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Fuel performance modeling and simulation includes many uncertain parameters
from models to boundary conditions, manufacturing parameters and material
properties. These parameters exhibit large uncertainties and can have an
epistemic or aleatoric nature, something that renders fuel performance code-
to-code and code-to-measurements comparisons for complex phenomena such
as the pellet claddingmechanical interaction (PCMI) very challenging. Additionally,
PCMI and other complex phenomena found in fuel performance modeling and
simulation induce strong discontinuities and non-linearities that can render
difficult to extract meaningful conclusions form uncertainty quantification (UQ)
and sensitivity analysis (SA) studies. In this work, we develop and apply a consistent
treatment of epistemic and aleatoric uncertainties for both UQ and SA in fuel
performance calculations and use historical benchmark-quality measurement
data to demonstrate it. More specifically, the developed methodology is
applied to the OECD/NEA Multi-physics Pellet Cladding Mechanical Interaction
Validation benchmark. A cold ramp test leading to PCMI is modeled. Two
measured quantities of interest are considered: the cladding axial elongation
during the irradiations and the cladding outer diameter after the cold ramp. The
fuel performance code used to perform the simulation is FAST. The developed
methodology involves various steps including a Morris screening to decrease the
number of uncertain inputs, a nested loop approach for propagating the epistemic
and aleatoric sources of uncertainties, and a global SA using Sobol indices. The
obtained results indicate that the fuel and cladding thermal conductivities as well
as the cladding outer diameter uncertainties are the three inputs having the largest
impact on the measured quantities. More importantly, it was found that the
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epistemic uncertainties can have a significant impact on the measured quantities
and can affect the outcome of the global sensitivity analysis.
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1 Introduction

Best Estimate Plus Uncertainty (BEPU) approaches have been a
field of ongoing investigation for safety analyses of nuclear reactors
(Martin and Petruzzi, 2021). BEPU aims to alleviate the
conservatism typically employed by characterizing and
consistently propagating input sources of uncertainties to safety
outputs of interest in order to provide confidence in the obtained
numerical results. Although BEPU approaches have found success
in thermal-hydraulic applications, their use in multi-physics
calculations is challenging due to the various multi-physics input
sources of uncertainties and their interactions (Martin and Petruzzi,
2021). BEPU wider adoption in licensing and safety studies strongly
depends on the quality of the characterization of the input sources of
uncertainties and on the approaches used to propagate the
uncertainties to the outputs of interest (Zhang, 2019). BEPU is
thus tightly related to Verification, Validation and Uncertainty
Quantification (VVUQ) (Zhang, 2019).

In this context, the Organization for Economic Co-operation
and Development/Nuclear Energy Agency (OECD/NEA) Multi-
physics Pellet Cladding Mechanical Interaction Validation
(MPCMIV) benchmark aims to provide guidance for validation,
uncertainty quantification (UQ), and sensitivity analysis (SA) in
multi-physics simulations (De Luca et al., 2018). The benchmark
consists of modeling two cold ramp tests performed at the Studsvik
R2 reactor in 2005. Even though the benchmark focuses on pellet
cladding mechanical interaction (PCMI) through the modeling of
the cold ramps, the multi-physics aspect arises from the R2 reactor
modeling (core and in-pile loop used for the tests) with reactor
physics and thermal-hydraulics being involved. The PCMI is
considered by Consortium for Advanced Simulation of Light
Water Reactors (CASL) as one of the main challenges in nuclear
reactor modeling (CASL, 2020) highlighting the need to improve its
best estimate prediction and the associated uncertainties. The
MPCMIV benchmark includes different modeling and simulation
(M&S) tiers from 3D heterogeneous multi-physics models up to
single physic fuel performance models of the PCMI during the cold
ramps with imposed boundary conditions. Before developing UQ
and SA in multi-physics, guidance for single physics fuel
performance are needed as there is a lack of consistent treatment
of uncertainties in fuel performance.

In the fuel performance UQ and SA literature, various
interesting studies have been performed but usually treating
either only aleatoric sources of uncertainties or focusing mainly
on the sensitivity analysis. In (Bouloré et al., 2012), the METEOR V2
1D fuel performance code is coupled to the URANIE UQ framework
for depletion calculations. The uncertainty is propagated to fuel
centerline temperature and Sobol indices are computed using
artificial neural networks. In (Gamble and Swiler, 2016), a similar
depletion study is performed with Bison finite element fuel

performance code coupled to the DAKOTA UQ framework.
Both correlation-based sensitivity indices (Spearman and
Pearson) and Sobol indices using surrogate models are
computed. In (Ikonen, 2016) and (Ikonen and Tulkki, 2014)
various sensitivity analysis methods are investigated using
FRAPCON in depletion calculations. The results indicate that for
some quantities such as the fuel centerline temperature, correlation-
based methods can be enough. However, for other quantities such as
the gap conductance that can exhibit strongly non-linear and
discontinuous behaviors more complex methods like Sobol
indices or moment-independent approaches are needed. It was
also discussed that strong interactions between input
uncertainties can arise supporting the need for appropriate
sensitivity analysis methods. In (Feria and Herranz, 2019), fuel
performance uncertainties are propagated using FRAPCON for
two power ramp tests to assess the PCMI predictive capability.
The results indicate a strongly conservative prediction of the PCMI
at high burnups with the rigid pellet model being themost important
input. When the fuel pellet creep is considered, the predictions
improved significantly.

From all these studies, it is clear that the input uncertainties
characterization and treatment is very important for fuel
performance UQ and SA. In (Bouloré, 2019), A. Bouloré explains
some of the possible sources of uncertainties in fuel performance as
well as the challenge of their consistent characterization and
treatment as aleatoric and epistemic in safety analysis studies.
Inverse UQ approaches using experimental data and based on
surrogate models can be used to better characterize the input
uncertainties. Bayesian techniques for inverse UQ were applied
for the Bison fission gas release model in (Wu et al., 2018) and
for the fuel thermal conductivity and fission gas release models of an
idealized fuel performance model in (Robertson et al., 2018).
International activities such as the benchmark For Uncertainty
Analysis In Modeling For Design, Operation And Safety Analysis
Of LWRs (LWR-UAM) (Hou et al., 2019) and the benchmark for
Reactivity-Initiated Accident (RIA) (Marchand et al., 2018)
highlight the importance of consistent treatment of input
uncertainties and provide some guidance for their propagation,
to allow a consistent comparison of the results between the
participants.

These recent efforts in better characterizing the input sources of
uncertainties need to be followed by a consistent treatment of
epistemic and aleatoric uncertainties for UQ and SA. This has
rarely been addressed in nuclear engineering studies due to the
computationally demanding number of calculations. Notable
exceptions, where the epistemic and aleatoric uncertainties are
separated can be found (Novog et al., 2008; Helton et al., 2011;
Pun-Quach et al., 2013). In (Novog et al., 2008), both type of
uncertainties were accounted to establish reactor trip setpoints
that ensure safety margins. In (Helton et al., 2011), different
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probability risk assessment and performance assessment studies are
discussed. It is emphasized that sensitivity analysis is very important
in order to identify the most important epistemic and aleatoric
inputs and reduce the computational time necessary for their
consistent treatment. In (Pun-Quach et al., 2013), A BEPU
approach is proposed and applied to a dryout modeling.

