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The search for renewable, affordable, sustainable, and ecologically benign fuels to
substitute fossil-based diesel fuels has led to increased traction in the search for
biodiesel production and utilization in recent times. Biodiesel, a formof liquid biofuel,
has been found to alleviate environmental degradation, enhance engine
performance, and reduce emissions of toxic gases in transportation and other
internal combustion engines. However, biodiesel production processes have been
dogged with various challenges and complexities which have limited its expected
progression. The introduction of data-based technologies is one of the remedies
aimed at deescalating the challenges associated with biodiesel synthesis. In this
study, the application of machine learning (ML) –based technologies including
artificial neural network (ANN), response surface methodology (RSM), adaptive
network-based fuzzy inference system (ANFIS), etc. As tools for the prediction,
modeling, and optimization of the biodiesel production process was interrogated
based on the outcomes of previous studies in the research domain. Specifically, we
review the influence of input variables like alcohol: oil molar ratio, catalyst
concentration, reaction temperature, residence time, and agitation speed on the
biodiesel yield (output variable). The outcome of this investigation shows that the
usage of ANN, RSM, ANFIS, and other machine learning technologies raised biodiesel
yield to between 84% and 98% while the statistical verification shows that the
Pearson correlation coefficient and coefficient of determination are close to 1.
Going forward, more targeted and collaborative research is needed to escalate
the use of innovative technologies for the entire biodiesel value chain to enhance
production efficiency, ensure economic feasibility, and promote sustainability.
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1 Introduction

Demand for affordable and efficient energy to meet rising consumption has continued to
constitute a potent hindrance to achieving universal social, economic, and industrial
development over the past decades. There are legitimate concerns that the current energy
supply scenario is grossly inadequate and unsustainably deficient to meet the energy need of the
industrialized global community. Fossil-based (FB) fuels, majorly coal, oil, and gas, have been
the mainstay of the global energy supply for over 150 years. The total world energy
consumption rose from 109, 858 TW-hours (TWh) in 2000 to 127, 0232 TWh, 151,
100 TWh, and 163, 709 TWh in 2005, 2015, and 2021, respectively (Ritchie et al., 2022).
Over the same period, the global population rose from 6.1 billion in 2000 to 6.5 billion,
7.4 billion, and 7.9 billion in 2005, 2015, and 2021, respectively (UN, 2022). Increased
population growth is among the reasons for the sustained rise in global energy
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consumption (Figure 1). As of 2019, about 84.3% of the global energy
came from FB sources with oil, coal, and gas contributing 33.1%, 27%,
and 24.3%, respectively, while 11.3% was supplied by renewable
energy sources (Ritchie et al., 2022), as shown in Figure 2.

The process of exploration, exploitation, refining, and utilization
of oil to generate liquid fuel for internal combustion engines has
triggered environmental and health challenges. Diesel fuel is arguably

the most commonly used fuel derived from petroleum. Diesel engines,
also known as compression ignition (CI) are one of the most common
reciprocating engines for diverse applications and offer better
operational performance and strength when compared with spark
ignition engines. Diesel engines are used for on-road, off-road
applications, and non-automotive applications. Notable on-road
application of CI engines includes light vehicles, commercial bus,
trucks, etc., while power generation, marine applications, etc. Are
examples of off-road applications. Generally, CI engines are used in
transportation, industrial, construction, and agriculture equipment
(Mejía et al., 2020). The fact that CI engines offer higher
thermodynamic efficiency, better load-carrying capacity, and
improved fuel economy when compared with spark ignition (SI)
engines makes it a preferred choice for light and heavy-duty
vehicles for transportation, agricultural machinery, and industrial
applications. Consequently, the demand for diesel fuels was about
27.1 million barrels per day (mmb/d) rose to 30 mm b/d and has been
predicted to become 31.6 mm b/d, 34.1 mm b/d, and 35.1 mm b/d by
2025, 2035, and 2040, respectively (Khan et al., 2019). In the same vein,
there has been an increased in the use of diesel-fuel-powered engines
particularly for power generation, construction, and agricultural
sectors, and has increased the market share of diesel engines.
Research and Markets (2019), a global research outfit predicted the
global market value of diesel engines to reach USD 266.3 Billion in
2027 as against USD 291 Billion recorded in 2018.

Despite the enormous contributions of CI engines to social,
economic, and industrial developments, increased avenues of
utilization, and projections in the market value of CI engines, the
use of CI engines results in enormous emissions that deteriorate air
quality, impact human health, and exacerbate global climate. Heavy-
duty vehicles and power-generating sets fuelled with diesel fuels emit
carbon oxides, nitrogen oxides, particulate matter, sulfur oxides, and

FIGURE 1
Global primary energy consumption (TWh) and population (Billions) (2000–2021). Adapted by the authors from (Ritchie et al., 2022; UN, 2022).

FIGURE 2
Breakdown of Global energy consumption in 2019.
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toxic gases which exacerbate environmental degradation (Cunanan
et al., 2021). These have led to more studies aimed at improving the
impact of petroleum diesel fuels and CI engines on the global
ecosystem. One of the strategies to ameliorate the situation is the
development and application of affordable, environmentally benign,
and sustainable alternative fuels for CI engines.

The use of edible and inedible vegetable oils, alcohols, animal fats,
and methane as an alternative to petroleum diesel has been fraught
with many drawbacks. For example, the widespread utilization of neat
vegetable oils as fuels for CI engines is hindered by high viscosity, low
calorific value, low volatility, deterioration in storage, high price, and
conflict with the food chain (Awogbemi et al., 2021a). Animal fats also
suffer from inferior calorific value, poor combustion, and poor
vaporization, and it requires preheating (Nicolici et al., 2018).
Other drawbacks such as gum formation, lubricating oil
congealing, incomplete combustion, injector clogging, atomization
problems, high emission of toxic gases, and increased engine wear
search for better alternative fuels inevitable (Tabatabaei et al., 2019;
Awogbemi and Kallon, 2022a). The adaptation of biodiesel is seen as a
panacea to the inadequacies experienced with the use of FB diesel fuels
and vegetable oils as CI engines fuel.

Investigations into the generation, purification, and utilization of
biodiesel have achieved traction over the past years. These have led to
researchers and scholars adopting diverse strategies to enhance and
simplify the production process. One such approach strategy is the
application of innovative and advanced information technologies such
as machine learning, modeling, optimization tools, and statistical
approaches. This is more so because of the need to adequately
understand the extremely complex chemical process and other
competing factors involved in biodiesel production. The
complexities involved in managing the competing process
parameters cannot be achieved by try-and-error experimental
procedures. The adaptation of appropriate technologies will save
time, minimize cost, reduce material wastage, prevent repetitive
experimentations, and tackle diverse eventualities.

The utilization of biodiesel and biodiesel blends as a low-cost and
sustainable replacement of FB fuels in compression ignition (CI) engines
has been investigated severally in recent years. The outcome of these
studies revealed the multiple benefits derivable from running CI engines
on blended and unblended biodiesel. Despite these outcomes, several
other techniques have been adopted to improve the performance of
biodiesel fuel in CI engines. Khan et al. (2020); Soudagar et al. (2019)
investigated the effect of graphene oxide nanoparticle as additives to
improve the performance and emission characteristics of CI engines. The
outcome of their studies revealed that the brake thermal efficiency
increased while the exhaust gas temperature, smoke, hydrocarbon, and
carbon monoxide reduced by almost 35%. Other methodologies to
improve the performance and emission characteristics of CI engines
fuelled with biodiesel include blending with octanol and the use of
combustion and emission strategies such as reactivity controlled
compression ignition (Onuh et al., 2021; Wategave et al., 2021;
Soudagar et al., 2022). ML technologies can also be applied to predict,
model, and optimize engine performance and emission characteristics of
CI engine fuelled by biodiesel.

In a different research, Verma and Sharma (2016), Sitepu et al.
(2020), and Topare et al. (2022) examined the critical parameters that
significantly influence biodiesel production by transesterification.
They reported that the free fatty acid content of the feedstock,
feedstock type, process temperature, type of alcohol, reaction time,

catalyst type and concentration, the molar ratio of alcohol and oil, and
agitation speed affect feedstock conversion efficiency and product
yield. They, however, recommended the application of appropriate
tools and technologies to optimize the effect of the identified
parameters. Garg and Jain (2020), Selvaraj et al. (2019), and
Ayoola et al. (2019) utilized machine learning (ML) technologies
including response surface methodology (RSM) and artificial neural
networks (ANN) to model, predict, and optimize process parameters
for the transesterification of algal oil, waste cooking oil, and waste
groundnut oil, respectively, to biodiesel. They concluded the
robustness, superiority, accuracy, and capability of the RSM and
ANN to predict and optimize production process parameters for
improved biodiesel yield. The application of generic algorithm
(GA) for the prediction and optimization of process parameters for
biodiesel production was investigated by Betiku et al. (2015) and
Srivastava et al. (2018) when they converted Shea butter oil and
microalgae oil into quality biodiesel. They recommended more
studies on the use of GA for obtaining optimal process parameters
for biodiesel production.

