consumption costs. In the chemotaxis stage, the adaptive step size is
introduced to accelerate the random search speed compared with the
traditional algorithm. In the replication stage, a hybrid crisscross operator is
proposed to replace the traditional binary replication method in the algorithm to
ensure the diversity of the population and improve the efficiency of the
algorithm. The adaptive dynamic probability is used instead of the initial fixed
probability to improve the global search performance of the algorithm. The
mathematical model of electrical load distribution in a natural power plant is
established, and the improved bacterial foraging algorithm is used to solve the
model. Through comparative analysis of two power plant unit experiments, it is
proved that the results of the improved algorithm can reduce 3.671% and 1.06%
respectively compared with the particle swarm optimization algorithm, and
7.26% and 1.37% respectively compared with the traditional bacterial foraging
algorithm, which can significantly reduce the coal consumption of the power
plant.

KEYWORDS

bacterial foraging algorithm, crisscross operator, electrical load distribution, economic
benefits of power plant, self-adaption

1 Introduction

The adjustment of electric power and energy structure is a hot topic. Germany
proposes to realize the energy structure adjustment in 2035 so that the proportion of
renewable energy generation can reach or even exceed half (Kopiske et al., 2017).
Although the optimization of the power energy structure in China started late, it is
also being optimized and adjusted constantly. With the integration of more and more
distributed new energy into the power grid, the stability of the power grid faces many
challenges due to the uncertainty brought by power generation methods such as wind
photovoltaic power. As the main output method of my country’s power resources, thermal
power generation is of great significance to the stable operation of the power grid. The
energy consumption problem caused by thermal power generation gradually becomes

Abbreviations: CSO, Crisscross Algorithm; BFO, Bacterial Foraging Algorithm; PSO, Particle Swarm
Optimization; ELD, Electrical Load Distribution; ICSBFO, Improved Crisscross Algorithm Mixed Bacterial
Foraging Algorithm; EBO, Ecogeography-based Optimization Algorithm; HGSO, Henry Gas, Solubility
Optimization Algorithm; HTTSA, Hybrid Taguchi Salp Swarm Algorithm; HSSA-NM, Hybrid Salp Swarm-
Nelder-Mead; COOA, Coot Optimization Algorithm; IEO, Improved Equilibrium Optimizer; ECSA, Effective
Cuckoo Search Algorithm.
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prominent with the increasing demand for power resources in
recent years. Some achievements have been made in reducing the
energy consumption of thermal power generation by upgrading
traditional industrial equipment (Wu et al., 2019). However, it
also faces a bottleneck period. It is essential to reduce energy
consumption through electrical load distribution (ELD) among
thermal power units. Therefore, optimizing coal consumption can
not only improve the competitiveness of thermal power resources
but also contribute significantly to the goal of “carbon neutrality”
while ensuring the stability of the power production process and
reducing the cost of thermal power.

Meta heuristic algorithms, such as [sine cosine algorithm (Aye
et al., 2019) (Yildiz et al., 2020), seagull algorithm (Panagant et al.,
2020), grasshopper algorithm (Yildiz et al., 2022a; Yildiz et al,,
2022b) (Yildiz et al., 2021a; Yildiz et al., 2021b)], are widely used to
solve various problems depending on their excellent convergence
effects. In recent years, the optimization of heuristic algorithms has
also become increasingly mature and improved. The efficiency of
heuristic algorithms and their vulnerability to local optima are
gradually improving with the optimization process. Ref
(Premkumar et al, 2021) proposed a new multi-objective
arithmetic optimization algorithm (MOAOA),
distance mechanism and elite sorting to optimize and upgrade

which uses

the single objective arithmetic optimization algorithm, and can be
applied to multiple scenarios in reality. Ref (Yildiz et al., 2021a;
Yildiz et al., 2021b) proposed a political optimization algorithm
(POA), which has better search ability and computational efficiency
than other algorithms. In Ref (Vildiz et al, 2021c), an EBO
algorithm is mold

proposed. Compared with the slime

algorithm, marine predator algorithm and other novel
algorithms, this algorithm is not only simpler, but also more
robust and has better design results. Ref (Vildiz et al., 2022a;
Yildiz et al., 2022b) applies the idea of chaotic mapping to
HGSO algorithm, which can effectively improve the convergence
speed and robustness of the algorithm. In Ref (Yildiz and Erdas
2021), a new hybrid algorithm HTSSA is proposed, which can
better jump out of the local optimum. Compared with some new
algorithms, this algorithm has more advantages. In Ref (Yildiz et al.,
2022c), chaotic map is used to mix Levy flight, which effectively
improves the convergence speed of the algorithm. A new algorithm
HSSA-NM is proposed in Ref (Yildiz 2020), which can effectively
optimize engineering design problems through the hybrid salp
swarm algorithm.