In this work, the MPCMIV single physic fuel performance tier is
selected in order to develop an approach for consistent treatment of
epistemic and aleatoric uncertainties and investigate their impact on
the measured cladding axial elongation and cladding outer diameter
during the first cold ramp test. FAST fuel performance code
(Geelhood et al., 2021) is used to model the base irradiation of
the fuel rodlet, the refabrication and the first cold ramp test. The
consistent treatment of both epistemic and aleatoric uncertainties in
UQ studies is very important as discussed in (Roy and Oberkampf,
2011) but requires a nested loop approach that can be
computationally prohibitive. The efficient computational
performance of FAST and the Reactor Dynamics and Fuel
Modeling Group (RDFMG) High Performance Computing
(HPC) resources are leveraged to develop the methodology for
epistemic/aleatoric UQ and SA. In Section 2, the MPCMIV
benchmark is presented together with the corresponding FAST
fuel performance modeling and the identified uncertain inputs
and outputs of interest. In Section 3, the different steps of the
UQ and SA methodology are discussed. In Section 4, the
methodology is applied to the MPCMIV first cold ramp test and
the results are analyzed. Finally, in Section 5, a discussion is carried
out based on the outcomes of this work, and in Section 6 a summary
and general conclusions are provided.

2 Modeling and simulation

The MPCMIV benchmark and more particularly the first cold
ramp test is selected as the example in which the methodology for
uncertainty quantification of epistemic and aleatoric sources of
uncertainties will be demonstrated.

2.1 MPCMIV benchmark

The MPCMIV benchmark focuses on the modeling two cold
ramp tests performed at the Studsvik R2 reactor. Measurements of
the cladding axial elongation during the two cold ramp tests and of
the cladding outer diameter after the two cold ramp tests are
available to be compared with the M&S results. The benchmark
is divided into four modeling fidelity tiers.

(1) Novel M&S tools with high fidelity. These tools involve the
capability of 3-D heterogeneous modeling of both the reactor
and the in-pile loop (e.g., irradiation loop).

(2) Novel M&S tools with simplified boundary conditions. These
tools involve the capability of 3-D heterogeneous modeling of
the in-pile loop with imposed boundary conditions for the core.

(3) Traditional M&S tools with simplified boundary conditions.
These tools involve the capability of a 3D homogenized
modeling of the in-pile loop with imposed boundary
conditions for the core.

(4) Fuel performance tools only. These tools model use power and
thermal-hydraulics boundary conditions to model only the fuel
performance phenomena.

Participants are free to choose which tier is more suitable to their
computational tools capabilities. In this work, tier four fuel
performance model is used. For each tier, the exercises are
divided into four computational phases.

(1) Model development phase. The computational domains of
single physics are verified and validated for steady state
simulations. It aims at selecting the correct codes for each
physics area.

(2) Pre-qualification phase. The computational domains for both
the pre-irradiation and the first ramp test are evaluated and
validated against experimental data. Multi-physics models for
steady-state and transient are developed. The accuracy of the
M&S predictions are assessed against experimental data.

(3) Blind simulation phase. The second pre-irradiation and cold
ramp tests are modelled using the multi-physics modeling. The
participants do not have access to the experimental data for
comparison. The uncertain inputs are quantified and the
predicted best estimate results together with their estimated
uncertainties are obtained.

(4) Post-test phase. The same modeling as (3) is asked but the
measured quantities are disclosed. Additional sensitivity
analyses studies are performed to evaluate and refine the M&S.

This work focuses on the first cold ramp test and thus covers the
model development phase and the pre-qualification phase.
Uncertainty quantification studies are performed for the first cold
ramp instead of the second in order to be able to compare against the
experimental data.

The irradiation of a fuel rod is being modeled using FAST
(Geelhood et al., 2021). The modeling can be decomposed into three
steps: base irradiation and refabrication, pre-ramp test, and the first
cold ramp test. The base irradiation consists of an irradiation of
three cycles in the Forsmark two reactor (boiling water reactor).
Table 1 presents some of the father rod data available in the
specifications (De Luca et al., 2018). Figure 1 shows the linear
heat rate (LHR) as well as the axial power profile for the three
cycles. The numbers on the axis have been removed due to the
benchmark being still on-going. The reactor coolant inlet
temperature and outlet pressure are 274°C and 70 bars,
respectively. Where modeling data were available, they were used

TABLE 1 Father rod and fuel rodlet characteristic.

Parameter Value Parameter Value

Fuel pellet diameter 8.19 mm Cladding Zry-2

Cladding thickness 0.63 mm Gap gas composition 100% He

Diametral gap thickness 0.17 mm Initial gap pressure 0.8 MPa

Fuel density 10.7 g/cm3 Plenum length 185 mm

Enrichment 2.22% Re-sintering density 0.9% TD

Pellet stack length 3.68 m Rodlet length <500 mm
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and where there were missing data necessary for the fuel
performance modeling, the defaults values in FAST were used
while some values are obtained from (Geelhood and Luscher,
2015; Hou et al., 2019) such as the re-sintering density which
was selected to be 0.9% of the theoretical density. The default
value for the power to fast neutron flux conversion factor in
FAST was used (0.221x1017 (n/m2/s)/(W/g of fuel)) and therefore,
the fast neutron flux is proportional to the LHR. The plenum length
is not known and so was calibrated in order to obtain the total rod
free volume and internal pressure after the base irradiation close to
the experimental measurements. In FAST, only the fuel rodlet part
of the father rod is being modeled for the base irradiation for
computational reasons (large number of calculations for the UQ
and SA). The plenum length has been scaled down to conserve the
fuel to plenum volume ratio. The discrepancies between the father
rod at the rodlet location and the fuel rodlet results are minimal
(e.g., < 0.5%).

After the refabrication, the fuel rodlet has been used to perform a
pre-ramp and a cold ramp at the Studsvik R2 reactor. The pre-ramp
consists of an irradiation for less than 1 hour at constant power (the
fuel rodlet is inserted in the R2 reactor after stabilization at the
desired reactor power). Few hours later, the cold ramp was
performed. The cold ramp consists of the insertion of the fuel
rodlet in the R2 reactor for less than 1 minute with the reactor
power being much higher than during the pre-ramp. The reactor is
then SCRAM while the rodlet sits in the irradiation facility (in-pile
loop 1). The cladding axial elongation was measured during the pre-
ramp and the cold ramp test. The cladding outer diameter after the
cold ramp was also measured. Therefore, the response of interests
selected for the UQ and SA are the maximal cladding axial
elongation (elongation obtained right before the SCRAM) and
the average cladding outer diameter. Similarly to the base
irradiation, the fast neutron flux was determined by FAST using
its default power to neutron flux conversation factor value (with the
irradiation being very short, it is believed that the fast neutron flux
will not have any significant impact during the cold ramp). The axial
power distribution was obtained from (Hou et al., 2019). The future
neutronic modeling of the Studsvik R2 will help determine the fast
neutron flux and the axial power distribution. Figure 2 shows the
raw data given in the specification for the LHR and the coolant
boundary conditions during the pre-ramp and the cold ramp test.
Due to the benchmark being on-going, the data on the axes of
Figure 2 have been removed. Figure 2 hence, serves to illustrate the
transient conditions qualitatively. The power ramp rate during the
cold ramp is between 150 kW/m/min and 180 kW/m/min.