To be able to appropriately fill the research gap and advance the
trajectory of research in this field, the relevant question awaiting solutions
is whether sufficient research has been accomplished to properly
interrogate and situate the application of ML technologies in the
biodiesel production research space. The aim of the study, therefore, is
to examine the avenues for the application of ML technologies for the
prediction and optimization of process parameters for sustainable
biodiesel production. This is to attain optimal process parameters with
the capability to stimulate cost-effective, fast, environmentally benign, and
sustainable pathways for biodiesel synthesis. The outcome of the current
intervention will deepen scholarship by delivering updated information
that will stimulate the application of ML and other similar models in
biodiesel research. This study will also expose more avenues for the
utilization of ML in biodiesel research to achieve accelerated biodiesel
production. This will further contribute towards an improved application
of biodiesel, environmental sustainability, and green economy. The study
is limited to the review of various ML technologies in predicting and
optimizing process parameters for sustainable biodiesel generation. The
application of mathematical and statistical backgrounds as well as the
fundamental information and actual details relating to the modelling,
prediction, and optimization of ML models are beyond the scope of this
work but have been adequately presented elsewhere (Basile et al., 2017;
Kubat, 2017; Mohri et al., 2018). Going forward, there is a need to escalate
the application of statistical approaches, mathematical and numerical
solutions, modelling, simulation, and optimization models, and other
relevant innovative technologies for the enhancement of biodiesel
production in all its ramifications. Multidisciplinary and collaborative
efforts are needed for the intensification and advancement of cost-
effective and sustainable biodiesel production pathways. The novelty of
this study is derived from the investigation of the effect of the process
parameters on biodiesel yield and to bring to the fore how ML
technologies, mathematical techniques, and statistical tools can be
applied to enhance biodiesel yield and adequately measure the
influence of such methodologies on biodiesel yield.

2 Biodiesel production

Biodiesel is one of the prominent members of the renewable fuels
family and a sustainable replacement for petroleum diesel fuel in CI
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engines. Due to its renewability, safe handling, easy production techniques,
and conformity with the existing transport infrastructure of petroleum
diesel biodiesel have gained wide acceptability among renewable fuel
consumers. These factors have greatly influenced its production and
consumption. To meet up with the global biodiesel demand, there has
been an escalation in the quantum of biodiesel production. The worldwide
biodiesel that was 38 billion litres in 2016 rose to 45.6 billion litres,
48.3 billion litres, and 53 billion litres in 2018, 2019, and 2021 respectively.
The annual production has been estimated to reach 60.7 billion litres at the
end of 2022 (Figure 3) (Statista, 2022). The negative production growth
rate witnessed in 2020 was a result of the impacts of the global restriction
occasioned by the outbreak of the COVID-19 pandemic (Awogbemi and
Kallon 2022a). As shown in Figure 4, the global market size of biodiesel
that was put at USD 32.09 Billion in 2021 and has been predicted to climb
to about USD 127.13 Billion USD 161.64 Billion, andUSD 189.7 Billion by
2025, 2028, and 2030, respectively (Precedence Research, 2022a). The
expected growth in market size is propelled by increasing demand for
renewable and clean fuel, especially biodiesel for power generation, and
powering automotive, agriculture, and marine engines in global scale. The
increased investment in biodiesel production and utilization is seen as
feasible strategies to reverse the trend of the worrisome emission of
greenhouse gases (Awogbemi and Kallon, 2022b).

2.1 Feedstock for biodiesel production

The choice of feedstock for biodiesel production is a major
deciding factors that affect the production cost, infrastructure,
conversion technique, conversion efficiency, the pump price, and
sustainability of biodiesel production. For example, the feedstock
accounted for about 75%–88% of production cost and is a key
consideration in fixing the pump price of biodiesel (Ahmed et al.,
2021). The selection of feedstock also greatly influences the type of
catalyst, process parameters, intensification techniques, and
purification methods (Athar and Zaidi, 2020; Sitepu et al., 2020;
Mohiddin et al., 2021; Awogbemi and Kallon, 2022c). The use of
non-edible feedstock, particularly waste cooking oil significantly
reduces the cost of biodiesel production, ensures an appropriate
strategy for disposing of waste vegetable oil, and averts pollution
of aquatic and terrestrial ecosystems. On the other hand,
employing edible vegetable oils as feedstock for biodiesel
production impacts food security, sparks the food vs. fuel
debate, and significantly leads to increased food prices. Algal
biomass possesses high volatile fatty acid content, requires no
land, water, and fertilizer for cultivation, easily convertible to
biodiesel (Yaashikaa et al., 2022). Though the conversion of algae,
microalgae, and seaweeds to biodiesel requires advanced
technologies, and cannot be achieved at the household level,
large-scale production and commercialization are still
challenging (Liu et al., 2022; Taft and Canchaya, 2022). The
feedstocks for biodiesel production can be categorized based on
generations and edibility. Table 1 shows the examples, benefits,
and drawbacks of different generations of feedstock for biodiesel
generation.

2.2 Techniques for biodiesel production

Diverse pathways have been utilized to convert feedstock to
biodiesel notable for direct use, micro-emulsification, pyrolysis,
transesterification, and supercritical. These techniques are broadly
categorized as physical techniques and chemical techniques
(Awogbemi and Kallon, 2022a).

The direct use or dilution of vegetable oils as a replacement for
FB diesel fuel in CI engines is the simplest avenue of alternative fuel
utilization and was first used by Rudolph Diesel, a renowned
German inventor of diesel engines, around the 1890s (Elghariani
and Eshoul, 2021). Though this method is characterized by low
production and capital costs, some of the properties of the
vegetable oils make their use as direct fuel challenging,
unsuitable, and impracticable. Some vegetable oils are highly
acidic and have high viscosity, high density, low volatility, and
reactivity of the unsaturated hydrocarbon chains. Therefore, when
used in unmodified CI engines, vegetable oils result in incomplete
combustion, engine deterioration, high carbon deposit, and
congealing of the engine lubricating oil. Other shortcomings of
the direct application of vegetable oils as a substitute fuel for
unmodified CI engines include poor atomization, increased
emission of pollutants, an accelerated rate of engine wear, high
cost of engine maintenance, and poor engine performance (Dabi
and Saha, 2019).

The micro-emulsification method is designed to remedy the
drawback of the high viscosity of vegetable oils as CI engine fuel.

FIGURE 3
Global biodiesel production and growth rate from 2016 to 2022.

FIGURE 4
Global biodiesel market size 2021–2030.
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During this process, appropriate solvents, surfactants or cetane
improvers are mixed with vegetable oils and animal fats to achieve a
clear, single-phase, and thermodynamically stable fluid as fuel.
These emulsified oils form isotropic fluids which are stable, well
dispersed, and with the required microstructures and droplet
diameter. Notable solvents used for micro-emulsion include 1-
butanol, 2-octanol, butanol, propanol, ethanol, hexanol, and
methanol. Higher alcohols, sorbitan monooleate, octanol, and
rhamnolipid are been used as surfactants while alkyl nitrates,
nitroalkanes, and nitrocarbonates are commonly applied cetane
improvers during micro-emulsification of vegetable oils (Mishra
and Goswami, 2018). Emulsified vegetable oils and animal fats
exhibit enhanced cold flow properties, improved stability,
acceptable viscosity, and shorter ignition delay in CI engines
(Abbaszadeh et al., 2016). However, there are reported cases of
incomplete combustion, accumulation of carbon residue in the
combustion chamber, thickening of the lubricating oil, and
occasional blockage of the injector needle when products of
micro-emulsification of oils were used in CI engines (Sanli
et al., 2022).

Pyrolysis involves the amalgamation of thermal and chemical
processes when feedstocks are converted into fuels and other useful
products with the application of heat and in the presence or absence of
some chemicals (catalysts) (Awogbemi et al., 2022; Nayab et al., 2022).

Pyrolysis is one of the commonly used reforming techniques for the
degradation of vegetable oils, animal fats, and other feedstocks by
cracking their chemical bonds to generate renewable fuels with
properties and structures comparable to petroleum diesel fuels.
Biodiesel synthesized from the pyrolysis of vegetable oils
demonstrates satisfactory physicochemical properties and improved
engine performance. However, high production cost, complex and
expensive infrastructural requirements, the low oxygen content of the
fuels, and the production of chemically gasoline-like short-chain
molecules are some of the factors limiting the application of the
process (Su et al., 2022).

TABLE 1 Classification of feedstock for biodiesel production (Kesharvani and Dwivedi, 2021; Shaah et al., 2021; Zulqarnain et al., 2021).