Meta heuristic algorithm is widely used in the power field (Chi
et al.,, 2022). Used COOA algorithm to apply to the distribution
network with photovoltaic generators. Compared with other
algorithms, it proved that this method can not only effectively
reduce the active power loss, but also significantly reduce the
solution time. In Ref (Nguyen et al,, 2022), an IEO algorithm is
proposed to select the location and scale of photovoltaic power
generation in the distribution network. The algorithm is improved
by updating the concentration. Compared with a large number of
meta heuristic algorithms, the improved method can effectively
reduce the loss. In Ref (Pham et al., 2022), ECSA is used to solve
the generation cost of integrated power system. Compared with
equilibrium optimizer and marine predator algorithm, this
method has the lowest cost. The ELD refers to achieving
maximum economic benefits under the conditions of meeting

production needs and power constraints from the perspective
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of an electric power producer. The methods of Unit
Commitment (UC) can be divided into four categories: Mixed
Integer Linear Programming (MILP), dynamic programming,
decomposition method, and heuristic method. In the past, the
optimization of thermal power units was usually done by mixed
integer linear programming or dynamic programming. However,
with the development of swarm intelligence algorithms in recent
years, more and more swarm intelligence algorithms have been
applied to ELD. (Jianjun et al., 2021) proposed an improved
invasive weed algorithm for the non-linear programming model
of thermal units. Traditional

power Swarm

algorithms, represented by particle swarm optimization (PSO),

intelligence

cuckoo algorithm (CS) and genetic algorithm (GA), are widely
used in ELD problems because of their stability and simplicity.
However, they are all faced with problems such as easy to fall into
local optimal solution, slow convergence, high iteration number
requirements, and low efficiency, which are also some defects of
swarm intelligence algorithms themselves. With the deepening of
research, the application of swarm intelligence algorithm in ELD
mainly focuses on solving the above problem. (Zou et al., 2019)
improves and optimizes the selection, crossover, and mutation of
the GA algorithm and applies it to the economic dispatch model of
cogeneration. The results show that the improved method can
improve the convergence speed and result from accuracy. In
(Mahdi et al., 2018), a quantum-inspired particle swarm
optimization algorithm is used to improve the robustness and
efficiency of ELD processing. (Al-Bahrani and Patra 2018)
proposes a multi-gradient PSO, which solves the problem that
global particle swarm optimization with inertia weight (GPSO-w)
is not efficient in the optimization process of large-scale thermal
power units. It is found that the performance of this method is
better than improved PSO
experimental comparison.

several algorithms through
The other group of intelligent
algorithms is also gradually being developed is applied to the
ELD problems. (Hatata and Hafez 2019) is optimized by the ant
lion algorithm (ALO) compared with the PSO algorithm and
artificial immune system (AIS). The results found that the ALO
in dealing with ELD has higher efficiency and convergence
precision. In addition, (Kumar et al., 2021) also uses the
improved Slap Swarm algorithm to optimize the load problem
of large-scale power plants, and the experimental results confirm
the high efficiency of its solving process. (Carmen et al., 2021)
compares the advantages and disadvantages of various methods
used in current UC optimization for the Italian power market
application scenarios.

Bacterial Foraging Optimization (BFO) (de et al., 2022), (Chen
etal.,, 2021) and (Farshi and Orujpour 2021) has been an emerging
swarm intelligence algorithm in recent years. BFO is a bionic
algorithm to simulate the foraging behavior of Escherichia coli.
Bacterial foraging algorithms are widely used, such as image
segmentation, path planning, power system, parameter
optimization and identification. The improvement of bacterial
foraging in the existing research mainly focuses on the
chemotaxis and dispersion of bacteria, as shown in the reference
(Hu et al., 2020), (Chen et al, 2017), (Wang et al., 2019),
(Ramaporselvi and Geetha 2021) and (Devi and Srinivasan
2021). The contributions of this paper mainly focus on the
improvement of the three key steps of the algorithm. The

improvements are aimed at the characteristics of the bacterial
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foraging algorithm, such as slow convergence speed, low efficiency,
and easily falling into local optimum.

