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To address the increasing energy demand, replacing conventional energy systems
with non-conventional resources like solar power generation is crucial.
Photovoltaic (PV) panels play a significant role in harnessing solar energy and
converting it into electrical power. However, the solar cells’ temperature
dramatically influences the panel’s performance, particularly in hot climates. In
this study, a detailedmathematicalmodel is developed and conducted simulations
using three different phase change materials (PCMs)—RT21, RT35, and
RT44—integrated with PV panels in various climate conditions worldwide
during the summer season. An optimization model is also created using
MATLAB and a genetic algorithm to identify the most suitable PCM for specific
climate zones. The findings revealed that incorporating PCM resulted in a surface
temperature reduction of PV panels, leading to a 6% increase in efficiency and a
16% boost in electrical output. Specifically, when using a PCMwith amelting point
of 21°C, the maximum cell temperature during summer operation decreased from
65°C to 38°C. Similar temperature reductions were observed when using PCMs
with melting points of 35°C and 44°C. Current analysis demonstrates that the
correct selection of a phase change material can decrease panel temperature by
approximately 39% in June. Furthermore, PCM with a melting point of 21°C
exhibited the best outcomes in terms of maximum electrical performance,
efficiency, and PV cell temperature reduction.
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1 Introduction

The rapid increase in world population has put immense pressure on energy systems as
the demand for energy to support human activities and development continues to rise. In the
last few decades, power generation and interest in PV systems have increased remarkably
around the world because of both exhaustion of fossil fuels and environmental hazards
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(Othman et al., 2005). During the 10 years of 2010–2020,
Photovoltaics are used immensely, with over 34% percent growth
annually (Allouhi et al., 2022). In the record of changing solar energy
into power, the PV system consented to both prerequisites, with no
CO2 emanations (Kaiser et al., 2014). The rising temperature of the
PV panel causes disturbance in the bandgap (Dwivedi et al., 2020).
Due to this, the photo-generation rate of PV panels increases, and a
minor increase in the current (Jiang et al., 2011. However, the
reverse intensity current also additions quickly with temperature
(Richardson and Harvey, 2015), reducing the efficiency of PV
panels. Therefore, to improve efficiency, artificial cooling is used
to control the panel’s temperature (Vasies et al., 2012). To decrease
the surface temperature, the three most common cooling methods
are used, i.e., fins, cooling of micro-channels, and water spraying on
panel surfaces (Kermani, 2008). (Osmani et al., 2022) reveals that
once the various characteristics of phase change materials (PCM) are
recognized, a selection procedure is established that considers the
melting temperature, latent heat, or thermal conductivity of the
PCM. The findings reveal that Commercial PCM is the most
favorable choice, followed by Organic PCM, primarily due to
their superior chemical properties compared to Inorganic and
Eutectic PCM. The measured power of solar PV depends mainly
on temperature, solar irradiance, orientation or angle of the PV
module, and other environmental parameters like humidity, dust,
wind velocity and direction of the wind, etc. Therefore, the installer
and designer require accurate information before installing PV
modules in specific climates. An analysis showed that solar cell
temperature dropped to 12°C using PV in combination with PCM,
resulting in 1.6 times more energy than conventional (Maiti et al.,
2011). It is evident from different research that the efficiency of PV
cells reduces by 0.45% for every degree increase in temperature
(Stritih, 2016). The experimental work (Bianchini et al., 2017)
suggested that a maximum temperature drop of 35.6°C can be
attained using a PCM-based PV panel system during autumn.
With a melting point of 28°C, PCM can improve power
generation by up to 7.5 percent. Another work indicated that a
PCM layer was applied to PV back surface to enhance the output of
the PV panel by 5% (Paoli et al., 2010). The above studies infer that
PCMs help lower the surface temperature PV cell. If PCM solidifies
entirely during non-working hours, maximum PCM advantages can
be gained with any system, mainly PV system (Lozaro et al., 2009).
(Shi et al., 2021) presented a method to design ionic liquid PCMs for
thermal energy storage. Bhandwal and Tyagi, 2022 research stated
that phase change material (PCM) is also used to maintain the
temperature (Husain et al., 2017). Focuses on different analysis
parameters analysis maximum power tracking. This serves as the
basis for understanding different ways of power tracking. Solar
energy, which is a clean and abundant new energy source, has
broad application prospects (Rajendran et al., 2017; Amina et al.,
2016). This paper elaborates on using solar energy to generate
thermal energy and storage systems by proposing phase change
materials as the collector fluid for the thermal energy storage system
(Muruganantham and Balaji, 2021). The researcher (Shakibi et al.,
2023) combines finned collectors with a nanoparticle-based phase
change material (PCM) layer to enhance electricity generation in
photovoltaic/thermal (PV/T) collectors. This combination results in
10%–24% of thermal efficiency improvements. Marudaipillai et al.,
2023 investigated the comprehensive enhancement of thermal