2.2 Fuel performance modeling

FAST is the latest U.S. Nuclear Regulatory Commission (NRC)
fuel performance code (Geelhood et al., 2021). The version used for
this work is FAST-1.0.1 which allows to model steady-state and
some transient scenarios for light water reactor mainly. It relies on
1.5D finite difference modeling to solve the heat conduction
equation, but also mechanical deformations and fission gas
releases. Some other modeling capabilities includes PCMI,
cladding creep, ballooning and failure modeling, hydrogen

FIGURE 1
(A) Father rod LHR (B) axial relative power for the base irradiation.

FIGURE 2
(A) LHR during the pre-ramp and cold ramp test (B) LHR during
the cold ramp only (C) coolant temperature and pressure during the
pre-ramp and cold ramp. Due to the benchmark being on-going, the
data on the axes have been removed.
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pickup, and oxidation. Some of the limitation of FAST is the
implementation of the rigid pellet model: the pellet deformations
are due to thermal expansion, swelling, and densification only (fuel
creep is not modeled). As many other fuel performance codes, it
allows modeling of single fuel rod only.

A fine mesh composed of 90 axial nodes, 30 radial nodes, and
45 radial nodes for the fission gas release was used. The rodlet
plenum length is calculated by conservating the fuel length to
plenum length ratio of the father rod. The fuel rodlet LHR has
been calculated based on the position of the rodlet in the father. The
refabrication option was used at half time between the end of the
base irradiation and the beginning of the cold ramp test. The fission
gas release model used is the Massih model (Geelhood et al., 2021).

2.3 Input uncertainties characterization

As mentioned in the introduction, the characterization and
quantification of the input sources of uncertainties is important
for any UQ and SA study. The inputs can be classified based on their
uncertainty as: aleatoric, epistemic, or a combination of both.
Aleatoric uncertainty is an irreducible uncertainty due to
inherent stochastic processes that induce variations in the
measurement of the quantity. A nuclear engineering example that
can be considered as an aleatoric uncertainty is the fabrication
process of fuel rod. Epistemic uncertainty is a reducible uncertainty

originating from a lack of knowledge. A typical example is the
uncertainty of fuel performance models. As highlighted in (Roy and
Oberkampf, 2011), due to the difference in their nature epistemic
and aleatory uncertainties should not be lumped together in
uncertainty propagation studies.

In this work, a total of 30 input uncertainties have been selected.
The values for these uncertainties were selected based on the
literature (Geelhood et al., 2009; Feria and Herranz, 2019; Hou
et al., 2019; Geelhood et al., 2020), while some were based on
measurements directly of the R2 reactor. For the aleatoric
uncertainties, a normal distribution N(μ, σ) with mean (μ) and
standard deviation (σ) was deemed appropriate for this case based
on (Geelhood et al., 2009; Feria and Herranz, 2019; Hou et al., 2019;
Geelhood et al., 2020). The authors would like to clarify that other
distributions can be used if appropriate evidence support them. For
the epistemic uncertainties, an interval [a, b] was used following the
approach discussed in (Roy andOberkampf, 2011). The true value of
the input/parameter is not known but is believed to be in the interval
[a, b], with no value in this interval having a higher likelihood of
being the true value (see Discussion section for more details). This
lack of knowledge of the true value is mainly due to the impossibility
of measuring the input/parameter directly for most cases. Therefore,
this treatment of the epistemic uncertainty is addressing the lack of
knowledge of the true value rather than considering the input/
parameter following an uncertain law. The methodology can be seen
as evaluating the effects of the aleatoric uncertainties for multiple

TABLE 2 Uncertain inputs and their respective normalized distributions N(m, s) or [a, b].

Parameter Distribution Parameter Distribution

Manufacturing uncertainties Material property uncertainties

Fuel outer diameter (fod) N(1, 0.00055) Fuel thermal conductivity (ftc) N(1, 0.0830)

Cladding outer diameter (cod) N(1, 0.00107) Cladding thermal conductivity (ctc) N(1, 0.1177)

Cladding thickness (cth) N(1, 0.00142) Fuel specific heat capacity (fcp) N(1, 0.0863)

Fuel roughness (froug) N(1, 0.0835) Cladding specific heat capacity (ccp) N(1, 0.031)

Cladding roughness (croug) N(1, 0.2) Gap conductance (cond) N(1, 0.0355)

Fuel density (rho) N(1, 0.0032) Boundary conditions uncertainties

Enrichment (x) N(1, 0.0002) Coolant pressure base irradiation (pbi) N(1, 0.00333)

Initial internal gas pressure (iip) N(1, 0.0338) Coolant pressure cold ramp 1(pr1) N(1, 0.00333)

Refabrication internal gas pressure (rip) N(1, 0.0338) Coolant temperature base irradiation (tbi) N(1, 0.01)

Model uncertainties Coolant temperature cold ramp 1 (tr1) N(1, 0.01)

Fuel thermal expansion (fte) [0.794, 1.206] Coolant mass flow rate base irradiation (mbi) N(1, 0.01667)

Cladding thermal expansion (cte) [0.926, 1.074] Coolant mass flow rate cold ramp 1 (mr1) N(1, 0.01667)

Fuel swelling (fsw) [0.548, 1.452] LHR base irradiation (lhrbi) N(1, 0.027)

Cladding creep (ccre) [0.568, 1.432] LHR cold ramp 1 (lhrr1) N(1, 0.027)

Cladding axial growth (cag) [0.582, 1.418]

Cladding yield strength (cys) [0.922, 1.078]

Cladding hydrogen (hyd) [0.689, 1.311]

Fission gas release (FGR) (fgr) [0.944, 1.056]

Frontiers in Energy Research frontiersin.org05

Faure et al. 10.3389/fenrg.2023.1112978

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1112978


plausible values of the epistemic uncertainties. If evidence exists
showing a statistical behavior of an epistemic uncertainty, then an
associated pdf can be used without changes in the methodology
developed. The values for both uncertainty types are shown in
Table 2, normalized or centered around 1. The uncertain inputs
abbreviation showed in Table 2 will be used throughout the article.
FAST allows to directly bias its default material properties and
default models parameters for the cladding and the fuel. Therefore,
the material properties and/or models parameters depending on
some state variable(s) (such as temperature) will retain their
dependencies while being biased: a multiplication factor will just
be applied to them. The fast neutron flux during both the base
irradiation and full ramp test (pre-ramp and cold ramp) was not
considered as uncertain due to lack of information. This will be
revised once the neutronics results from the benchmark are
available. For the characterization of the inputs as epistemic or
aleatoric the approach used was to consider as aleatoric the inputs
we are more confident about their uncertainty characterization due
to the availability of direct measurements while all the others as
epistemic. Based on this, boundary conditions, manufacturing
parameters and material properties are treated as aleatoric, while
model parameters as epistemic.

3 Uncertainty quantification
methodology and theory

3.1 Methodology

The consistent treatment of epistemic and aleatoric
uncertainties in fuel performance calculations is very important
as discussed in the introduction but can be very computationally

demanding. A methodology for fuel performance UQ and SA has
been developed and is presented in Figure 3. The methodology
leverages the efficient computation capabilities of FAST.

The first step consists in identifying all possible sources of
uncertainties (model, boundary conditions, material properties,
manufacturing) and characterizing them based on the available
knowledge (experiments, measurements, inverse UQ, indirect
evaluations, literature reviews, expert judgment). This was discussed
in Section 2.3. Once all the input uncertainties are defined, a qualitative
screening analysis is performed using the Morris method to reduce the
number of uncertain inputs. This is an important aspect because the
nested loop used for the epistemic and aleatoric uncertainty
propagation and the sensitivity analysis computational costs depend
on the dimension of the effective input space. In this screening, there is
no need for separate treatment of epistemic and aleatoric uncertainties.
The outcome of this step is a reduced number of inputs that have the
largest impact on the output of interest.