(1) The adaptive modified step is used instead of the traditional fixed
step to solve the problem of slow solution speed in the chemotaxis
stage.

(2) The traditional fitness value ranking dichotomous replication

~

optimization method was improved by using a crisscross
algorithm mixture in the process of bacterial replication.
€

=

Adaptive dynamic probability is used to replace the traditional
fixed dispersal probability to avoid the optimal result elimination
problem and ensure the algorithm’s efficiency in the dispersal
stage.

Through two case studies and comparison of different algorithms,
it is proved that the improved hybrid bacteria foraging algorithm
proposed in this paper has better results.

This paper consists of five sections. The first section establishes the
mathematical model of ELD. Section 2 describes the improvement of
chemotaxis, replication and dispersal of the bacterial foraging
algorithm. In Section 3, an improved hybrid bacterial foraging
algorithm is used to solve the ELD problem, and the pseudo-code
is given. The fourth section is the experimental part, which analyzes
the case of 10 units of a medium power plant and 3 units of a small
power plant and proves that the improved algorithm can significantly
reduce coal consumption. The fifth section is the summary of this

paper.

2 Mathematical model of ELD

Coal consumption characteristics and valve-point effect of
generating units are taken as objective functions, and unit output
and load balance are taken as mathematical models with constraints in
the model of ELD.

2.1 Objective function

The characteristic of coal consumption refers to the curve of
coal consumption of a thermal power unit changing with the
load. It is the critical basis for analyzing energy consumption
and load optimization scheduling of a thermal power plant.
When a load of a single unit decreases with the generation
condition, its coal consumption rate will increase, and the
formula is as follows:

F(Py(x)) = a(x) +b(x) * Py(x) +c(x) * Py (x) (1)

In Eq. 1, F (P4 (x)) represents the coal consumption of the thermal
power unit; a(x), b(x), c(x) represents the coal consumption
characteristic parameters of the x unit; and Py, (x) represents the x
unit’s power.

The influence of the valve-point effect on UC should be considered
in the unit operation process. The leakage of steam causes the valve-
point effect at the opening moment of the regulating valve of the steam
turbine, which is reflected as the pulsation influence at high load in the
coal consumption characteristic curve of the unit. The formula is as
follows:
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G(P(x)) =1d(x) * sin(e(x) * (P min (x) = P(x)))] 2

In Eq. 2, d(x), and e(x) represent the valve-point coefficient
P min (x) represents the lowest power value of the x unit.

The mathematical model of the objective function can be
expressed as the compound superposition function in summary. In
the model, the quadratic function and the sine function of the valve-
point effect are set for solving the minimum coal consumption
characteristic. It can be expressed as follows:

N
min f (P (x)) = ) (F(P(x)) +G(P(x))) 3)

2.2 Constraint function

Capacity constraint function is the prerequisite for the standard
and safe operation of the thermal power unit. Its formula is as follows:

Pmin (x)SP(x)SPmax (x) (4)

Where P .y (x) denotes the upper limit of capacity constraint and
P 1in (x) the lower limit of capacity constraint. This paper ignores
power flow loss and assumes that only thermal power units
participate in power generation in the network. Load balance
constraint means that the sum of the power of each unit needs
to be consistent with the total load, and its formula is as follows:

N
ZP(x) = Load (5)
x=1

In Eq. 5, Load represents the total load of the system.

2.3 Penalty function

The purpose of adding a penalty function is to consider some other
constraints or ignored losses, and its formula is as follows:
h(P(x))=¢*