Classification Examples Benefits Drawbacks

Generations Edibility

First generation Edible Palm oil, rapeseed oil, soybean oil, sunflower oil,
coconut oil

• Readily available • Impacts food supply

• High conversion efficiency • Leads to food insecurity

• Simple conversation process • Sparks food vs fuel debate

• Increased price of oil

• Biodiesel price hike

Second generation Nonedible Jatropha oil, rubber seed oil, neem seed oil,
karanja oil, jojoba oil, tobacco seed oil, sea mango
oil, poultry fat, pork lard, recovered fats, beef
tallow, waste cooking oil, wastewater

• Readily available globally • Escalates deforestation and bush burning

• Does not affect the food chain • Destroys terrestrial ecosystem

• Can be cultivated • Requires large arable land to grow

• No fuel vs food debate • It takes time and resources for crop
cultivation

• High growth rate of algae and seaweeds • Problematic structure of the feedstock

• Use of waste cooking oil safeguard
aquatic and terrestrial habitats

Third generation Algal
biomass

Algae, microalgae, seaweeds, fungi, bacteria • Cost effective • Low conversion efficiency

• Safe, non-toxic, and effective • The use of algae requires advanced
technology

• Requires no land and water to
cultivate

• Competes with raw materials in the food,
pharmaceutical and cosmetics industries

• Cultivation decreases global warming

• High conversion efficiency • Challenging large scale commercialization
process

• Improved volatile fatty acid content

FIGURE 5
Transesterification reaction equation.
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Transesterification is arguably the most widely used
thermochemical technique for the conversion of triglycerides to
biodiesel. During the process, 1 mol of triglycerides in oils and fats
stoichiometrically reacts with 3 mol of alcohol to form 1 mol of alky
ester and 1 mol of glycerol, as shown in Figure 5. The entire
transesterification reaction proceeds in a three-step successive
reversible reaction, as depicted in Figure 6. The produced crude
biodiesel is purified to meet the required ASTM D6751 and EN
14214 standards while the glycerol is separated to prevent the
formation of acetaldehyde or formaldehyde and other hazardous
gases during combustion (Zhang et al., 2022). The glycerol can be
utilized as fuel additives and raw materials for the production of
bioethanol, cosmetics, livestock feeds, cosmetics, and other chemical
products (Chilakamarry et al., 2022). The reversible reaction takes
place with or without catalysts but under appropriate reaction
parameters of temperature, pressure, reaction time, alcohol/oil
ratio, and mixing speed of the reactants. Though methanol and
ethanol are the most popular alcohols used in transesterification
reactions, the lower cost and other physical features of methanol
make it a preferred choice. For example, when compared with ethanol,
methanol disperses more in homogeneous catalysts and reacts more
efficiently with triglycerides (Awogbemi et al., 2021a). However, since
the boiling point of methanol is 60°C, the maximum reaction
temperature for a transesterification reaction involving methanol is
usually 60°C to avert evaporation of methanol. The reaction time is
indirectly related to the reaction temperature while the reaction takes
place at atmospheric pressure, in most cases. The transesterification
reaction is easily achievable under moderate process conditions and
can be done domestically without the use of sophisticated
infrastructure and technical manpower. However, the application of
the transesterification process has been limited by poor mass transfer
during the process, unpredictable product quality, generation of a high
volume of wastewater, and involvement of multiple separation
processes (Awogbemi et al., 2021a; Nayab et al., 2022).

The supercritical technique of biodiesel is a non-catalytic process
of the biodiesel production process to replace the catalytic method of

biodiesel production. During this process, compressed fluids that
exhibit the properties of both gas and liquid are maintained and
used above their critical temperature and pressure. Superfluids such as
methanol, ethanol, and acetone maintained at 239.2 °C and 8.09 MPa,
240.9 °C and 6.14 MPa, and 235.1 °C and 4.70 MPa, respectively are
used for biodiesel production (Awogbemi and Kallon, 2022a). At
supercritical conditions, methanol witnesses an increase in density,
solubility, mass transfer characteristics, and reduced polarity which
results in better dissolution of the triglyceride in methanol and
subsequent formation of biodiesel and glycerol (Farobie and
Matsumura, 2017). The method requires no catalyst, consumes less
energy, exhibits a high reaction rate, and requires easier product
separation and purification processes. Supercritical techniques allow
esterification and transesterification reactions to proceed
simultaneously, can be applied to a wide range of feedstocks, and
result in high conversion efficiency. Some of the drawbacks of the
supercritical biodiesel production process include high process
temperature and pressure, use of a high volume of alcohol,
expensive production infrastructure, and possible denaturing of the
products (Qadeer et al., 2021; Baydir and Aras, 2022).

2.3 Catalysts for biodiesel production

To further advance conversion efficiency and enhance the rate of
biodiesel production, catalysts are often used. Though biodiesel can be
synthesized without the use of catalyst and the cost of catalysts
increase the total cost of biodiesel production, catalytic biodiesel
production is advantageous and is mostly adopted. The use of
catalysts reduces reaction time, improves conversion efficiency, and
helps in lowering the reaction activation energy. Catalysts for biodiesel
production are divided into three broad categories namely,
heterogeneous catalysts, homogeneous catalysts, and enzymatic
catalysts. The choice of an appropriate catalyst is dependent on the
type of feedstock, free fatty acid (FFA) content, acid value, water
content of feedstocks, etc. (Velusamy et al., 2021; Mukhtar et al., 2022).

FIGURE 6
Three-step transesterification reaction equations (Awogbemi et al., 2021b).
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Homogeneous catalysts are usually in liquid form and they
maintain the same phase to the reacting materials during
transesterification. This category of catalyst is used in converting
triglycerides with high FFA content, acid value and is sometimes
miscible with both glycerol and crude biodiesel. This partial miscibility
with glycerol and biodiesel creates challenges in separating and
recovery of the catalysts from the products (Tan S. X. et al., 2019).
Homogeneous catalysts used for the transesterification process can
either be acid or base catalysts. Notable examples of acidic
homogeneous catalysts for transesterification reactions include
H2SO4, H3PO4, HCl, C2HF3O2, and sulfonated acids. Examples of
base homogeneous catalysts for transesterification reaction include
NaOH, KOH, NaOH, NaOCH3, etc. (Changmai et al., 2020). Because
homogeneous catalysts are usually in the same liquid phase as glycerol
and biodiesel, there is the problem of separation and catalyst recovery.
Several washing stages are involved to ensure complete catalysts
removal, requires large volume of water for washing, and generate
a large volume of wastewater in the process of purification. Similarly,
homogeneous catalysts are relatively expensive and reuse is almost
impossible (Rizwanul Fattah et al., 2020; Mukhtar et al., 2022).

Conversely, heterogeneous catalysts usually occur in a non-liquid
state and are in a different phase from the reacting materials. They
possess active sites with the reacting materials that ensure fast reaction
and are subdivided into two types, namely acid heterogeneous
catalysts and base heterogeneous catalysts (CaO, SrO, BaO, etc.).
Generally, metal oxides, mixed metal oxides, sulfated metal oxides,
zeolites, and some cation exchange resins have been successfully used
as heterogeneous catalysts for biodiesel production (Gupta et al.,
2020). Heterogeneous catalysts exhibit excellent catalytic activity
under reasonable reaction conditions, high reusability, high
recovery, easy to separate, low cost of purification, and generation
of a low volume of wastewater. However, heterogeneous catalysts are
only suitable with feedstocks with low FFA content and a high rate of
soap formation (Changmai et al., 2020; Mandari and Devarai, 2021).
Heterogeneous base catalysts can be derived from wastes such as
chicken eggshell, quail eggshell, crab shell, crop residues, and food
wastes to lower the production cost, ensure resource recovery and
contribute to environmental sanitation and sustainability (Awogbemi
and Kallon, 2022a; Awogbemi and Kallon, 2022b).

Greater research interest has been focused on the application of
enzyme catalysts or biocatalysts for biodiesel production over the past
few decades. Enzymatic catalytic biodiesel production involves using
living and biological organisms to stimulate chemical reactions
without the organisms being chemically affected in the process.
The commonest and most widely used enzymes for biodiesel
production is lipase. In most cases, lipases are invented from
microorganisms such as Burkholderia cepacia, Thermomyces
lanuginosus, Candida antarctica, Aspergillus niger, Anoxybacillus
gonensins etc. During fermentation under specially monitored
conditions (Toldrá-Reig et al., 2020; Altinok et al., 2023). Lipases
are subdivided into intracellular lipases and extracellular lipases.
Intracellular lipases involve utilizing complete cell of
microorganisms or yeasts and are domicile within the
cell-producing walls. Intracellular lipases are easy and economical
to extract, and require minimal purification but suffer from low
conversion efficiency and relatively low biodiesel yield. On the
other hand, extracellular lipases are derived from microorganism
broth, and subsequently separated and purified before application.
Unlike intracellular lipase, the downstream processing cost of

extracellular lipase is high and suffers from complex separation
procedures (Toldrá-Reig et al., 2020; Chuengcharoenphanich et al.,
2023).