The second step of the methodology is the separate propagation of
epistemic and aleatoric input uncertainties using a nested loop
approach. The epistemic input uncertainties represent a lack of
knowledge, something that means that there is a true value for these
inputs that lies in the defined interval space, but it is unknown to us. For
this reason, in the outer loop, one set of values for the epistemic inputs is
selected. In the inner loop, a stochastic sampling is applied to the
aleatoric inputs that represents the irreducible uncertainty. The
selection of epistemic input values in this work is performed using a
full factorial grid of points to ensure that the extremes in this space are
covered. If the epistemic input space is high dimensional, sparse grid
approaches or stochastic approaches such as LatinHypercube Sampling
(LHS) can be used. The aleatoric uncertainties are sampled using a LHS
and the same samples are used for every epistemic grid point. This
allows sample to sample comparisons across the various epistemic grid

FIGURE 3
UQ and SA methodology.
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points. Once the nested loop is concluded, the result is a set of aleatoric
cumulative density functions (CDF) for every epistemic grid point. The
various CDF are combined to construct p-boxes for each output of
interest. At this stage some preliminary analysis of the results is carried
out by computing correlation-based indices.

The third step involves the selection of critical epistemic grid points
where global sensitivity analysis will be performed by computing the
Sobol indices. These indices decompose the variance of the output based
on the variances of the inputs. Since the epistemic inputs have a true but
unknown value, a separate treatment of the epistemic inputs is needed
to obtain accurate results, similarly to the UQ (a similar treatment of
epistemic and aleatoric uncertainties would potentially leads to
epistemic inputs dominating the indices creating misleading results).
Therefore, in this methodology we propose to perform Sobol sensitivity
analysis only for the aleatoric inputs but for different critical epistemic
grid points. This step thus identified these grid points based on a
discrepancy metric between the obtained CDFs in the previous
step. The metric can be any distance metric between two CDFs and
the one used in this work will be detailed in Section 3.3. The critical grid
points can then be identified as the epistemic input combinations
leading to the highest and/or lowest value of the selected distancemetric
and thus should reflect the largest variations between the grid
points CDFs.

The fourth and last step is the computation of Sobol indices for the
selected grid points. As stated above, Ikonen et al. (Ikonen and Tulkki,
2014) showed that interactions between uncertain inputs in fuel
performance can be significant and need to be taken into account in
sensitivity analysis studies. Sobol indices capture the impact on the
output of interest of such interactions, making it therefore a suitable
method for fuel performance uncertainty analysis (Sobol’, 1993).
However, Sobol indices computations require a large number of
calculations. For d uncertain inputs and N samples of at least 104, a
total of N(d + 2) ~ 105 code evaluations are needed (Saltelli, 2002).
This can be prohibitive and thus a surrogate model-based approach can
be employed to accelerate the calculations. Due to the highly non-linear
behavior of PCMI and to the strong interactions between the inputs,
surrogate models might not be very accurate for Sobol indices
calculations at every grid point. In this work, we perform both
direct Sobol indices calculations using FAST and surrogate models.
The surrogate models consist of Polynomial Chaos (PC) for every
epistemic grid point trained on the samples of the uncertainty
propagation step. The accuracy of the PC is assessed on the direct
Sobol results.

The surrogate model approach is investigated because in future
studies higher fidelity fuel performance codes such as Bison and
OFFBEAT could be used that will not afford direct Sobol indices
computation (Hales et al., 2016; Scolaro et al., 2020). In this case, a
lower fidelity fuel performance code could also be used in the
screening step to identify the subset of relevant inputs for the
higher fidelity codes.

The following subsections explain the theory behind the
different methods employed in the four steps of the methodology.

3.2 Morris screening

Fuel performance has a many uncertain inputs increasing the
computational cost of the UQ and SA. To reduce this cost, a

screening process, Morris screening method, is performed to
reduce the number uncertain inputs. In this method, each
uncertain input is discretized over its possible range of value
(Morris, 1991). A random combination of all the uncertain
inputs is selected and a fixed number of One At a Time (OAT)
simulations are performed (OAT: one uncertain parameter is
changed at a time while the others are fixed). Then, using
another random combination, the same fixed number of OATs
are performed. This process is repeated for n(k+1), with n being at
least 10 and k being the number of uncertain inputs. At each OAT,
the elementary effect of the jth variable (uncertain input) obtained at
the ith repetition for a function (here representing the code)
f: X ∈ Rd ⟼ R is:

Ej
i( ) � f X i( ) + Δej( ) − f X i( )( )

Δ
(1)

With X(i) the ith combination of input variable X, Δ being the
variation of the jth variable and ej a vector of the canonical base.
Using all the elementary effects, it is possible to determine the mean
and standard deviation as seen in Eqs 2, 3, respectively. The mean of
the absolute value measures the influence of jth input variable on the
output while the standard deviation measures the non-linearity and/
or interaction effects of the jth input variable. Therefore, it is possible
to distinguish between the uncertain inputs that have neglectable
effects on the output, large linear effects without interactions with
other uncertain inputs (large μj*), and large non-linear and/or
interaction effects (large σj). This distinction can be realized
visually by plotting the (μj*; σj) for each uncertain input. The
neglectable inputs will be the ones closer to (0, 0). The limit between
neglectable and non-neglectable inputs is subjective and is
determined by the evaluator.

μj* �
1
r
∑n
i�1

Ej
i( )∣∣∣∣ ∣∣∣∣ (2)

σj �

��������������������
1
r
∑n
i�1

Ej
i( ) − 1

r
∑n
i�1
Ej

i( )⎛⎝ ⎞⎠2
√√

(3)

3.3 Uncertainty quantification

Following the Morris screening, a reduced number of uncertain
inputs is identified. Each epistemic input is discretized over its
possible range of values. Using the discretized space, a full factorial
grid of epistemic points is generated. The objective is to perform
aleatoric uncertainty propagation (UP) at each grid point. The same
aleatoric sampling is used from one grid point to another to allow a
higher comparison consistency of the results between each grid
point. To perform the UP, many sampling methods exist such as
LHS. Using the UP results, the Pearson and Spearman coefficients
can be obtained at each epistemic grid point (Hauke and Kossowski,
2011). The Pearson coefficients is a measure of the linear correlation
between the input of interest and the output of interest. The possible
values range from −1 (fully linear but opposite trends) to 1 (fully
linear with the same trend) with a value of 0 meaning no correlation
at all. The Spearman coefficients are similar to the Pearson but
computed between the ranks of the inputs of interest and outputs of

Frontiers in Energy Research frontiersin.org07

Faure et al. 10.3389/fenrg.2023.1112978

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1112978


interest. It is a measure of the rank correlation between the input of
interest and output of interest, i.e., a value of one means that when
the input value increases, the output of interest value increases as
well. The Spearman coefficients are therefore between −1 and 1. An
analysis of the Pearson and Spearman coefficients at each grid point
can provide some information on effects of the aleatoric and
epistemic inputs on the output of interests.