N
ZP (x) — Load (6)

x=1

In Eq. 6, € represents the penalty coefficient which can be fixed or
changed to an adaptive value according to the characteristics of the
algorithm. Thus, the mathematical model of ELD can be expressed as
follows:

min F = f (P(x)) + h(P(x)) %

3 Improved crisscross algorithm mixed
bacterial foraging optimization (ICSBFO)

3.1 Theimprove the chemotactic process with
adaptive modification of step size

Chemotaxis is to simulate the motion part of E. coli foraging
behavior. The process includes forward and reverses in two parts.
E. coli runs along the vector direction with a random vector until
the fitness value cannot continue to be smaller. In (Long et al.,

frontiersin.org
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2020), the cost function of the A algorithm is used to improve the
chemotaxis process to solve the path planning problem under
different working conditions effectively. In the process of
chemotaxis, the step length C is an essential factor affecting the
movement process of E. coli. The step length C of chemotaxis is a
fixed value in the traditional BFO algorithm. It will bring some
disadvantages. The minor C value can improve the search accuracy,
but it will reduce the search efficiency of the algorithm and easy to
fall into the local optimal. The larger value of C can improve the
search speed of the algorithm, but it will reduce the accuracy of the
search results and lead to search misjudgment. Therefore, the value
of step size dramatically affects the excellence of the algorithm.
Inspired by the fish swarm algorithm, (Yufang and Jianwen 2021)
uses an exponential function to modify the step size. Adaptive
modified step size is used to replace the traditional fixed value in
this paper.

T 1
C(x) :exp(—(Nc # N, Ned—j+ G-+ N.(-D)*N.* Ned) >*C

®)

In Eq. 8, N, Ny, N.g respectively represent the number of
chemotactic restrictions, replication restrictions, and dispersal
restrictions in BFO algorithm. « denoted as the step coefficient. j, k
and | represent the current times of chemotaxis, replication and
dispersion respectively. 7 is a dynamic change. The BFO algorithm
can search for optimization with giant steps in the early stage of the
search to accelerate the algorithm’s convergence through the adaptive
step correction exponential formula. And search for optimization with
a small step in the late stage of search to improve the accuracy of the
algorithm.

3.2 The replication process of the hybrid
crisscross algorithm to optimize

The replication process is a process that simulates biological
evolution and survival of the fittest. The E. coli are arranged in
ascending order according to the cumulative fitness value. The first
half of the high-quality E. coli is copied instead of the second half of the
poor E. coli. The total number is unchanged in this process. Although
this method reduces the algorithm’s complexity, it also brings some
disadvantages. The diversity of the population is greatly decreased to
ensure the diversity of the population and ensure that high-quality
bacteria individuals are not lost. (Jufeng et al., 2020) used single
individual ranking and crossover operations to replace the cumulative
health ranking method. In this paper, the Crisscross Algorithm
(Xiongmin et al., 2022), (Shaowei et al., 2021) and (Anbo et al,
2022) is a novel population random search algorithm that is
proposed to improve the replication process. The Crisscross
Algorithm parts,
longitudinal crisscross. Compared with the previous generation, the

includes two horizontal crisscross, and

method achieves the optimal effect through each iteration of the
crisscross process. Horizontal crossover is like the crossover
process in GA, but it also has a comparison process with the
previous generation.

MSp (x,d) =71 * X (x,d) + (1 —11) * X (y,d)
+o * (X(x,d) - X(y.d)) ©)
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MS(y,d) =11 * X(,d)+ (1 —11) * X(x,d)

+o * (X(r,d) - X(x,d)) (10)

The parameters x and y in Egs. 9, 10 represent individual
bacteria, d represents dimension solved by the algorithm, and r,¢,
both represent random numbers. The former is between 0 and 1,
and the latter is between —1 and 1. This formula represents the
offspring of bacteria x and y after horizontal crossing in the d
dimension. Longitudinal crossover is similar to the mutation
process in a genetic algorithm, and longitudinal crossover is the
crossover of different dimensions of the same bacterium. After
each crossover, a progeny with different dimensions from the
previous generation is produced. The progeny produced each
time should be compared with the previous generation to retain
the optimal value.

MS, (x,dy) =1 * X(x,d))+ (1-71) * X(x,dy) (11)

According to Eq. 11, bacteria x can produce a progeny by
crossing dimensions d;d,. The crisscross algorithm was used to
cross-optimize the chemotactic population. Compared with the
traditional sequencing and replication method, the optimization
and replication process of the crisscross algorithm not only
retained high-quality bacterial individuals but also ensured the
diversity of the population.

3.3 Adaptive dispersal probability to improve
dispersal process

The random dispersal optimization of E. coli individuals was
carried out according to a fixed dispersal probability. In this
process, certain high-quality individuals were also dispersed to
random areas. Although the global search performance of the
algorithm was ensured in principle, the fitness value of the
algorithm would also deteriorate, which would decrease the
efficiency of the algorithm. In this paper, we use the adaptive
dispersal probability instead of the traditional fixed value to avoid
falling into the local optimum and ensure the global search
performance of the algorithm.