management and performance in cooling solar PV panels
through experimental methods. This was achieved by utilizing a
stable phase change material composed of polyethylene glycol and
expanded graphite. The proposed PV panel demonstrated a
noteworthy efficiency improvement of 3.667%, surpassing the
conventional cooling technique (heat sink) with a mere 1.072%
efficiency enhancement.

Chandel and Agarwal, 2017 studied the hazards and
environmental challenges that can occur due to using PCMs.
They presented an overview of major available PCMs and their
applications. They found a lack of understanding about using PCMs
and a requirement to enhance awareness of their use to tackle
current challenges.

As of the author’s knowledge, the passive cooling technique of
PV panels has not been as much in focus compared to the
experimental setups. However, at the initial design stage, it is
essential to analyze the most appropriate PCM material that
provides maximum heat dissipation in a particular climate before
the experimental setup, which becomes costly and time-consuming.
Therefore, in the current study, a detailed model-based optimization
approach is developed to analyze the most suitable PCM in a specific
climate at the initial design stage, as mentioned in Table 1. A
comprehensive mathematical model is developed and coded in
MATLAB. Then Optimization is performed using a genetic
algorithm in three climates worldwide where solar PV systems
are already installed.

2 Methodology

A mathematical model is made based on heat transfer
mechanisms involved in using PCMs on the rare side of PV cells.
The climate data of the summer season, i.e., April to August, of the
selected cities, including Bahawalpur-Pakistan, Bhadla-India,
Arizona-United States, is integrated with the model to check the
performance of different PCMs in different climatic conditions.
Three PCMs, RT21, RT35 and RT44, are used in this study for
analysis.

2.1 Model development

In this section, a mathematical model that is used for calculating
the efficiency, panel temperature, and heat transfer mechanism in
PCMs is discussed in detail. The model involves basic components
of PV and PCM such as glass cover, Solar cell with EVA, and Tedlar
and, subsequently their equations for energy balance as shown in
Figure 1. The PCM is considered on the back side of the cell. The PV
panel is placed on the roof of a building.

2.1.1 Model for PV panel
Energy balance equations are based on the following

assumptions.

• Transmissivity is not affected in the presence of EVA (Tonui
and Tripanagnostopoulos, 2007).

• 1-Dimensional heat conduction estimation is used (Solanki
et al., 2009).
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2.1.2 Energy balance for glass cover
The energy balance equation incorporates that portion of solar

radiation absorbed and depends on the glass cover. The convection
coefficient of heat transfer due to air can be found using the
relationship:

hw � 5.8 + 3.7 × Vwind (1)

2.1.3 Energy balance for solar cells
The surface temperature of the panel is determined using the

following expression, which applies to specific modules (Migan,
2013):

Tc � Tair + 0.32
8.91 + 2V

( ) × S (2)
UT × Tbs − Tc( ) � hw × Tamb − Tbs( ) (3)

Eq. 3 is used to calculate the back-surface temperature Tbs. The
first step is to obtain the region’s air temperature, Wind velocity, and
Solar irradiance from the resource data (MERRA) to calculate the
cell temperature of the panel using Eq. 2. Once cell temperature is
known, ambient temperature, conductive and convective heat
transfer coefficient is used along with known cell temperature to
find back surface temperature of the panel where PCM is attached.

2.2 Mathematical model for PCM

In the current work, the enthalpy method is used to determine
the temperature of PCM (Voller et al., 1987). Few assumptions are
used for the heat transfer mechanism in PCM.

• Within PCM, heat is transferred only through conduction.

TABLE 1 Related Studies on PCM based PV cooling.

Reference Type of
analysis

Type of PCM
analyzed?