Table 2 compares the examples, advantages, and drawbacks of
homogeneous, heterogeneous, and enzyme catalysts in biodiesel
production while Table 3 shows some examples of the application
of various categories of catalysts for biodiesel generation.

3 Introduction to machine learning in
biodiesel research

Machine learning (ML), also known as predictive analytics, is a
domain of computer science dedicated to imitating and predicting the
working of humans towards improving its accuracy. It is often referred
to as a branch of artificial intelligence (AI) that empowers machines to
learn from previous data and past experiences to discover recurring
patterns and make informed predictions with the least possible
interventions and involvements from humans (El Naqa and
Murphy, 2015). It involves the utilization of algorithms and
statistical models in the training of the computer system to
evaluate supplied data and draw inferences for key decision-making
with a view to progressively improving accuracy. The development
and training of ML algorithms can be achieved through supervised
learning, unsupervised learning, semi-supervised learning, or
reinforcement learning. No doubt, ML is among the fastest
growing applications of data science with increasing practical
applications in the healthcare industry, financial sector, retail
sector, social media, travel industry, and research (Anand et al.,
2022). As a result of the continued relevance and applications of
ML technologies in our contemporary world, the market share has
continued to increase steadily. The global ML service that was worth
USD 2.4 billion in 2019 became USD 15.47 in 2021, and has been
predicted to rise to USD 58.26, USD 157.49, and USD 305.62 in 2025,
2028, and 2030, respectively (Figure 7) (Precedence Research, 2022a).
The relevance of ML became more pronounced in the aftermath of the
recent COVID-19 global pandemic which restricted movements and
person-to-person contact. The driving factor behind the increased
investment and market value is the utilization of ML and other data
science technologies in decision making in retail, automotive,
transportation, e-commerce, manufacturing, banking, diagnostic,
therapeutic, cyber security, and education sectors.

Major benefits of the adoption of ML technologies include its
reliability, creativity, accuracy, and multidimensional applications.
The design and development of models and algorithms have
resulted into reduction in workload and time thereby encouraging
faster and more reliable decision making. The use of ML algorithms
has led to accuracy and efficiency in service delivery without human
intervention. Manymultifaceted tasks in most uncertain and inhuman
environmental conditions are easily handled by ML technologies. ML
algorithms have the capacity to handle large quantities of data, identify
trends, and utilize the information to make informed decisions with
optimal accuracy (Wuest et al., 2016; Wazid et al., 2022). However, for
improved accuracy and reliability, ML requires enormous unbiased
data sets to train on and sourcing for these data can be a herculean
task. Another drawback for the adoption of ML technologies is the
requirement of time and computer infrastructure to allow the
algorithms to learn, understand, and develop enough capacity to
correctly interpret the generated outcomes and render reliable
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TABLE 2 Examples, advantages, and drawbacks of classes of catalysts for biodiesel production.

Group Description Subgroup Examples Advantages Drawbacks References

Homogeneous Non-solid phase and
alkaline. Alkaline metal
hydroxides, alkoxides

Base NaOH, KOH, NaOCH3,
CH3ONa, CH3OK,
NaOC2H5,

• Fast reaction rate • Challenges with
feedstocks with high
FFA content

Rizwanul Fattah et
al. (2020), Mandari
and Devarai. (2021)

• Economically accessible • High soap formation

• Production of high
quality biodiesel

• Low reaction activity

• No water formation
during transesterification

Low biodiesel yield

• Moderate reaction
conditions

• Low purity of biodiesel

• NaOH and KOH are
affordable and readily
accessible

• Difficulty in product
separation and
purification

• Wastewater generation

• Causes ecological
challenges

Liquid and acidic
catalysts. Usually strong
acids

Acid H2SO4, H2SO3, HCl,
C2HF3O2

• High biodiesel yield • Slow reaction rate Silitonga et al.
(2020), Awogbemi
et al. (2021b)• Not affected by FFA

content of feedstock
• High energy

requirements

• Amenable with both
esterification and
transesterification
reactions

• Expensive

• Saponification are
avoided

• Difficulty in product
separation and
purification

• Prone to equipment
corrosion

Heterogeneous Usually in solid or
powder form and
alkaline

Base CaO, MgO, Al2O3, TiO2,
SrO, ZnO, La2O3, LiNO3/
Al2O3, NaNO3/Al2O3,
Ca(NO3)2/Al2O3, KNO3/
Al2O3, Mg(NO3)2/Al2O3,
ZrO2,

• Better catalytic activity • Not affected by FFA
content of feedstock

Awogbemi et al.
(2021b), Nayab et al.
(2022)

• Non-corrosive and non-
toxic

• Amenable with both
esterification and
transesterification
reactions

• Environmentally benigh • High methanol to oil
ratio

• Product easy separation
and purification

• Leaching of catalyst

• High reusability • Saponification can with
high oil FFA content

• Longer catalyst lifetime • Diffusion limitation

• Comparatively
affordable

• Can be derived from
wastes

Solid and acid catalysts Acid Heteropoly acids, sulfonic
acids, hydrotalcites

• Eco-friendly and less
toxic

• High catalyst loading Ahmed et al. (2021),
Pan et al. (2022)

• Easy biodiesel separation • High reaction
temperature

• Reduced corrosion • Long reaction time

• Recyclable and reusable • High methanol to oil
ratio

(Continued on following page)
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decisions that suit the purpose. Though ML makes decisions after
rigorous training, there is still high susceptibility of errors, especially
when there are no sufficient wide-ranging data sets to train from. Such
inaccuracies can lead to other chains of errors which may take long
time to detect and rectify (Aliramezani et al., 2022).

Due to increased application of ML algorithms, diverse
approaches including Artificial Neural Networks (ANN), Genetic
Algorithms (GA), Linear regression, Random Forests regression
(RF), and Support Vector Machines (SVM), etc. Have been
exploited to monitor, predict, optimize, control, and take
decisions in critical sectors of biodiesel research. ANN, a
domain of AI, is a computational network constructed based on
neurobiology networks and works like the human nervous system
(Kukreja et al., 2016; Techopedia, 2022). Just like the human brain,
ANN consists of neurons which are interconnected by some
unidirectional communication channels called synapses
(Figures 8A,B). The input data are produced by neuron as input
signals and transferred to the network where they are amplified by
their associated synaptic weights and released as output data.
Generally, the ANN has three layers, as shown in Figure 9. The
input layer receives data in form of signals from an external body
and gives out its output to an intermediary nodes called the hidden
layer. The hidden neurons are joined to the output neuron which
gives out the result of the trained data in the output layer
(Aghbashlo et al., 2021). Simply put, the input layer receives
input signal which is trained and processed in the hidden layer
and the outcome of the training is released to the output layer as the
outcome of the entire network. Though there are many types of

ANN models such as perception, feed forward neural network,
multilayer perception, convolutional neural network, etc., but they
all abide by the same working principle. ANN is arguably the most
widely used ML algorithm due to some of its basic advantages
which include faulty detection, simple adaptability, accurate
approximation of continuous and non-linear function, capacity
to perform multiple tasks simultaneously, huge data storage ability,
and superb fault-tolerance properties. However, ANN is hardware
dependent, network structure cannot be predetermined but
achieved only through experience, trial, and error, and the
duration of the network is unknown. Can approximate any
continuous function to any desired accuracy (Walczak, 2019).

In recent years, researchers have carried out meaningful
investigations of the applications of ML technologies and other
similar models for biodiesel research. Table 4 compiles some of the
research outcomes on the applications of ML technologies in biodiesel
research. Similarly, published review efforts by Xing et al. (2021),
Aghbashlo et al. (2021), Gupta et al. (2021), and Suvarna et al. (2022)
have shed some lights on the subject matter. However, only a handful
of the aforementioned interventions has significantly touched on the
application of ML for the modelling, prediction, and optimization of
process parameters for biodiesel synthesis. Up till now, efforts to fill
this obvious research gap has not yielded required results due partly to
inadequate manpower, infrastructural deficit, and other challenges in
the data science research space. This further justifies the current
intervention.

The process for the application of ANN models usually involves
data collection, data processing, building network architecture,

TABLE 2 (Continued) Examples, advantages, and drawbacks of classes of catalysts for biodiesel production.