]wurst - ]x

P(x) =Py *
( ) “ ]worst _]hest

(12)
In Eq. 12, Juyorst represents the worst fitness value, Jpest
and J, is the
fitness value of the xth bacterium. The dispersal probability of

represents the optimal fitness, real-time
E. coli was modified adaptively by this fraction. The fitness
value of bacteria individuals with good fitness was small,
and the reduced while the

dispersal probability of individuals with poor fitness was

dispersal probability was

increased. In this way, the loss of high-quality individuals is

avoided and the efficiency and performance of the algorithm are
guaranteed.

3.4 Flowchart of ICSBFO

The parameters need to be initialized first in the algorithm. It
includes the number of iterations maxgen, the dimension p of the

frontiersin.org
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search range, the number of bacteria s, the maximum number of
chemotaxis N, the maximum number of steps of one-way
movement in chemotaxis operation N, the maximum number
of replication N,,, the maximum number of dispersal N.4, and
the fixed probability of bacterial dispersal P.4, the number of
attractive factors and the release speed d_attract, ommiga_attract,
the number of repellant factors and the release speed h_repellant,
ommiga_repellant. Then the population is initialized. The
population of this algorithm is generated according to the
lower limit of unit load plus the difference between the upper
and lower limits of unit load multiplied by a random number.
Initialize the population as a high-dimensional array. After the
population initialization is completed, the cycle is carried out. The
maximum number of dispersals, replication, and chemotaxis, are
determined first, and the chemotaxis operation is carried out after
the requirements are met. In the chemotaxis process in this
paper, N. is 60; N, is 4. After determining the adaptive
correction step and the repulsive attraction between the
bacteria, the fitness value was calculated. The bacteria turn
over and then proceed with dynamic steps in the direction of
the randomly generated vector until the maximum swimming
limit is reached or the fitness value is updated to the optimal
value. During this period, the bacterial constraint should be
considered, namely the upper and lower limits of the unit
output constraint. After the chemotactic process, the fitness
value is updated to enter the replication stage. During
replication, bacteria are sorted according to their cumulative
fitness values, and new populations are formed in ascending
order. Replicate 2 times in total. The longitudinal and
horizontal crossover operators were used to update the fitness
value, retain the perfect result and eliminate the wrong result.
Finally, the bacteria were dispersed according to the adaptive
dispersal probability when it came to the dispersal stage. The
dispersal probability of the perfect result was tiny, while the
dispersal probability of the impaired result was extensive. After
the dispersal, the bacteria died out, and the new bacteria re-
determined the random position. The algorithm ends when the
maximum number of dispels reaches 4, and the algorithm iterates
480 times in total. The flow chart of bacterial foraging algorithm is
shown in Figure 1.

4 |ICSBFO addresses ELD issues
4.1 ELD based on ICSBFO

In the process of solving the ELD problem by ICSBFO, the
control variable is the initial population of E. coli, and the
dependent variable is the coal consumption of the unit. Use the
algorithm to solve Eq. 7, first, it is necessary to tune the relevant
parameters of the ICSBFO algorithm in solving the ELD problem.
The initial population of E. coli is generated with the upper and
lower limits of the power load, and the number of units is set as the
solution dimension. Then we need to determine the load and solve
the ELD model. The fitness value in the solving process is the
objective function proposed above after considering the penalty
coefficient. If there is no new load command or percentage load
requirement, each unit’s optimal load distribution and optimal coal
consumption can be output.

Frontiers in Energy Research
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4.2 ICSBFO solves ELD model pseudo code

Initial parameters, random generation of the initial population with upper and lower limits of unit
load
for 1= 1:Ned
for k = 1:Nre
forj=1:Nc
fori=1:s
C= Equation (8)
Calculate the fitness value J and consider the influence of bacterial clustering
Setting direction vector.
Save the current fitness value JL after moving (fitness value is set as unit coal
consumption cost)
while(m<Ns)
if (J(i,j+1,k,)<IL)
Update JL and continue motion flipping and add unit constraints
else
m=Ns % End this swimming flip
end
m+=1
end
Update fitness value
end % Ifi<s, it will enter the next bacterial chemotaxis
end % If j<Nc, it means that the bacteria are active and then enter the next chemotaxis
Vertical and horizontal crossing of population P by using Equations (9). (10). (11)
end
for u=1:s
if (R,=Equation (12)>rand)
The bacteria are killed, and new bacteria are randomly generated through the formula
else
Dispelling times of undispersed bacteria+1
end
end
end