Analysis for
different
PCMs?

Duration of
analysis?

Location of
analysis?

Climate
zone?

Analysis carried
out for different
climate zones?

Malvi et al.
(2011)

Energy analysis Paraffin wax No One day Leeds university
United Kingdom

__ No

Modjinoue et al.
(2019)

Energy analysis Macro-
encapsulated

No Two days (10 Jan
and 9 April)

Hefei, China __ No

Gaur et al. (2017) Energy analysis Bio OM37 PCM No Two days (20Feb
and 8July)

Lyon, France __ No

Hosseinzadeh
et al. (2018)

Energy and
Exergy analysis

Organic
Paraffin Wax

No Selected days in
Aug and Sept.

Ferdowsi University of
Mashhad, Iran

__ No

Salari et al.
(2020)

Energy, Exergy
and Entropy
analysis

Paraffin Wax No 9:30 a.m. to 3:
30 p.m. on Selected
days in Aug

Ferdowsi University of
Mashhad, Iran

__ No

This work Energy analysis Tested different
PCMs to find
optimum one.

Yes Seasonal Three different locations
(Bahawalpur, Arizona,
Bhadla)

Three
climate zones

Yes

FIGURE 1
PCM-based PV panel.
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• Natural convection due to density difference is not considered.
(Zivkovic and Fujii, 2001).

The liquid fraction (LF) indicates the state of PCM. LF =
0 indicates the solid phase of PCM(Tpcm < Tm), while LF =
1 indicates the liquid state (Tpcm > Tm). If 0 < LF < 1, indicates
the mushy region.

The total enthalpy of the system can be determined from the
following relations:

H �

∫Tpcm

Tm

Ppcm Cpcm dTpcm for Tpcm <Tm SensibleHeat

Ppcm LF λ forTpcm � Tm Latent Heat

∫Tpcm

Tm

Ppcm Cpcm dTpcm + Ppcmλ forTpcm >Tm Sensible + Latent

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

The relationship in equation-4 indicates that when PCM is in a solid
phase, the latent heat of a material is zero, and the value is entirely due to
its sensible heat. In the liquid state, total enthalpy is the mixture of latent
heat and sensible heat where PPCM is density, CPCM is the specific heat
capacity, λ is the latent heat, and Tm is the melting point of PCM. As
TPCM the above equation is initially unknown, which can be calculated
using the boundary condition in Eq. 9. After this, its value is replaced in
Eq. 4, where enthalpy H can be calculated.

Volumetric enthalpy is used to calculate the PCM temperature.
“TPCM” using the following relationship:

Tpcm �

Tm + H

Ppcm Cpcm
forH< 0 Solid region

Tm for 0<H<Ppcm λ Mushy region

Tm + H − Ppcm λ( )
Ppcm Cpcm

forH> Ppcm λ Liquid region

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

The remaining unknown now is cell temperature with PCM
“Tcpcm” which can be calculated from Eq. 6 (Waqas and Jie, 2018).

UT × Tbs − Tc( ) � A × kTd
Tbs − Tcpcm

ΔxTd
( ) (6)

Where A is the cell area, kTd is the thermal conductivity of the
PV back surface taken as 0.01, ΔxTd is the thickness of the back
surface taken as 0.00010 mm.

Temperature related efficiency ɳc can be calculated from the
relation in Eq. 7 (Dubey and Tiwari, 2008).

ηc � ηref × 1 − β × Tc − Tref( )( )[ ] (7)
E � ηc × βc × ατ × S (8)

The electrical output from Eq. 8 can be calculated using the
relation mentioned in (Ji et al., 2008; Keliang et al., 2009)

2.2.1 Initial and boundary conditions
PCM is in solid-state before the start of simulation.

∂Tpcm

∂y
y � 0, t( ) � UT Tbs − Tc( ) (9)

In Eq. 9, the boundary condition states that PCM is bound to the
PV’s backside. Depending on the back-surface temperature of PV,
heat is gained and lost from PCM at this point.

2.2.2 Types of PCMs
Commercially available PCMs-RT21, RT-35, and RT-44 at

RUBITHERM GmbH (Rubitherm, 2020) are used for the study
having a melting point of 20–23°C, 34–36°C, 43–44°C, respectively.
PCMs are selected based on their efficiency. PCMs are included only
in the study if their efficiency increases by 17% for the current study.
All three chosen PCMs have an efficiency greater than 17% when
combined with boundary conditions. Detailed properties of PCMs
are given in Table 2. In addition, the properties of the panel are
mentioned in Table 3.