Group Description Subgroup Examples Advantages Drawbacks References

• Preferred for low-
grade oil

• Leaching of catalysts

• Low energy consumption • Unfavourable side
reaction

• Comparatively
affordable

• Esterification and
transesterification occur
simultaneously

Enzymes Use of living
microorganisms and
yeasts to facilitate
chemical reaction

Lipase Intracellular lipases,
extracellular lipases

• Improved biodiesel yield • Complexity separation
and purification process

Babadi et al. (2022),
Kalita et al. (2022)

• Zero by-product • High cost of biodiesel
purification

• Environmental friendly • Unreactive enzyme due
to alcohol exposure

• Easy product removal
and separation

• Sensitive to alcohol

• High reusability • Slow reaction rate

• Mild reaction
temperature

• Products are entirely bio-
based

• No saponification

• Requires simple
purification process
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TABLE 3 Categories of catalysts used for biodiesel production.

Catalyst Feedstock Process conditions Biodiesel
yield (%)

Remark Ref

M:O CL
(wt%)

RT
(°C)

Rt
(min)

Homogeneous base catalysts

KOH Roselle oil 8:1 1.5 60 60 99.4 • High biodiesel yield
• Moderate reaction
temperature

Atadashi et al.
(2013)

KOH Waste beef tallow 6:1 0.55 70 35 97.2 • High biodiesel yield
• Quality biodiesel produced

Jambulingam et al.
(2020)

NaOH Watermelon seed oil 5:1 0.13 60 90 70 • Low catalyst used Efavi et al. (2018)

CH3KO Elaeagnus
angustifolia L seed oil

9:1 1 60 120 95 • Biodiesel meets ASTM
D6751 standards

Kamran et al. (2020)

NaOH Kernel seed oil 6.7:1 0.79 60.5 ns 93.16 • High biodiesel yield Mekonnen and
Sendekie (2021)

Homogeneous acid catalyst

H2SO4 Tall oil fatty acids 6:1 0.5 55 30 96.76 • Short reaction time Lawer-Yolar et al.
(2021)

H2SO4 Chlorella vulgaris 1000:1 8.5 70 90 96 • Biodiesel meets ASTM and
EN standards

Al-Humairi et al.
(2022)

Sulfonic acid Waste cooking oil ns 10 110 120 89.6 • Effective use of sulfonic acid
as catalyst

Tran et al. (2016)

CH3ONa Palm oil 5.48:1 0.32 55 30 98 • High biodiesel yield Thoai et al. (2017)

H2SO4 Chicken skin waste 3:1 1 65 30 97.5 • Enhanced purity of biodiesel Abid et al. (2019)

HCl Sunflower oil ns 1.85 100 60 95.2 • High conversion efficiency Sagiroglu et al.
(2011)

H2SO4 Chlorella pyrenoidosa 40:1 0.5 120 180 92.5 • Effective use of H2SO4 Cao et al. (2013)

H2SO4 Used vegetable oil 6:1 3 50 60 90 • Low reaction temperature Javidialesaadi and
Raeissi (2013)

Heterogeneous base catalysts

CaO Sunflower oil 7.1:1 0.74 52 90 99.8 • High biodiesel yield Todorović et al.
(2019)

Sr2SiO4 Spirulina platensis oil 12:1 2.5 65 104 97.88 • Effective catalyst Singh et al. (2020)

MgO Castor oil 12:1 6 75 60 96.5 • MgO used for five runs Du et al. (2019)

MgO Jatropha oil 9:1 5 65 120 99.6 • High biodiesel yield Sudsakorn et al.
(2017)

CaO Waste cooking oil 8.72:1 8.75 60 120 98.5 • Easy biodiesel purification Soria-Figueroa et al.
(2020)

CaO Waste cooking oil 1.46:1 11.66 54.6 114.21 93.6 • High purity biodiesel
obtained

Gouran et al. (2021)

Heterogeneous acid catalysts

Fe3O4/SiO2 Soybean oil 35:1 9 120 360 93.3 • Effective catalyst Xie and Wang
(2020)

RS-SO3H Waste cooking oil 20:1 10 70 360 90.38 • Catalyst effectively used for
seven cycles

Mohamed et al.
(2020)

H2SO4 Anidrol Oleic acid 15:1 5 120 240 100 • Highly efficient process Prates et al. (2020)

Tungsto phosphoric acid Waste cooking oil 6:1 4 65 ns 94 • Biodiesel meets ASTM and
EN specifications

Jayaraman et al.
(2022)

Reduced graphene oxide Soybean oil 20:1 3 80 180 99 • High biodiesel yield dos Santos et al.
(2019)

Phosphomolybdic acid/
graphene oxide

Waste cooking oil 6:1 1.5 60 900 90.39 • Catalyst reused four times Helmi et al. (2021)

ZnO/BiFeO3 Canola oil 15:1 4 65 ns 95.43 • Effective biodiesel
production

Salimi and Hosseini
(2019)

(Continued on following page)
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training, model testing, and validation of results. Aghbashlo et al.
(2021) presented the major steps to be followed in developing a typical
ANN model for biodiesel research (Figure 10). The collection and
preparation of data is arguably the most important factor in
determining the attainment of on effective modelling process. In
order to ensure the efficiency and integrity of the model, enough
data needs to be collected and the data must be from trusted sources
(Bali and Singla, 2022). The data collected must be analysed to
enhance the training process and boost the integrity of the ANN
model. The precision and dependability of the outcome needs to be
authenticated to ensure it meets the expectations. Various statistical
parameters including standard deviation, standard deviation of error,
mean square error, root mean square error, square of Pearson
correlation coefficient, etc. Have been established to measure the
correctness and reliability of the model result. Table 5 compiles
some of the statistical parameters commonly used to verify the
accuracy and reliability of ANN and other ML models.

4 Process parameters affecting biodiesel
production

After making the choice of raw materials (feedstock, catalyst, and
alcohol), production technique, and reactor the choice of process
parameters is an important decision that must be made. The choice of
production process parameters has a direct effect on the conversion
efficiency, yield, and overall success of the biodiesel production.
Factors such as alcohol to oil ratio, catalyst concentration/dosage,
reaction temperature, and reaction time play significant roles in the
success or otherwise of biodiesel synthesis. Making the right decision
to ensure optimal conversion efficiency and product yield among these
competing factors is not a straightforward task. The use of trial by
error experimental methods to determine the optimal production
process parameters is cumbersome, complicated, expensive, time-
consuming, and often results in acute material wastage. The
application of data-based ML technology has been adopted to

TABLE 3 (Continued) Categories of catalysts used for biodiesel production.

Catalyst Feedstock Process conditions Biodiesel
yield (%)

Remark Ref

M:O CL
(wt%)

RT
(°C)

Rt
(min)

Enzyme catalyst

Rhizomucor miehei lipase Soybean oil 12:1* 4 37 ns 66.3 • Biodiesel meets ASTM and
EN specifications

Bergamasco et al.
(2013)

Lipase Waste cooking oil 1.5:1* ns 40 80 94.1 • High-quality biodiesel
produced

Costa et al. (2020)

Candida antarctica
lipase A

Waste frying palm oil 7:1 5.5 30 1320 94.6 • Cheap free liquid lipase as
catalyst

Guo et al. (2020)

Thermomyces
lanuginosus

Soybean oil 4.5:1 1.45 35 480 79.9 • Environmentally benign
process

Wancura et al.
(2018)

Methanol-to-Oil ratio = M:O, Catalyst loading = CL, Reaction temperature = RT, Residence time = Rt, not stated = ns, *ethanol.

FIGURE 7
Machine learning service market share (Billion USD). Adapted from (Precedence Research, 2022b).
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make informed decisions that will guarantee value for money on
biodiesel production. The input variables to the ANN model used are
alcohol to oil ratio, catalyst concentration/dosage, reaction
temperature, reaction time, stirring/agitation speed while the
output variable is conversion efficiency or biodiesel yield.

4.1 Alcohol to oil ratio

The alcohol to oil ratio is an important factor influencing the
conversion efficiency or biodiesel yield. During the transesterification
process, the oil and catalyst are dissolved and dispersed in the alcohol.
Alcohol provides the medium for the triglycerides to react with catalyst for
the formation of biodiesel and glycerol. As shown in Figure 4, 1 mol of
glycerides is needed to react with 3mol of alcohol to generate 3mol of
biodiesel and 1mol of glycerol. Therefore, to increase the biodiesel yield, a
higher alcohol to oil ratio is essential (Okolie et al., 2022). However, very
high alcohol to oil ratio can result in having excess methanol in the system
thereby leading to higher production cost, difficult separation and
purification process, low conversion efficiency, and ultimately poor
biodiesel yield during transesterification reaction. Alcohol, especially
methanol possesses a polar hydroxyl group which stimulate the
emulsification of glycerol and biodiesel during transesterification
reaction. The emulsification of the products facilitates the backward
reaction thereby reducing conversion efficiency and biodiesel yield
(Gupta and Pal Singh, 2022). Generally, methanol to oil ratio of 6:1 and
ethanol to oil ratio of 9:1 are recommended as the optimal molar ratio for
optimal biodiesel production (Musa, 2016; Abusweireh et al., 2022).
However, depending on the choice of feedstock, catalyst type, and other
process parameters, ANN and other statistical tools are employed to

simulate the process towards arriving at the optimal alcohol to oil
molar ratio to ensure optimal conversion efficiency and biodiesel yield.