5 Analysis of two cases

This paper uses the case of 10-unit medium-sized and 3-unit
small-scale power plants, respectively, to prove the feasibility of
the ICSBFO algorithm. The experimental environment is
Windows?7, Intel Core i5 quad-core 1.70 GHz processor, 8 GB
physical memory, and Matlab 2018a simulation platform. Case
1 Using the ICSBFO, CSO, BFO, and PSO to solve the ELD
problem of the 10-unit model, the experimental results show
that the ICSBFO algorithm has the smallest coal consumption.
Experiments are carried out with different load conditions, and
the ICSBFO and BFO algorithms are compared. We find that the
lower the load, the more pronounced the optimization effect of
ICSBFO. Case 2 Using ICSBFO, BFO, and PSO to solve the ELD
problem of the model, the
demonstrate that ICSBFO has the best optimization results and

3-unit experimental results
point out the limitations of bacterial foraging algorithms when

dealing with small-scale unit data.

5.1 Case of 10 units

In Case 1, taking 10 units in a power plant (Basu 2016) as an
example, the coal consumption characteristic parameters of the unit
and the upper and lower limits of the unit load are shown in the
following Table I:

In the case of a 10-unit medium-sized power plant, this paper
uses the improved crisscross hybrid bacterial foraging algorithm
(ICSBFO), the crisscross algorithm (CSO) (Meng et al., 2015), the
bacterial foraging algorithm (BFO), and the particle swarm
algorithm (PSO) (Hatata and Hafez 2019) to solve the 10-unit
load optimization distribution model of a medium-sized power
plant. Since different unit parameters and valve point effect
parameters greatly influence the results of unit load economic
dispatch, this paper uses the methods proposed by them in their
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TABLE 1 Coal consumption characteristic parameters of a 10-unit power plant and upper and lower limits of unit load.

Gl 26.97 —-0.3975 0.002176 0.02697 -3.975 100 250
G2 118.4 -1.269 0.004194 0.1184 -12.69 50 230
G3 -95.14 0.4864 0.00001176 —-0.05914 4.864 200 500
G4 266.8 —2.338 0.005935 0.2668 —-23.38 99 265
G5 -53.99 0.4462 0.0001498 —-0.05399 4.462 190 490
G6 266.8 -2.338 0.005935 0.2668 -23.38 85 265
G7 —43.35 0.3559 0.0002454 —0.04335 3.559 200 500
G8 266.8 —2.338 0.005935 0.2668 —23.38 99 265
G9 14.23 —-0.0182 0.0006121 0.01423 -0.1817 130 440
G10 —61.13 0.5084 0.0000416 -0.06113 5.084 200 490

respective articles to simulate the unit parameters of the same
case. In the process of PSO testing, a mutation strategy is
introduced to improve the problem that PSO is easy to fall into
the local optimum. Since the test algorithms all contain a random
search mechanism, each group is tested 30 times in this
experiment, and the experimental results are taken as the
average value of the tests. During the test, the population size
was 50, the dimension was 10, the load was 2,700 MW, and the
total number of iterations of various algorithms is 480.

In the process of dealing with ELD problems, PSO is widely
used because of its fast convergence speed, but its disadvantage is
poor robustness. CSO shows good convergence efficiency and
accuracy in the ELD process due to its independent update
iterations in the horizontal and vertical directions, and a
simplified algorithm process characterizes it. It can be seen
from Figure 2 that the improved bacterial foraging algorithm
has faster convergence speed and convergence results than the
previous two, which is due to the improvement of the convergence
speed by the adaptive correction step size and the mixing in the
process. BFO,
improvement optimization is more significant. In taking the

replication Compared with traditional
average value of multiple experiments, we also found
that ICSBFO has better robustness and the smallest variance
of its optimal coal consumption. Research on the high-
quality robustness of ICSBFO is expected to be carried out in
the future.