3 Köppen climate classification

In the current study, three climates are considered for the
analysis. This includes Köppen climate classification considered
cities with Bwh (Hot desert climate) category, including
Bahawalpur-Pakistan, Bhadla-India, Arizona-United States
(Merra., 2020). Due to overheating panel surfaces, PV systems
can face severe challenges in such environments. The main
reason for selecting these areas is that solar parks are built there.
This climate represents a desert region where summer is very hot
and dry while winter is mild. All three cities have temperatures
relatively different than others in the summer season. Along with
city data, three PCMs are being used in this research. Due to
overheating panel surfaces, PV systems can face severe challenges
in such climates. The main reason for selecting these areas is that
solar parks are built there. This climate represents a desert region
where summer is very hot and dry while winter is mild. Figure 2
shows the climatic data for the current study for all seasonal
analyses. It illustrates the ambient temperature, wind speed, and
Solar radiation for the Apr-Aug months in those areas.

4 Model validation

Validation of the current computational model is presented in
this section. PV temperature when PCM is attached to the back
surface of the PV module is validated by the published results of
(Ciulla et al., 2012). For this purpose, experimental values and data
of PCM, PV cells, and solar radiation are used in the current model.
The temperature of PV with PCM has been compared and validated
from the published results, as shown in Figure 3. In the recent
analysis, results of PCM with a melting point of 35°C are compared
with experimental results. It can be observed that the model
developed in this work effectively reduces the temperature of the
PV panel on 19th June. Using data from published results, the
current study model predicted the PV temperature of the panel
using phase change materials. Results suggest that the
computational model has the same behavior as the published
experimental results for June in Palermo-Italy. Overall, the trend
of the predicted result is very similar to the experimental result, and
it makes the model capable of predicting the results of PV panels
using PCM as a heat sink. Further, to compare the experimental and
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the simulated results, root mean square percent deviation (e) and a
correlation coefficient (r) have been evaluated using Eqs 10, 11
(Bahaidarah et al., 2013). Root mean square percent deviation (e)
and a correlation coefficient (r) are the statistical indicators generally
used to validate the experimental and modeling results.

e �
����������������������∑100 Xsim,i −Xexp,i( )/Xsim,i

n

√
(10)

r � n ∑X exppXsim( ) − (∑Xexp)p ∑Xsim( )������������������������������������������������
np ∑Xexp2( ) − ∑Xexp( )2]p [np ∑Xsim2( ) − ∑Xsim( )2[ ]√

(11)

The numerical results predicted by the current model and
experimental results with a correlation coefficient (r) = 0.967 and root
mean square percent deviation (e) = 2.2% is obtained. This demonstrates
that the model can predict the PV temperature with reasonable accuracy.

5 Results and discussion

5.1 Effect of PCMs on PV cell temperature

Firstly, the PCM behavior is analyzed regarding the PV cell’s
temperature. Figure 4 displays the average cell temperature of PV
with and without PCMs in all cities using PCM with a melting point of
21, 35 and 44. It is evident that phase changematerials have significantly
reduced the PV cell temperature in all areas throughout the season,
especially in Bahawalpur and Bhadla regions, with comparatively higher
temperatures than others. However, based on Figure 4, the maximum
temperature drop has been observed through PCM RT-21, where the
temperature has dropped about 23.6% (Case of Bahawalpur in April).
This decrease for PCM RT-35 and RT-44 is 13.1% and 15.7%,
respectively, thus reflecting their comparatively low effectiveness.
Further, it should also be noted that this temperature decrease
depends on a specific area and its peak temperature. Since Bhadla

TABLE 2 Properties of PCMs.

Properties PCM (RT21) PCM (RT35) PCM (RT44)

Commercial name RT-21 RT-35 RT-44

PCM category Organic Organic Organic

Melting point 20–23 34–36 43–44

Latent heat (kJ/kg) 190 240 250

Density (kg/m3) 880 for solid and 770 for liquid 800 for solid and 700 for liquid

Thermal conductivity (W/m-k) 0.2 for both phases

Specific heat capacity (kJ/kg-k) 2.0 for both phases

TABLE 3 Properties of PV panel.