At each grid point, a CDF can be constructed for the output of
interest. Each CDF depends only on the aleatoric uncertainties, but
each CDF is different based on the epistemic combination. Using all
the grid point CDFs, it is then possible to build p-boxes (the contour
of all the CDFs), see Figure 4. P-boxes represent the minimal and
maximal possible distribution for the output of interest. Small
p-boxes indicate the low effect of the epistemic uncertainties
while large p-boxes show the high impact of the epistemic
uncertainties.

As mentioned in previous sections, the direct Sobol method
requires a high number of computations, making it most of the time
not practical to perform on the entire epistemic grid. To alleviate
these high computational constraints, an analysis of the CDFs to
determine critical grid points is performed. Different metrics can be
used to identify critical grid points. In this work, the integral of the
surface difference Ds between the CDF obtained for the nominal
epistemic grid point (in this paper, it is referred as the reference grid
point and reference CDF), denoted by FNom: X ∈ R ⟼ [0, 1], and
every other grid point CDF, denoted by F: X ∈ R ⟼ [0, 1] is used
as defined in Eq. 4.

Ds � ∫ F x( ) − FNom x( )( )dx (4)

The selected grid points are the ones with the highest and lowest
Ds values, corresponding thus to the extreme CDFs. These two grid
points and the nominal one constitute the three grid points for
which Sobol sensitivity analysis is performed. Other distance metrics
could be used for specific applications and more grid points could be
added if deemed necessary.

3.4 Sobol sensitivity analysis

In fuel performance, the outputs of interest are often functions
of non-linearities and interactions between the inputs. Because of

that, it is important to use methods that account for these non-
linearities and interactions. The Sobol’variance decomposition
allows to do so (Sobol’, 1993). Sobol method belongs to the
Analysis of Variance (ANOVA) methods that aim to explain the
variance of the output based on the variance of the inputs. For a
model (here representing the code), noted f: X ∈ Rd ⟼ R, it is
possible to decompose it as followed:

Y � f X( ) � f0 +∑d
i�1
fi Xi( ) +∑d

i< j
fij Xi, Xj( ) + . . . + f12...d X( ) (5)

WithX being the vector of inputs, Y being the output of interest,
and Xi being a specific input. For independent inputs, the variance
in the output of interest can be expressed as a combination of finite
terms, with each term being a function of one or multiple inputs.
This decomposition is unique.

Var Y( ) � ∑d
i�1
Di Y( ) +∑d

i< j
Dij Y( ) + . . . +D12...d Y( ) (6)

With:

Di Y( ) � Var E Y|Xi( )( ) (7)
Di,j Y( ) � Var E Y Xi,Xj

∣∣∣∣( )( ) −Di Y( ) −Dj Y( ) (8)

Di(Y) is the variance of Y due to Xi only. In other terms, it is a
measure of how much the expected value of Y with only Xi being
fixed, varies by changing Xi. If the expected value does not change
while varying Xi, then Di(Y) is zero, i.e., the contribution of Xi in
the variance of Y is null. Using this definition of the variance, it is
possible to define the Solbol’s sensitivity indices which represent the
contribution of one input to the total variance of the output of
interest, see Eq. 9. For example, for a specific input, the first order
sensitivity index, provides howmuch of the variance of the output of
interest can be explained by the contribution of this input only. The
second order index is made of the second order interaction of this
specific input with another other input (e.g., X1X2, or X1X3,, . . .).

Si � Di Y( )
Var Y( ), Sij �

Dij Y( )
Var Y( ), . . . (9)

With:

∑
i

Si ≤ 1 (10)

FIGURE 4
UQ results example with p-box.

Frontiers in Energy Research frontiersin.org08

Faure et al. 10.3389/fenrg.2023.1112978

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1112978


The first order sensitivity indices require a high number of
computations. To obtain higher order indices, even more
computations are necessary. Therefore, the total sensitivity
indices were introduced to alleviate this burden while obtaining
some information on the interaction of the inputs. The total
sensitivity index, see Eq. 11, of a specific input is made of the
first order sensitivity index plus all its interactions with all the other
inputs, i.e., it is a measure of the total effect of the input on the
output of interest taking into account all possible interactions with
the other inputs. Contrary to the sum of the first order sensitivity
indices, the sum of the total sensitivity indices can be above one
because the interactions between inputs are counted into multiple
total sensitivities indices (e.g., the interaction of X1; X2 is part of
ST1; ST2).

STi �
Var Y( ) − Var E Y X−i|( )( )

Var Y( ) � Si +∑
j≠i

Sij + ∑
j,k≠i

Sijk + . . . (11)

With Var(E(Y|X−i)) being the total contribution to the variance
from non-Xi (defined as fixing all the variables exceptXi). To obtain
the first and total sensitivity indices, Saltelli determined that n(k+2)
computation can be used (n being at least 10,000 and k being the
number of uncertain inputs) (Saltelli, 2002). n is generally picked to
be a power of 2. By obtaining the Sobol sensitivity indices, it is
possible to explain quantitatively the behavior of the output of
interest based on the input’s uncertainties, allowing a deeper and
more detailed understanding of the physics behind the phenomenon
modeled.

Although Sobol indices are very informative, they are also very
computationally demanding and that is why in most of studies,
surrogate models are used for their estimation. Multiple surrogate
models exist such as PC and artificial neural networks (Marrel et al.,
2008; Cresaux et al., 2009; Bouloré et al., 2012; Gamble and Swiler,
2016). The main advantage of the surrogate model is its low
computational time. However, because it is a surrogate model, it
models a link between the inputs and the output of interest.
Therefore, it is of primary importance to determine the accuracy
of the surrogate model. Two processes can be realized to gain
confidence in the surrogate model: (1) to compare the results of
the code and the surrogate model on a different set of inputs than the
ones used to train the surrogate model (Q2 value), (2) to compare the
sensitivity indices obtained using the Sobol method with direct code
evaluations and obtained using the surrogate model. By doing so,
one can gain confidence in the surrogate model and use it to estimate
all sensitivity indices over the entire epistemic grid. It is however
important to remember that the surrogate model can only predict,
with some confidence, the sensitivity indices at each point of the
epistemic grid and not necessarily on the entire epistemic space
at once.

4 Uncertainty quantification results

4.1 Morris screening

The Morris results are presented in Figure 5 for the maximal
cladding axial elongation during the first cold ramp test and the
average cladding outer diameter after the cold ramp 1. For

readability reasons, only the relevant inputs have been identified
in Figure 5. The selection of the cut-off limit is generally empirical.
Since this paper is focusing on methodology itself, a cut-off limit set
at 0.5 of the maxima of the μj* and σj for each output was selected.
The reason for such a high cut-off threshold is to limit the number of
uncertain inputs for computational reasons. In our specific case, the
addition of the cladding thickness uncertainty would increase the
total cost by more than 10% for the Sobol method. Based on these
results, in Table 3 the selected inputs that will be used for the UQ and
SA are listed.