It can be seen from the above Table 2 that the optimal coal
consumption of ICSBFO is the smallest. Compared with the CSO,
the coal consumption reduced by the ICSBFO algorithm is
4.6317 g-kW™'.hl. The percentage reduction is 0.707%.
Compared with the PSO, the coal consumption optimization
results are more prominent, decreasing 24.0534 g-kW™.h7L.
The percentage reduction is 3.671%. Compared with the
unimproved traditional BFO algorithm, the effect is more
prominent, ICSBFO  reduces coal consumption by
47.5621 g-kW™'.h7l. The percentage reduction is 7.26%. The
resulting significant reduction in coal consumption can improve
the efficiency of the power plant, reduce the economic cost of the
power plant and reduce the pollution to the environment. (From
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the load distribution of each unit solved by the ICSBFO algorithm,
since the upper and lower limits of a load of units 9 and 10 are both
high, the outputs of units 9 and 10 are the most, which are 413 and
479 MW respectively.)

To test the influence of different loads on the performance and
solution quality of the algorithm, this paper uses 90%, 80%, and
70% of the rated load to solve the load optimization distribution
model of the 10-unit case of the medium-sized power plant. This
experiment compares the ICSBFO and
traditional BFO.

Affected by the valve-point effect, traditional methods often

unimproved

perform poorly in low-load optimization of processing units. For
example, in the traditional BFO algorithm, it can be seen from the
above Figure 3 that the optimization of coal consumption by BFO
in reducing the load is not very obvious. In this process, the coal
consumption at 70% load is higher than 80% load, which shows
that BFO can no longer effectively optimize the ELD problem at
low load. However, ICSBFO can solve the problem of adapting to
low-load optimization. As seen from the above Figure 3, as the
load rate decreases, the convergence speed of ICSBFO gradually
slows down, but the optimization result of ICSBFO is still
significantly better than that of BFO. It can be seen from
Table 3 that under the condition of 90% load rate, under the
load of 2430 MW, the optimized reduction is
66.2689 g-kW™'.h7l. The percentage reduction is 12.624%.
Under the load rate of 80%, the load of 2160MW, the coal
consumption is saved by 90.4748 g-kW™'.h 1. The percentage
reduction is 21.183%. Under the load rate of 70% and the load
capacity of  1890MW, the optimized amount is
220.1997 g-kW™'.h7l. The percentage reduction is 65.357%.
From the analysis of the load optimization distribution of
different units, the ICSBFO algorithm can give full play to the
output advantages of different units. In this case, the two units
G9 and G10, with higher upper and lower load limits, have the
most output under different load ratios. From this, it can also be
concluded that ICSBFO has an excellent performance in
optimizing the load of 10 units. By comparing different load
rates, it can be found that under high load rates, the optimized
amount of ICSBFO is small, and as the load rate decreases, the
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FIGURE 1
Flowchart of ICSBFO.

optimized coal consumption gradually increases. The traditional  the case of low load rate. Therefore, the algorithm is expected to
BFO algorithm has a poor unit optimization effect in the case of = have good application scenarios during the low-peak electricity
low load, but ICSBFO still has an excellent optimization effect in ~ consumption period in spring and autumn.
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Convergence curve of unit economic dispatch of case 1.

TABLE 2 Load optimization results of units under 2700 MW load with different algorithms.

Algorithms Load distribution of each unit/MW (integer is reserved for the result) Optimal coal consumption g- kW . k7!
G1 G3 G4 (€[ G7 G8 G9 G10
ICSBFO 193 199 227 235 191 233 280 228 413 479 655.0957
Cso 205 209 240 228 255 223 308 231 402 357 659.7274
PSO 211 215 200 254 401 212 200 247 291 468 679.1500
BFO 184 170 238 255 476 196 298 209 326 269 702.6578

TABLE 3 Comparison results of ICSBFO and BFO under different loads.

Load (%)  Algorithm  Load distribution of each unit/MW (integer is reserved for the Optimal coal consumption g- kW= - k!

result)
G4 G7 G8 G9 GI10
90 ICSBFO 219 | 205 238 | 241 194 | 236 224 240 @ 422 208 5249383
90 BFO 207 146 | 215 | 216 315 | 209 358 203 | 210 357 591.2072
80 ICSBFO 160 195 | 196 = 223 204 | 212 211 229 | 342 207 427.1072
80 BFO 228 | 150 202 | 250 202 | 212 205 = 132 | 181 206 517.5820
70 ICSBFO 110 146 200 | 211 196 | 221 202 222 184 200 336.8949
70 BFO 122 63 334 | 173 227 | 156 205 @ 234 262 226 557.0746
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Comparison of ICSBFO and BFO under different load factors in Case 1.