Panel name Monocrystalline panel

Panel Power 10 W

Cell area 100 mm*100 mm

Thermal conductivity 1.23 W/m-k

Volume of Container 100 mm*100 mm*30 mm

FIGURE 2
Seasonal Climatic data for the current study.
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has the highest average peak temperature of around 40°C, it has
experienced the most significant drop in each category of PCMs.

5.2 Effect of PCMs on efficiency

This section analyzes and discusses the effects of PCMs on PV cell
efficiency. Based on the model results, solar PV efficiency appears to
be a direct index of the surface temperature drop. A drop in surface
temperature proportionally increases solar PV efficiency. Figure 5
displays the average cell efficiency of PVwith and without PCMs in all
cities using all three PCMs. It is evident that PCMs have significantly
increased PV cell efficiency in all areas throughout the season.
Especially in Bahawalpur and Bhadla regions, RT-21 has
considerably increased cell efficiency. It is evident from Figure 5,
that PCMRT-35 has increased the PV cell efficiency significantly in all
areas throughout the season. Especially in Bahawalpur and Bhadla
regions, RT-35 has considerably increased cell efficiency. PCM RT-44
has dramatically increased PV cell efficiency in all areas throughout
the season.

5.3 Effect of PCMs on electrical output

This section discusses the influence of PCMs on the electrical
output of Photovoltaic cell temperature. Figure 6 depicts the average
power output of PV with and without PCMs in all cities using PCM
with a melting point of 21. It can be seen from Figure 6 that all three
PCMs have increased the PV cell output significantly in all areas
throughout the season. As shown in Figure 6, Arizona’s optimum
power output in the month of June is higher due to high temperature.

Peak Temperatures, Maximum efficiencies, and Maximum
electric output of PV cells using all three PCMs in three cities for
seasonal analysis are tabulated in Table 4, Table 5 and Table 6.

5.4 Optimization

The program for the whole process is developed in MATLAB. The
enthalpy method is used to design the system. Optimization starts with
writing an objective function (elec_eff_pcm) in which input (wind
velocity, melting temperature of PCM, mass of PCM) and output

FIGURE 3
Comparison of PV cell temperature integrated with Ciulla et al., 2012.

FIGURE 4
Average temp. of PV cell with and without PCMs for Seasonal analysis (Apr-Aug).
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parameters (electric output and efficiency) are considered. Moving
forward to the main script, mention the name of the process
(Modeling and Optimization of PV Panels). The next step is
introducing that objective function and the number of variables which
is three in this model, i.e., wind velocity, mass of the PCM, and melting
temperature of the PCM.Using aGenetic Algorithm requires an objective
function and several variables. In this work, a genetic algorithm is used to

check the optimum values of wind speed, melting temperature, andmass
of PCMs against respective cities at which maximum efficiency and
maximum electrical output can be achieved.

5.4.1 Effect of PCMs on the efficiency of PV cell
It is observed from Figure 7 that PCM-RT21 gives the best

possible efficiency of almost 19% for the Apr-Aug season in all

FIGURE 5
Average efficiency of PV cell with and without PCMs for Seasonal analysis(Apr-Aug).

FIGURE 6
Average output of PV cell with and without PCMs for Seasonal analysis (Apr-Aug).

TABLE 4 Temperature, Efficiency, and output of PV cell with and without PCM RT21 for season analysis.

Parameters Conventional PV PV with PCM Percentage change

Arizona Bahawalpur Bhadla Arizona Bahawalpur Bhadla Arizona Bahawalpur Bhadla

Tpeak
oC 65 77 73 38 48 45 −41% −37.6% −38.3%

Max. Efficiency% 18.7 18 18.1 19.7 18.5 18.5 5.34% 2.77% 2.2%

Max. Output W/m2 1.9 1.74 1.8 2.1 1.9 1.9 10.5% 9.19% 5.6%
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regions. While PCM-RT35 offers 18.8%, and PCM-RT44 results in
the best possible efficiency of approx. 18.6%. Optimum values of
PCM RT-35 have increased the PV cell efficiency in all areas
throughout the season. Especially in Bahawalpur and Bhadla
regions, RT-35 has considerably increased cell efficiency. The
optimal values of parameters are mentioned in Table 7 in detail.
Overall, PCM-RT21 is effective in increasing the efficiency of PV
panels. It indicates that the phase change material melting at 21°C
has recorded more efficiency than all other PCMs used in the
analysis.