4.2 Catalyst type and concentration/dosage

Though biodiesel can be generated in the absence of catalysts. The
application of catalyst in biodiesel production by transesterification helps
to reduce the activation energy, minimize energy consumption, lower
reaction time, improve conversion efficiency and ultimately significantly
increase biodiesel yield (Abdelmigeed et al., 2021; Awogbemi and Kallon
2022b). Various classes of catalysts i.e. alkali, acid, enzyme, biobased,
heterogeneous, homogeneous, etc. Have been utilized for the
transesterification of glycerides to biodiesel. The choice and
concentration of catalysts greatly affect the quality and purity of
product, production cost, ease of separation and purification,
conversion rate, conversion efficiency, and biodiesel yield. For
example, biodiesel yields of between 92% and 98% are achievable even
with low grade and high FA content feedstock. Whereas, lower biodiesel
yields are recorded with the same feedstock when base catalysts were used,
under the same production conditions. Similarly, the application of
heterogeneous catalysts results in higher conversion efficiency and
biodiesel yield when compared with most homogeneous catalysts
(Sitepu et al., 2020).

In most cases, higher concentration/dosage of catalysts results
in higher biodiesel yield. However, the disproportionate
application of catalysts can be counterproductive as it results in
emulsification the and creation of highly viscous products
mixture. This exacerbates product separation and purification,
promotes saponification reaction, and substantially reduces
biodiesel yield (Nayab et al., 2022). Transesterification reactions
with inadequate quantity and concentration of catalyst proceed
slowly, witness unreacted feedstock, generates low quality
biodiesel and low biodiesel yield. On the other hand, excess
dosage of catalysts in transesterification reaction leads to
agglomeration, reduces mass and surface interaction among the

FIGURE 8
(A) Biological neural network (B) artificial neural network. Adapted
from (Javapoint, 2021).

FIGURE 9
ANN structure. Adapted from (Javapoint, 2021).
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reactants, and significantly impacts biodiesel yield (Mofijur et al.,
2021; Xie and Li, 2023). While most researchers recommended
between 2–10 wt% catalyst dosage will achieve between 75% and
100% biodiesel yield, the deployment of appropriate statistical
tools to measure the reliability and validity of the ML models
towards ensuring cost effective and optimal biodiesel yield (Teo
et al., 2022; Xie and Li, 2023).

4.3 Reaction temperature

The temperature of a transesterification process plays a key
role in the conversion of feedstock to biodiesel, biodiesel yield, and
reaction kinetics. An increase in the reaction temperature reduces
the viscosity and volatility of the reactants, encourages the
miscibility of the reacting materials, and enhances the
molecular interaction among the oil, alcohol and the catalyst.
High temperature of the reacting medium also contributes to the
thinning of the oil and enhances the dissociation of the biodiesel
and glycerol (Bashir et al., 2022). However, excessive reaction
temperature can also be counterproductive to the
transesterification reaction. Apart from high energy cost,
elevating the reaction temperature above the permissible
threshold may result in saponification, complete hydrolysis of
the esters into cognate acid and alcohol, and escalation of the
backward reaction. The choice of alcohol should also be

considered when determining the reaction temperature. Of the
two alcohol commonly used in transesterification reactions,
ethanol seems to tolerate higher temperatures than methanol.
While a temperature of about 78°C is permissible with ethanol,
65°C is the recommended optimum reaction temperature for
transesterification reaction involving methanol. Operating at
temperature below 65°C will leads to slow reaction rate, poor
conversion efficiency and low biodiesel yield while escalating the
reaction temperature above 70°C will exacerbate methanol
evaporation, lower the methanol to oil ratio, and hinder
biodiesel synthesis reaction (Mathew et al., 2021; Stevanato
et al., 2023).

The decision on reaction temperature must be taking along
with other process parameters as the factors are interrelated and
interdependent. In a separate research, Ahmad et al. (2019),
Gimbun et al. (2013), and Al-Saadi et al. (2020) reported
biodiesel yield of 98.6%, 96.9%, and 95.1% when they
synthesized biodiesel by transesterification at reaction
temperature of 59°C, 65°C, and 70°C, respectively. They
concluded that other factors such as type of feedstock,
catalyst, grade of feedstock, methanol to oil ratio, catalyst
concentration, etc. Influenced the reaction temperature. One
of the sustainable panacea to this conundrum is the deployment
of ML models, simulation techniques and statistical tools to
bring up an optimal reaction temperature for improved biodiesel
yield.

TABLE 4 Recent publication on the application of ML technologies in biodiesel research.

Biodiesel research
domain

Aim (s) Model used References

Biodiesel property Estimation of the iodine value of biodiesel using fatty acid methyl ester profiles. LSSVM, ANFIS, MLPNN, and DT Huang et al. (2022)

Biodiesel engine performance Determination of the biodiesel blend ratio for optimal engine performance and
reduced emission

ELM, LS-SVM and RBFNN Wong et al. (2013)

Biodiesel engine performance Prediction of the combustion characteristics of a diesel engine fuelled with
biodiesel

ANN Can et al. (2022)

Biodiesel characterization Characterization of biodiesel using machine learning models ML Chen et al. (2023)

Biodiesel production Optimization of biodiesel production process parameters Huber regression, LASSO, SVR
and ANN

Abdelbasset et al.
(2022)

Biodiesel properties and
combustion

• Evaluation of properties of biodiesel feedstocks ANN Thangaraja et al.
(2023)

• Prediction of the thermo-physical properties of biodiesel

• Determination of the spray and combustion-related properties biodiesel

Biodiesel purity Estimation of the biodiesel purity Random Tree, AMT, LMS, and
MLPR

Moayedi et al. (2020)

Biodiesel application Prediction and optimization of biodiesel combustion and emission
characteristics

ANN Sharma et al. (2022)

Biodiesel blend characterization Prediction of biodiesel mixture properties GA-ESIM Cheng et al. (2016)

Biodiesel production Optimization of biodiesel Linear regression, MLP, KNN Gautam et al. (2022)

Production process

Biodiesel production Modelling and optimization of biodiesel yield ANN Soltani et al. (2022)

Biodiesel production Modelling of biodiesel production process ANN, GA Treve et al. (2022)
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4.4 Reaction time

Reaction time measures the entire duration of the
transesterification reaction. It is a principal consideration in any
chemical reaction as it is contingent on the type of catalyst, grade
of feedstock, size of the reactor, quantity of the reactants, and reaction
temperature (Bashir et al., 2022). Choosing adequate reaction time
ensures sufficient product formation and the entire reaction is
completed before within the reaction duration. The duration of the
reaction should be such that there is adequate time for the diverse
reacting materials to mix, interact and react with each other for
product formation. Biodiesel yield has been observed to increase
with reaction time as more time is allowed for the reactions to take
place. In a separate study, Elkelawy et al. (2020) and Narowska et al.
(2019) reported a corresponding increment in biodiesel yield with
increased reaction time. They attributed this trend to the availability of
enough time for the reactions to be completed. With prolonged
reaction time, however, they reported a decline in biodiesel yield
due to the attainment of equilibrium and activation of the formation
of soap.

4.5 Mixing/agitation speed

The intensity of mixing of the reactants significantly affects the
formation of the product in any chemical reaction. During
transesterification, the reacting materials are mixed and agitated to
ensure that are well dispersed, homogeneously distributed, and

uniform reaction across the reactor. In cases where the triglycerides
are completely soluble in alcohol, the reaction might occur only at the
interface and not in all sections of the reactor. This often leads to slow
reaction, unreacted materials at some part of the reactor, and poor
yield. Mixing of the reacting materials ensures improved solubility of
the oil in methanol, better reaction at all sections of the reactor, and
enhanced product formation. Tabatabaei et al. (2019) experimented
the effect of mixing speed of 200 rpm, 400 rpm, and 600 rpm on
biodiesel yield while Likozar and Levec (2014) studied 100—600 rpm
mixing speed. They reported that increased mixing speed leads to
better product yield and that a speed of about 400 rpm is the optimal
speed for maximum biodiesel yield. Higher mixing speed favours soap
formation and higher energy consumption.