TABLE 4 Coal consumption characteristic parameters and upper and lower limits of unit load in a particular 3-unit power plant.

Gl 358.0643 —-0.1438 0.0001 0.1716 0.9776 170 350
G2 420.4021 -0.5391 0.0008 0.9610 1.0080 170 350
G3 196.7672 1.1705 -0.0024 5.1336 1.0314 170 350

5.2 Case of 3 units

In case 2, taking 3 units of a miniature thermal power plant as
an example, the coal consumption characteristic parameters of the
units and the upper and lower limits of unit load are shown in the
following Table 4:

In the case of a small power plant with 3 units, this paper
uses ICSBFO, BFO and PSO to solve and compare the
load distribution optimization model of the same unit data. In
this experiment, each group was tested 30 times, and the average
was taken. The population size was 50, the dimension was 3, the
load was 900 MW, and the total number of iterations of various
algorithms is 480.

This experiment sets the number of units as the solution
dimension. The crisscross algorithm used in this paper in the
replication process, its horizontal crossover operator is the
while the
experimental case is 3, and the crossover dimension is too small,

crossover of dimensions, dimension of this

resulting in The offspring after crossover are highly similar to the
previous generation, so the horizontal crossover operator is omitted

Frontiers in Energy Research

in this experiment, and only the vertical crossover operator is used
to improve the replication process, so as to ensure the diversity of
the population. Although the energy consumption coefficients of
the three units in this experiment are different, the upper and lower
limits of the unit load are the same. It can be seen from Figure 4 that
the result of ICSBFO is significantly better than that of PSO and
BFO, but the convergence rate will be slightly lower. Under the
condition of 900 MW load, the optimal coal consumption of
ICSBFO is 975.23 g- kW™ . h™!, which is 1.37% lower than that
of BFO algorithm and 1.06% lower than that of PSO. Combining
the low load rate in the 10-unit case and the 3-unit case, it can be
concluded that the traditional bacterial foraging algorithm
generally performs in processing the optimization data of small-
scale units, and the solution time is slightly longer. However, the
improved bacterial foraging algorithm can overcome such
problems. Given this characteristic, follow-up research will be
carried out on the case of large-scale power plant units. In
addition, in the future work, we will also study the dynamic
ELD problem with multiple constraints, not limited to the valve-
point effect constraint.
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6 Conclusion

In this paper, we improve the three main steps of bacterial foraging in
dealing with slow speed problems in the ELD process. The step size is a key
factor affecting the speed of the BFO algorithm. Therefore, in this paper, an
improved adaptive correction step size is used to replace the fixed step size
in the chemotaxis process to speed up the convergence speed of ICSBFO.
Given the excellent hybridization of the CSO algorithm, we propose to use
the CSO operator to hybridize the population in the replication process to
ensure the diversity of the population; in the dispersal part, the adaptive
dynamic dispersal probability is used instead of the fixed probability to solve
the problem that the traditional BFO algorithm easily leads to the loss of the
optimal solution, and the algorithm efficiency is guaranteed. The
mathematical model of the ELD problem is established. By comparing
with other algorithms, it is proved that the ICSBFO proposed in this paper
has excellent performance, which can significantly reduce coal
consumption and improve the economic benefits of the power plant. At
the same time, through the case study of small-scale units, it is found that
ICSBFO can also solve the problem that BFO is not good at processing the
scheduling data of small-scale units. In the follow-up research, we will try to
apply ICSBFO to the problems of multi-objective microgrid scheduling
optimization and multi-region joint dynamic economic scheduling and add
disturbances to the population initialization and dispersal stage of ICSBFO
to test the performance of the algorithm.
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Nomenclature

S The number of bacteria
N, Maximum number of chemotaxis

N, Maximum number of steps of one-way movement in
chemotaxis operation

N, Number of replication

N4 Maximum number of dispersal
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P,; The fixed probability of bacterial dispersal

d_attract, ommiga_attract The number of attractive factors and the

release speed

h_repellant, ommiga_repellant The number of repellant factors and

the release speed
P Population
C Step size

J Fitness value
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