4.2 Uncertainty propagation and analysis

Each of the three epistemic uncertain inputs were discretized
with a total of five values spaced evenly over the entire respective
input ranges. We denote ui, the distance between each discrete point
for the epistemic input i. The inputs ranges being centered on the
FAST default value of each model, we have adopted the following
notation for describing the discretized values: −2 ui, −1 ui, 0 ui, 1 ui,
or 2 ui. Therefore, for an interval [a, b] centered in 1 after
normalization, we have a = 1-2 ui and b = 1 + 2 ui. Hence, the
full factorial epistemic grid is composed of 5 × 5×5 (e.g., 125) points.
For readiness reasons, the grid points will be denoted only by the
coefficient in front of ui: (−2, 1, 0) correspond to (−2 u1, 1u2, 0u3).
Concerning the aleatoric uncertain inputs, the same LHS made of
200 sampling was used at each grid point. The reference grid point
and reference CDF are the grid point with no variation of the
epistemic uncertain inputs (i.e., the point (0, 0, 0)) and the CDF
obtained at this grid point, respectively. Figure 6A shows the
reference CDF as well as the p-box for the maximal cladding
axial elongation. The values have been normalized using the
measurement value (i.e., a value of one means the code predicted
the measurement value, the same process was applied for the average
cladding outer diameter shown below). From Figure 6 it can be
observed that the range of possible values for the axial elongation
varies significantly with the epistemic combinations and the
aleatoric variations. Only 87% of the grid points results in at
least one aleatoric combination leading to a maximal cladding
axial elongation of one or above. The difference in shape
between the p-box left bound and the right bound, or between
the reference CDF below 0.8 and after 0.8, is due to the gap closure
happening in the latter case. When gap closure does not happen, the
cladding axial elongation is mostly due to the cladding thermal
expansion. Meanwhile when gap closure happens, some of the fuel
axial elongation is being transmitted to the cladding resulting in a
much higher cladding axial elongation.

The CDFs for α0.05 � 0.05, α0.5 � 0.5, and α0.95 � 0.95 (i.e., 5th,
50th, and 95th percentile) have been computed and are presented in
Figure 6B. A αy cut is obtained by fixing the CDF to a certain value y
and looking at the corresponding relative maximal cladding axial
elongations for each grid point. α0.05 covers a very small range while
the α0.95 covers most of the possible values of maximal cladding axial
elongation. α0.5 CDF shows that for many grid points only a few
epistemic combinations results in a value of one or above.

Concerning the average cladding outer diameter, Figure 7 shows
the reference CDF with the p-box and the α cuts CDFs. The
epistemic uncertain inputs seem to shift the CDF more than
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actually modifying their shape. This is partially due to the lack of
plastic deformation on the rodlet. However, when plastic
deformation happens, they are very local and so by averaging the
diameter over the entire rodlet, their impacts are significantly
reduced. Therefore, the impact of the epistemic uncertainties and
aleatoric uncertainties are mostly during the base irradiation with a

small to none impact on the cladding outer diameter during the cold
ramp. Similarly, to the maximal cladding axial elongation, only a few
aleatoric combinations for each grid point result in a value equal or
above 1. However, in this case, all the grid points have at least one
aleatoric combinations resulting in a value equal or above 1. Figures
6, 7 demonstrate the need for a consistent treatment of uncertainty,

FIGURE 5
(A)Morris results for the maximal cladding axial elongation (B)Morris results for the average cladding outer diameter after the cold ramp. The dash
lines represent the cut-off limits.

TABLE 3 Reduced uncertain inputs subset.

Aleatoric uncertain inputs

Cladding outer diameter (cod) Fuel outer diameter (fod) Coolant temperature base irradiation (tbi)

LHR base irradiation (lhrbi) LHR ramp 1 (lhrr1) Fuel thermal conductivity (ftc)

Cladding thermal conductivity (ctc)

Epistemic uncertain inputs

Fuel thermal expansion (fte) Fuel swelling (fsw) Cladding creep (ccre)

FIGURE 6
Maximal cladding elongation during the cold ramp 1 (A) P-box and reference CDF (B) 5th, 50th, and 95th percentile CDF.
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but also highlight the necessity of more analysis to be able to
understand in much deeper details the phenomenon happening.

Figures 8, 9 shows the Pearson and Spearman coefficient
distributions. The mean corresponds to the average value
obtained across the entire full factorial epistemic grid, while the
range goes from the minimal to the maximal coefficient values. For
the maximal axial cladding elongation, the cladding thermal
conductivity seems to have an almost negative linear effect on

the maximal axial elongation. A value close to −1 (Pearson and
Spearman) is observed for grid points where almost no gap closure is
predicted. In this case, the cladding axial elongation is mostly due to
the cladding thermal conductivity. As gap closure happens more
frequently in the epistemic grid points, the coefficients increase to
reach a maximal value of −0.39 indicating that more inputs become
influential on the cladding axial elongation. When gap closure
happens, the fuel axial elongation is transmitted to the cladding.

FIGURE 7
Average cladding outer diameter after the cold ramp 1 (A) P-box and reference CDF (B) 5th, 50th, and 95th percentile CDF.

FIGURE 8
Pearson and Spearman coefficient for the maximal cladding axial elongation.

FIGURE 9
Pearson and Spearman for the average cladding outer diameter.
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Gap closure is a complex phenomenon involving possible
interaction between uncertain input parameters influencing the
fuel temperature (e.g., LHR, fuel conductivity) and/or uncertain
input parameters influencing the gap width before the ramp (e.g.,
fuel and cladding initial diameter). For example, a higher fuel
thermal conductivity and lower LHR will have a higher impact
on the gap and its closure than the opposite (lower fuel thermal
conductivity and higher LHR). Additionally, changing the fuel or
cladding outer diameter initial values impacts the gap size initially.
This impact is then propagated through the base irradiation.
Therefore, if any or both diameters’ uncertainties lead to a
smaller gap size, this will be observed as well before the cold
ramp. This smaller gap size would then lead to gap closure
earlier. Possible interactions with the LHR and the conductivities
are therefore possible. The Sobol method will confirm or not the
presence of interaction between uncertain inputs. Concerning the
average cladding outer diameter, the initial cladding outer diameter
has a linear effect on the output as expected. Based on the Pearson
and Spearman coefficients for the cladding thermal conductivity, its
impact on the average cladding outer diameter seems to be complex
(both coefficients can be positive or negative indicating opposing
trends). This example shows some of the limitations of the Pearson
and Spearman coefficients since the input interactions effects cannot
be measured.

The LHR uncertainty during the base irradiation was not
considered time dependent and thus did not conserve the burnup
for every sample. To determine the impact of this assumption, a time
dependent LHR uncertainty was investigated. The base irradiation
being divided into three cycles, the first two cycles LHR were applied
an independent uncertainty each. Then, using the conservation of
the burnup, the LHR of the third cycle was modified accordingly.
The UQ results show minimal effects of this new approach.

Using Eq. 4, the following grid points have been selected for the
Sobol SA in the next step. The grid points are denoted as the
variations of the fuel thermal expansion, fuel swelling, and the
cladding creep based on the discretization notation mention
above: −2 ui, −1 ui, 0 ui, 1 ui, and 2 ui with 0 ui being FAST
default value, and ±2 ui corresponding the interval bounds. For
example, the notation (1, 0, 2) would corresponds to one variation of
the fuel thermal expansion, 0 variation for the fuel swelling, and two
variations of the cladding creep:

- (-2, −2, 0): CDF with the largest area with the reference CDF
on its left, i.e., smallest negative metric value, for the maximal
cladding axial elongation.

- (2, 2, 2): CDF with the largest area with the reference CDF on
its right, i.e., largest positive metric value, for the maximal
cladding axial elongation.

- (-2, −2, 2): CDF with the largest area with the reference CDF
on its left, i.e., smallest negative metric value, for the average
cladding outer diameter.