5 Application of machine learning
technologies in optimization of process
parameters

The application of ML technologies such as ANN, RSM,
Adaptive Neuro-Fuzzy Inference System (ANFIS), etc. For
predicting and optimizing biodiesel production process
parameters has gained traction in recent years. This is due to
their capability to predict and optimize the process parameters
accurately. In a separate study, Tan Y. H. et al. (2019), Fangfang
et al. (2021), and Farobie et al. (2015) applied ANN to model and
predict biodiesel yield using Jatropha oil, waste cooking oil, and
canola oil, respectively, as feedstock. They reported the predicted
results agreed with the experimental results and the application of
the ANN model eradicated material wastage and saves time. The
experience of other scholars in the application of ANN to
modelling, prediction, and optimization of the various variables
that affect the generation of biodiesel shows that the technique is
accurate, can model linear and non-linear situations, and has the
capacity to store information on the entire network. However, ANN
has been criticized for poor interpretability, not easily explainable,
and demand lots of data for training, validation, and testing. Also,
ANN is hardware dependent and requires high degree of
computational skill and power. These drawback has necessitated
the use of other tools.

Among several other modeling and optimization tools, RSM has
gained prominence and wide acceptability. The RSM is a mathematical
and statistical technique for the optimization of a process whose
response or output is affected by various factors or variables. The
dependent variables are the responses or output while the independent
variables are the input or the predictor variable (Anggoro et al., 2022).
The utilization of RSM technique for modeling, prediction, and
optimization of biodiesel yield was investigated by Wahidin et al.
(2018), Yesilyurt et al. (2019), and Anwar et al. (2018). They exploited
RSM to model and optimize the process parameters in the
transesterification of Nannochloropsis sp. Biomass, mustard seed oil,
and stone fruit seed oil, respectively, to quality biodiesel. They
reported R2 = 0.96912 and Adj.R2

D = 0.95059, R2 = 0.9818 and
Adj.R2

D = 0.9649, and R2 = 0.9781 and Adj.R2
D = 0.9386,

respectively, to confirm the accuracy and the agreement of the
model with the experimental data. Similar studies by Hashemzehi
et al. (2022) and Singh Pali et al. (2021) on the application of RSM
architecture confirmed the that the predicted biodiesel yield was
accurate and validated by the experimental results. These studies

FIGURE 10
A typical flowchart for ANN model (Aghbashlo et al., 2021).
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confirmed that RSM is a viable technique for optimizing the process
reaction parameters in the transesterification process for maximum
biodiesel yield.

The trajectory of research has move to comparison between the
ANN, RSM, and other similar techniques. This is to help researchers
decide and select better and cost effective techniques for prediction,
modelling, and optimization with a view to further advancing
biodiesel production research (Samuel et al., 2020). investigated
and compared the application of RSM and Grey wolf optimizer
(GWO) to model and optimize biodiesel yield during the
transesterification process of waste sunflower oil. The authors
reported that two the two techniques were reliable in predicting
waste sunflower biodiesel yield, GWO was found more accurate
and user friendly. Similarly, Fayyazi et al. (2015); Kolakoti et al.
(2020) compared RSM and genetic algorithm (GA) and reported
that the GA was faster, more efficient, and displayed 4.96% more
improvement over the RSM technique. The desirability of Adaptive
neuro-fuzzy inference system (ANFIS) integrated with GA and RSM
were investigated by (Chizoo et al., 2022). The authors reported that
ANFIS-GA demonstrated better predictive capability, faster, and
cheaper process than RSM. In the same vein, Jisieike et al. (2023)
and Ishola et al. (2019) in their separate studies, confirmed that though
ANN and RSM possess the capability to model and predict biodiesel
yield, ANFIS is more robust, accurate and faster than ANN and RSM.

The application of both ANN and RSM for predicting and
optimizing biodiesel production process has gained traction among
researchers. This might be due to their accuracy, robustness, and easy
usability. Several authors have combined the two techniques to model
and predict biodiesel yield. In their respective works, Maran and Priya
(2015), Sarve et al. (2015), Prakash Maran and Priya (2015), and
Rajković et al. (2013) compared the capability and the predictive
efficiency of ANN and RSM using muskmelon oil, sesame oil, neem
oil, and sunflower oil, respectively. They unanimously concluded that
ANN model is more reliable, precise, and outperformed RSM models
and therefore widely used in modelling biodiesel production. Other
techniques such as extreme learning machine (ELM) and a support
vector machine (SVM), extreme learningmachine (ELM), artificial bee
colony (ABC), etc. Have been applied to predict and model biodiesel
production. For example, ELM was applied to model and optimize
biodiesel generation from Ceiba pentandra oil by microwave
irradiation assisted transesterification process. The ELM technique
was found effective and resulted in high biodiesel yield (Silitonga et al.,
2020). Faizollahzadeh Ardabili et al. (2018) also reported successful
utilization of SVM-RSM and ELM-RSM approaches for the
optimization of the biodiesel production process. The hybrid
methodologies performed creditably and showed high estimation
capability in optimizing quality biodiesel production process. The
application of ABC algorithm for the optimization of biodiesel

TABLE 5 Statistical parameters commonly used in ANN models (Khair et al., 2017; Ofoefule et al., 2019; Galvan et al., 2020).

Parameters Abbreviation Description Formula

Standard Deviation SD Quantitative measurement of the amount of variation or dispersion of a set of
values

�������∑(xi−μ)2
N

√
Standard deviation of error STD The estimation of the variability across multiple samples

�����������������∑n
i�1

[(ya,i−yp,i )−Mean eror]2
n−1

√

Mean square error MSE The mean of the square of the difference between actual and estimated values
1
n∑n
i�1
(Yi − Ŷ i)2

Root mean square error RMSE The square root of the average of the square of all the errors
�������������
1
n∑n
i�1
(yp,i − ya,i)2

√

Standard error of prediction SEP An estimation of the accuracy of the predictions made by a model RMSE
ya

× 100

Pearson correlation coefficient R The ratio of the covariance of two variables and the product of their SDs ∑n

i�1(yp,i−�yp) × (ya,i−�ya)����������������������
[∑n

i�1(yp,i−�yp )2 ] × [∑n

i�1(ya,i−�ya)2 ]
√

Square of Pearson correlation coefficient R2 The square of the Pearson correlation coefficient �∑n

i�1(yp,i−�yp) × (ya,i−�ya)�2
[∑n

i�1(yp,i−�yp)2] × [∑n

i�1(ya,i−�ya)2]

Linear correlation coefficient RD The estimated value that measures the potency of the relationship between two
give variables

�������������
1 − ∑n

i�1(yp,i−ya,i )2∑n

i�1(ya,i−�ya)2
√

Coefficient of determination R2
D Measurement of the proportion of variance. It varies between 0 and 1

1 − ∑n

i�1(yp,i−ya,i)2∑n

i�1(ya,i−�ya)2

Adjusted coefficient of determination Adj.R2
D An adjustment of the R2

D value by considering the number of variables of
data set.

1 − [1 − RD
2) × n−1

n−k−1]

Absolute percentage error APE The difference between theoretical value and measured value, measured in
percentage

|ya,i−yp,iya,i
× 100|

Mean absolute percentage error MAPE The measurement of the accuracy of a forecast, expressed in percentage
1
n∑n
i�1
|ya,i−yp,iya,i

| × 100

Mean relative percent deviation MRPD The measurement of how a number deviates from the mean
100
n ∑n

i�1
|yp,i−ya,iya,i

|

k = Number of input variables; n = Number of data points; �ya = Mean of actual output; ya,i = Actual output; �yp = Mean of predicted output; yp,i = Predicted output.
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TABLE 6 Application of ML models for modelling, predicting, and optimizing biodiesel process parameters.

Feedstock Catalyst Research aim(s) No. Of
data

ML model
used

Model
inputs

Model output Statistical parameters Remark Ref

Jatropha oil KOH To model biodiesel yield using
ANN model

15 ANN M:O ratio = 6:
1–12:1

Biodiesel yield 85.2% R = 0.99222 ANN predicted biodiesel yield Tan S. X. et al.
(2019)

CC =
0.5–1.0 wt%

R2
D = 0.9845

Rt = 30–90 min

Waste cooking oil NaOH Prediction of biodiesel yield
using ANN

27 ANN M:O ratio = 9:
1–18:1

Biodiesel yield 84.1% R = 0.98192 Accurate prediction of
biodiesel yield by ANN

Fangfang et al.
(2021)

CC =
0.5–2.0 wt%

MSE = 0.52

Rt = 10–20 min RMSE = 0.72

SS =
300–700 rpm

Canola oil KOH Using ANN to predict biodiesel
yield

42 ANN M:O ratio = 20:
1–40:1

Biodiesel yield 97.26% R = 0.99872 ANN was successful in
predicting biodiesel yield

Farobie et al.
(2015)

Rt = 3–30 min

RT =
270°C–400 °C

Nannochloropsis sp.
Biomass

MeSO4 Prediction and optimization of
biodiesel yield by RSM

25 RSM M:O ratio = 0.5:
1–1:1

Biodiesel yield 40.9% R2 = 0.96912 Low biodiesel yield Wahidin et al.
(2018)

CC =
0.5–2.0 wt%

Adj.R2
D = 0.95059

RT = 65°C–95 °C APE = ~2.3%–5.1%

Rt = 5–25 min

Mustard seed oil NaOH Application of RSM to predict and
optimize the reaction parameters
of biodiesel production

30 RSM M:O ratio = 2:
1–10:1

Biodiesel yield 96.695% R2 = 0.9818 RSM is a suitable statistical
technique to optimize and
maximize biodiesel yield

Yesilyurt et al.
(2019)

CC =
0.2–1.0 wt%

Adj.R2
D = 0.9649

RT = 50°C–70 °C

Rt = 30–90 min

Stone fruit seed oil KOH Modelling and optimization of
biodiesel production by RSM

15 RSM M:O ratio = 4:
1–6:1

Biodiesel yield 95.9% R2 = 0.9781 Effective and easy to use
technique

Anwar et al. (2018)

CC =
0.5–1.5 wt%

Adj.R2
D = 0.9386

RT = 45°C–65 °C

(Continued on following page)
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TABLE 6 (Continued) Application of ML models for modelling, predicting, and optimizing biodiesel process parameters.