5.4.2 Effect of PCMs on electrical output of PV cell
The effect of PCMs on PV cell output under optimum

conditions is shown in Figure 8. It presents the average

optimized cell output of PV with and without PCMs in all
selected cities. PCM-RT21 provides the best possible output of
almost 2.11 W/m2 for the Apr-Aug season in all regions. While
PCM-RT35 gives 2 W/m2 and PCM-RT44 offers the best potential
output of approx. 1.8–1.9 W/m2. Optimum values of PCM RT-35
have increased the PV cell electrical output significantly in all areas
throughout the season.

In the case of PVwithout PCM, the temperature of PV is equal to the
ambient temperature before sunshine hours. This remains the same until
radiations are absorbed, reaching maximum level and then returning to
its position without radiations. Thus, peaks of PV coincide with those of
ambient temperature. The results confirm that using PCM drops down
PV temperature, which is confirmed through literature where authors
highlighted that selecting suitable PCM could only improve Panels’

TABLE 5 Temperature, Efficiency, and output of PV cell with and without PCM RT35 for season analysis.

Parameters Conventional PV PV with PCM Percentage change

Arizona Bahawalpur Bhadla Arizona Bahawalpur Bhadla Arizona Bahawalpur Bhadla

Tpeak
oC 65 77 73 45 52 51 −30.77% −32.46% −30.1%

Max. Efficiency% 18.7 18 18.1 19.6 18.6 18.5 4.81% 3.33% 2.2%

Max. Output W/m2 1.9 1.74 1.8 2.2 1.88 1.85 15.7% 8.04% 4.44%

TABLE 6 Temperature, Efficiency, and output of PV cell with and without PCM RT44 for season analysis.

Parameters Conventional PV PV with PCM Percentage change

Arizona Bahawalpur Bhadla Arizona Bahawalpur Bhadla Arizona Bahawalpur Bhadla

Tpeak
oC 65 77 73 44 57 54 −32.31% −25.9% −26%

Max. Efficiency% 18.7 18 18.1 19.7 18.5 18.5 5.34% 2.78% 2.2%

Max. Output W/m2 1.9 1.74 1.8 2.15 1.8 1.84 13.15% 3.45% 2.2%

FIGURE 7
Average efficiency of PV cell with and without PCM-RT21, RT35 and RT44 under optimized conditions for Seasonal analysis (Apr-Aug).
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thermal management. Results are on the lower side when there’s
minimum solar radiation. This concludes that thermal management is
impossible when no or minimum solar radiation is available.

6 Conclusion

It is observed that during the summer season, PCMs function
efficiently in lowering the PV cells. Using PCMs during the summer
season reduces cell temperature by up to 27°C. This reduction increases
PV panel performance by up to 6%. The results indicate that PV panels
observed a drop in surface temperature by using PCM that caused an
increase in efficiency and electrical output by 6% and 16%, respectively.
In terms of optimal parameters, if the wind is 10–11 m/s, a melting
temperature of 21–22°C gives the best possible results. What is
interesting here is the mass of PCM used, which is around
2.7–2.8 gms in capacity on the excellent quality output. In an
experimental setup, using two or three PCMs at a time to check
which is the best according to specific climatic conditions, setup
becomes costly and time-consuming. Using this comprehensive
model well before practical implementation saves time and cost. In
the current analysis, to achieve maximum electrical efficiency and lower
PV cell surface temperature, PCMwith 21°Cmelting point provides the
best result. When PCM is not chosen correctly, it affects the
performance of the PV panel but can also harm the PV cells due to
high temperatures, becoming costly and time-consuming. When
different PCMs are used in Bahawalpur during monthly analysis,

PCM-RT21 drops the PV cell temperature by almost 36%, more
than the other two PCMs used in the monthly study in Bahawalpur.
After Optimization, it is concluded that PCM-RT21 is the most
appropriate for passive cooling of PV systems for climate
classification (Bwh). The current work can be extended by
considering the complete cooling cycle. Parameters of economic
analysis can also be added to extend this research work.
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