- (2, 2, −2): CDF with the largest area with the reference CDF on
its right, i.e., largest positive metric value, for the maximal
outer diameter.

Interestingly, the smallest negative metric value for the maximal
cladding axial elongation is not the grid point (−2, −2, −2). The
difference in area between the point (−2, −2, 0) and (−2, −2, −2) is

only 0.3%. Within that percentage difference lies four other grid
points. The reason behind all these results being so close, and
therefore showing the relatively small difference between each of
these grid point CDFs, is that gap closure almost never happens for
most of the aleatoric combinations. Hence, the maximal cladding
axial elongation is due only to the cladding thermal expansion and
so to the cladding temperature. The reference grid point is added to
the list of the selected point for the Sobol SA creating a total of five
grid points for the two outputs of interest.

4.3 Sobol sensitivity analysis

The Sobol first order and total indices were computed at each of the
selected grid points using FAST. As aforementioned, Saltelli determined
that (n(k+2) computation can be used for computing the Sobol indices (n
being at least 10,000 and k being the number of uncertain inputs)
(Saltelli, 2002). Therefore, a total of 147,456 (=16,384*(7 + 2) = 214*(7 +
2)) samples were used. Figures 10, 11 show the results for the maximal
cladding axial elongation and the average cladding outer diameter,
respectively. S1 is for the first Sobol index while ST is for the total
Sobol index. For the maximal cladding axial elongation, it can be
observed that for the grid point with low amount of gap closure
(i.e., −2,-2,0), the cladding thermal conductivity has a total index of
0.8 and a first index of 0.59. As mentioned above, the cladding axial
elongation is mostly due to the thermal expansion of the cladding and
therefore, the conductivity of the cladding impacting the temperature has
a strong impact. However, as more and more gap closure is observed in
the grid points, the contribution of the fuel thermal conductivity and
initial cladding outer diameter indices increase as the cladding thermal
conductivity decreases. A lot of interaction can be observed especially for
the grid point (2,2,2) (grid point with the highest metric for the cladding
axial elongation). These three inputs are the ones that influence themost
the gap width during the cold ramp. Interaction between them leads to
gap closure sooner or later and on a higher proportion of the rodlet.
Therefore, they determine howmuch of the fuel axial elongation is being
transmitted to the cladding. Concerning the average cladding outer
diameter, it is mostly influenced by the initial cladding outer diameter
due to the lower impact of the local plastic deformations with the
averaging. The grid point (2,2,2) (not part of the grid points selected in
the prior step for the average cladding outer diameter) was added to
Figure 11 because of the different trend observed. At the grid point
(2,2,2), a lot of plastic deformation appeared, therefore impacting the
cladding diameter. This is translated by the lower initial cladding outer
diameter indices and the slight increase in the cladding and fuel thermal
conductivity which impact the gap closure and also the fuel thermal
expansion, therefore the plastic deformation of the cladding.

From Figure 10, it can be deduced that the uncertainties on the
cladding outer diameter and fuel outer diameter only have
significant impact when gap closure happens: both uncertainties
impact the gap size before the cold ramp. Based on the Sobol results,
it seems the cladding thickness might have some none-negligible
impact in some cases since it impacts the gap size as well. However,
during the Morris screening results analysis, the cladding thickness
was not selected has an important uncertain parameter. The
uncertainty on the cladding thickness has a standard deviation
40% larger than the cladding outer diameter (and almost three
times larger than the fuel cladding outer diameter), but the cladding
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FIGURE 10
First (S1) and total (ST) Sobol indices for the maximal cladding axial elongation. Sobol means indices were calculated from the Sobol method while
indirect means from the surrogate model.

FIGURE 11
First (S1) and total (ST) Sobol indices for the average cladding outer diameter. Sobol means indices were calculated from the Sobol method while
indirect means from the surrogate model.
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thickness is many times smaller than fuel and cladding outer
diameters. Therefore, the uncertainty on the cladding thickness
has a much smaller impact on the gap size than both
uncertainties on the diameters: varying each of these parameters
by one of their respective standard deviations, the cladding thickness
would lead to a decrease of 1.1% of the gap size, the fuel outer
diameter to 2.6%, and the cladding outer diameter to 6.1%. Looking
at the Sobol results, it is therefore possible to conclude that the
cladding thickness would have a none significant impact on the
maximal cladding axial elongation and cladding outer diameter
because it impacts on the gap size being much smaller than the
diameters uncertainties.

For each grid point where the Sobol indices were computed, the
PCs were trained on the same grid point using the results from the UP
step. Second order polynomials are used leading to interaction in XIXJ

only. The results obtained are shown in Figures 10, 11 with the notation
“Indirect”. It can be observed that the surrogate model accuracy for the
average cladding outer diameter is relatively high. Theminimal R2 value
for the five grid points is 0.99. Concerning the maximal cladding axial
elongation, accuracy is lower with some grid points being more
inaccurate than other (e.g., grid point (0, 0, 0) vs. (−2, −2, 0)). The
R2values vary from 0.946 to 0.994. Q2 values were computed using the
SA sampling and outputs. The values for the maximal cladding axial
elongation varies between 0.905 and 0.974, with the lower values being
for the grid points with the highest discrepancies in the Sobol indices.
For the average cladding outer diameter, the values are above 0.99.

The average cladding outer diameter variance seems to be
mostly explained by the initial cladding outer diameter in an
almost linear relationship. In this case, almost no input
interactions are observed, and the PCs are able to capture that
very effectively. This demonstrate the correct implementation of the
surrogate model. In a much more complicated case, such as for the
maximal cladding axial elongation, interactions between inputs are
observed and do not seem to be captured by the PCs in two grid
points ((-2,-2,0) and (2,2,2)). The reasons behind these poor
performances are being investigated.

5 Discussion

An important part of the methodology relies on the judgment of
the evaluator concerning if an uncertainty is epistemic or aleatoric.
Some uncertainties are well characterized by experiments directly on
the rod being modeled, however in many cases it is not true.
Uncertainties obtained from the literature, as it is the case in this
paper, are treated as aleatory or epistemic depending on the
evaluator estimates that they relate to its case. Therefore, two
evaluators would not necessarily have the same epistemic
uncertain inputs space for the same modeling. Unfortunately,
there is no method to really determine if an uncertain input
should be considered epistemic or not. Another problem might
arise when too many epistemic uncertainties are present, and the
computational cost is too expensive to treat them accordingly. This
will need to be addressed in the future especially when multi-physics
UQ and SA will be performed.

The treatment of epistemic uncertainties in this paper is realized
by using an interval of possible values with no probability attached.
Other methods could be used as well, such as Fuzzy theory (Hanss

and Turrin, 2010; He et al., 2015). It is also possible to treat the
uncertainties as a combination of epistemic and aleatoric. For
example, the input can be associated with a normal distribution
with an uncertain standard deviation and mean. Such treatment
might require more information on the uncertain inputs but would
allow a more accurate modeling of the uncertainties. Normal
distributions and intervals for both types of uncertainties are
used in this paper. However, as aforementioned, other probability
treatments can be used. The selection of a probability law should be
evidence based, if possible. The methodology proposed here is
agnostic to the selected input uncertainty quantification.

The methodology presented in this paper can be used in
combination with a low-fidelity code as a screening for a much
more computationally expensive high-fidelity code. The conclusions
of the low-fidelity code SA are used to determine the uncertain
inputs and grid points of importance for the scenario being modeled.
More analysis can then be performed with higher fidelity codes.

The objective of the presented methodology is to understand
better the physical phenomena involved and to treat uncertainties
consistently in terms of their fundamental nature. The separation
thus of epistemic and aleatoric uncertainties can be considered as a
more accurate approach similar to how using a 3D finite elements
code is more consistent in terms of modeling approximation than a
1.5D finite difference code. Considering epistemic uncertainty as
interval, as done in this work, can leads to a wide range of values for
the any percentile of all CDFs rather than a single value. Figure 12
shows the results of the uncertainty propagation in the case all
uncertain inputs are treated as aleatoric. The p-boxes previously
obtained are also shown. It can be observed that using only aleatoric
uncertainties yields a single curve inside the p-boxes previously
obtained. In BEPU, the 95th percentile value (and/or 5th percentile
value) is generally investigated for safety concern. The authors
would like to call this approach the horizontal analysis: a
percentile is selected, and a horizontal line can be drawn at this
value for analysis (see Figure 12 and the 95th percentile). To have a
more complete analysis regarding safety concerns, the authors
thinks that performing a vertical analysis is also necessary. For
example, for the relative maximal cladding axial elongation, the 95th

percentile lies within the [0.36, 1.56] interval. Using only aleatoric,
the 95th percentile value is 1.1. A vertical analysis for the relative
maximal cladding axial elongation of 1.4 gives that only 15% of the
epistemic grid point leads to this value being reached with for a
percentile between the 90th and the 95th percentiles, and only 7% with
a percentile between the 80th and the 90th percentiles. The lowest
percentile value being the 80th percentile. This vertical analysis
provides a more complete analysis for safety concerns.

In BEPU, the input’s uncertainties are propagated to a safety output
of interest and then statistical metrics are computed that could be
compared to safety limits. As explained in the above paragraph, the
methodology leads to different results compared to traditional
methodology, but the results obtained can still be used for safety
limit with a different analysis as shown above. Therefore, the authors
think the developed methodology can be suited for BEPU, but it
increases the computational cost requiring a careful consideration of
its usage in a similar way to how 3D finite elements are used. An example
commonly used is the estimation of the 95th percentile with 95%
confidence using the Wilk’s formula (Wilks, 1941). Using the Wilk’s
formula for the 95th percentile with 95% confidence and considering all
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inputs as aleatoric, the upper value found is 1.58 for the relative maximal
cladding axial elongation. This value is actually larger, and therefore
more conservative, than the upper bound of the 95th percentile
determined using the methodology developed (i.e. 1.56). However, it
is not possible make a general conclusion regarding if the developed
methodology is more conservative than Wilk’s formula. It is important
to note that using the Wilk’s methodology implies that all uncertain
inputs are treated the same (no separation of epistemic and aleatoric
uncertainties). A more accurate process would be to perform the Wilk’s
methodology for the aleatoric uncertainties only but at different
epistemic grid point. For the reference grid point, Wilk’s formula
would lead to a 95th percentile with 95% confidence of 1.33. Another
analysis of the results obtained and not possible withWilk’s, for example,
would be to estimate the contribution of the aleatoric uncertainties and
epistemic uncertainties to themaximal value of 95th percentile, see Eq. 12.
A simple way of doing is to take the average value; MeanReference,
obtained (0.29 for at the reference grid point). Then, the aleatoric
uncertainties would lead to the vertical variations up to the 95th

percentile ΔAleatoric (+0.49 needs to be added to reach the 95th

percentile from the average value for the reference grid point) while
the epistemic uncertainties lead to the horizontal variations of the 95th

percentile value ΔEpistemic (+0.78 is the contribution of the epistemic
uncertainties to the 95th percentile).

Value95thpercentile � MeanReference + ΔAleatoric + ΔEpistemic (12)

6 Conclusion

The treatment of the epistemic uncertainties play an important role
in UQ and SA. However, in the literature many studies can be found
where all uncertainties are treated as aleatoric. Such methodology
hinders the analysis performed and the results obtained. A consistent
methodology for uncertainty analysis (UQ + SA) for epistemic and
aleatoric uncertainties in fuel performance is developed and presented.
After selecting all possible sources of uncertainties and categorizing them
as aleatoric or epistemic based on the confidence on the knowledge

available, a screening SA is performed using Morris method. This
analysis allows to reduce the uncertain input subspace by selecting
only the inputs being influential on the output of interest. Then, a grid of
epistemic points is developed and a nested approach for the UQ is used.
At each epistemic grid point, the same aleatoric uncertainty propagation
samples are used. A p-box is then constructed based on the obtained
results. The third step is the analysis of the p-box to select the critical grid
points for global sensitivity analysis. At these grid points, a Sobolmethod
is used to perform the SA. Two additional steps allowing amore detailed
analysis can also be realized. (1) A surrogate model is developed and
trained on the UQ sampling at each grid point. By calculating a Q2 value
on the SA sampling and then comparing the Sobol indices from the
Sobol method results, it is possible to gain confidence in the surrogate
model. Using it, the SA can be performed on the entire epistemic grid.
(2) Using the conclusion of the SA, the aleatoric inputs being influential
on the output of interest as well as the epistemic grid point of importance
can be selected. Using this selection and a higher fidelity code, more
analysis can be performed. The proposed separation of epistemic and
aleatoric inputs, is not only more consistent in terms of the uncertainty
propagation but also allows a more informative global sensitivity
analysis, where the interactions between epistemic and aleatoric
inputs can be assessed.

The methodology was applied to the MPCMIV benchmark Tier
four cold ramp 1 (De Luca et al., 2018). The benchmark Tier four
exercises consist of modeling a base irradiation for 3 years in a BWR,
followed by a refabrication into a smaller rodlet. The rodlet is then used
for a cold ramp test, less than 1 minute irradiation at high LHR. The
methodology was applied to the cold ramp. The modeling was
performed with FAST (Geelhood et al., 2021). The maximal
cladding axial elongation during the cold ramp can vary over a wide
range of values depending on the epistemic uncertainties grid point.
Gap closure is not observed for most aleatoric combinations in some
epistemic grid points leading to low cladding axial elongation. For some
other grid points, gap closure is observed for most aleatoric
combinations leading to cladding axial elongation much larger.
Interactions between epistemic and aleatoric uncertainties are also
observed in the Sobol indices. The fuel and cladding conductivities
and the cladding initial outer diameter are the main inputs influencing

FIGURE 12
UQ results considering all uncertainties as aleatoric for the (A) relative maximal cladding axial elongation and (B) relative average cladding outer
diameter. P-boxes obtained previously are also shown for comparison.
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the cladding axial elongation. Their interactions seem to increase with
the quantity of gap closure observed in each grid point. The surrogate
model, here PCs, lacks accuracy and can not predict the Sobol indices
precisely. Concerning the average cladding outer diameter, the
epistemic grid points shift the CDF obtained more than actually
changing their shape. Based on the Sobol indices, the initial cladding
outer diameter is the mostly the only significant inputs. The surrogate
model predicts with high accuracy the Sobol indices.

Future workwill include amore detail study of surrogatemodels for
Sobol SA to improve the obtained results. Higher fidelity codes are also
being investigated to model the cold ramp. The conclusion presented
here will be used to perform some analysis with these codes. Finally,
improvements on the proposed methodology will be investigated to
decrease the computational cost and thus enlarge its scope.
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