Feedstock Catalyst Research aim(s) No. Of
data

ML model
used

Model
inputs

Model output Statistical parameters Remark Ref

Oleic acid Cu0.4Zn0.6Al2O4 Modelling and optimization of
biodiesel production by RSM

30 RSM M:O ratio = 6:
1–18:1

Biodiesel yield 97.94% Adj.R2
D = 0.9582 RSM was effective in

predicting biodiesel yield
Hashemzehi et al.
(2022)

CC =
1.0–5.0 wt%

R2
pred = 0.863

RT =
60°C–180 °C

Rt = 60–300 min

Kusum oil KOH Modelling and optimization of
transesterification process by RSM

31 RSM M:O ratio = 1:
1–12:1

Biodiesel yield 98.48% APE =< 3% Actual experiment and
predicted data are close

Singh et al. (2021)

CC = 0–2.0 wt%

RT = 50°C–70 °C

Rt = 30–180 min

Waste sunflower oil KOH Investigation and comparing RSM
and GWO for biodiesel production

20 RSM
and GWO

M:O ratio = 4:
1–8:1

Biodiesel yield 97.1% RSM (R = 0.990,934 Effective predictive
capabilities of the techniques

Samuelet al. (2020)

CC =
0.5–1.5 wt%

R2
D = 0.981,619, RMSE =

1.741,168)

Rt = 40–80 min GWO (R = 0.99289, R2
D =

0.99879, RMSE = 1.724,071)

Chicken fat oil KOH Application of RSM and GA to
optimize and model biodiesel
production

15 RSM and GA M:O ratio = 4:
1–8:1

Biodiesel yield 94.8% Error = 5.4 Efficient optimization
techniques

Fayyazi et al.
(2015)

CC =
0.75–1.25 wt%

MSE = 4.74

Rt = 3–9 min

Mahua oil H2SO4 Use of RSM and GA to optimize
biodiesel yield

27 RSM and GA M:O ratio = 4:
1–12:1

Biodiesel yield 96.28% R2 = 0.9706 GA presented fast, efficient
and more accurate results
than RSM

Kolakoti et al.
(2020)

CC =
0.3–0.9 wt%

Adj.R2
D = 0.9362

RT = 45°C–55 °C

Rt = 90–150 min

Waste chicken fat CH3NaO Modelling and optimization of
biodiesel yield by RSM and
ANFIS-GA

30 RSM and
ANFIS - GA

M:O ratio = 4:
1–12:1

Biodiesel yield: RSM =
92.70%

RSM: R2 = 0.9361, RMSE =
1.1399

ANFIS-GA demonstrated
better predictive capability
and cheaper process
than RSM

Chizoo et al. (2022)

CC =
0.5–1.5 wt%

ANFIS-GA = 94.89% ANFIS-GA: R2 = 0.9713,
RMSE = 1.059

RT = 45°C–65 °C

Rt = 45–65 min
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TABLE 6 (Continued) Application of ML models for modelling, predicting, and optimizing biodiesel process parameters.

Feedstock Catalyst Research aim(s) No. Of
data

ML model
used

Model
inputs

Model output Statistical parameters Remark Ref

Crude rubber
seed oil

Fe2(SO4)3 Evaluate the efficacies of RSM and
ANFIS to predict biodiesel yield

30 ANFIS
and RSM

M:O ratio = 25:
1–75:1

Biodiesel yield:
ANFIS = 96.25%

ANFIS (R2 = 0.9838,
MRPD = 1.77)

ANFIS performed better and
more accurate than RSM

Jisieike et al. (2023)

CC = 8–16 wt% RSM = 912.35% RSM (R2 = 0.9730,
MRPD = 4.98)

Rt =
180–240 min

H. sabdariffa
seeds oil

Ba(OH)2 Modeling the transesterification of
H. sabdariffa seeds oil to biodiesel

28 RSM, ANN,
and ANFIS

M:O ratio = 4:
1–12:1

Biodiesel yield:
RSM = 60%

RSM: (R = 0.98944, R2 =
0.97899, MSE = 0.44821,
MRPD = 58.24%)

ANFIS was the most accurate
technique in predicting
biodiesel yield

Ishola et al. (2019)

CC =
0.5–2.5 wt%

ANN = 80.01–98.37% ANN: (R = 0.99371, R2 =
0.98746, MSE = 0.27747,
MRPD = 34.59%)

Rt = 15–75 min ANFIS = 80.1–98.3% ANFIS: (R = 0.99717, R2 =
0.99435, MSE = 0.12101,
MRPD = 19.42%)

Muskmelon oil KOH To compare the prediction and
simulating efficiencies RSM and
ANN for biodiesel yield

30 RSM
and ANN

M:O ratio = 3:
1–9:1

Biodiesel yield ANN =
97.90%., RSM =
97.56 ± 0.63%

RSM (RMSE = 2.303, R2
D =

0.869, MAPE = 2.287)
ANN was more accurate and
reliable than RSM in
predicting biodiesel yield

Maran and Priya
(2015)

CC =
0.5–1.5 wt%

ANN (RMSE = 0.033, R2
D =

0.991, MAPE = 0.212)

RT = 30°C–50 °C

Rt = 10–50 min

Sesame oil Ba(OH)2 Investigation and comparison of
the capability of ANN and RSM to
predict biodiesel yield

27 RSM
and ANN

M:O ratio = 4.5:
1–9:1

Biodiesel yield ANN =
99.7%., RSM = 98.3%

ANN (R2
D = 0.781, RMSE =

4.81, SEP = 6.03,
MAPE = 4.92)

ANN model demonstrate
better accuracy and reliability
than RSM model

Sarve et al. (2015)

CC =
0.5–2.5 wt%

RSM (R2
D = 0.596, RMSE =

6.79, SEP = 8.54,
MAPE = 6.48)

RT = 25°C–40 °C

Rt = 10–50 min

Neem oil KOH Model biodiesel yield using RSM
and ANN

30 RSM
and ANN

M:O ratio = 3:
1–9:1

Biodiesel yield 91.5% RSM: (RMSE = 4.196 ANN was more robust and
accurate than RSM

Prakash Maran and
Priya (2015)

CC =
0.5–1.5 wt%

R2 = 0.919, MAPE = 2.872)

RT = 30°C–50 °C ANN: (RMSE = 0.001

Rt = 10–50 min R2 = 0.999, MAPE = 0.009)

Sunflower oil KOH To investigate and compare the
prediction capabilities of ANN
and RSM

162 RSM
and ANN

M:O ratio = 4.5:
1–7.5:1

Biodiesel yield 89.9% RSM: (R2
D = 0.803, Adj.R2

D =
0.777

ANN model was more
accurate than RSM

Rajković et al.
(2013)
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TABLE 6 (Continued) Application of ML models for modelling, predicting, and optimizing biodiesel process parameters.

Feedstock Catalyst Research aim(s) No. Of
data

ML model
used

Model
inputs

Model output Statistical parameters Remark Ref

CC =
0.3–0.7 wt%

MRPD = ±24.2), ANN:
MRPD = ±3.4

RT = 20°C–40 °CRt = 40–60 min

Ceiba pentandra oil H2SO4 Application of ELM for modeling
and optimization of biodiesel
production

29 ELM M:O ratio = 50:
1–70:1

Biodiesel yield 96.19% R = 0.996 ELM is an effective modelling
technique

Silitonga et al.
(2020)

CC =
0.6–1.0 wt%

R2 = 0.992

Rt = 4–12 min RMSE = 0.142

SS =
600–900 rpm

Waste cooking oil NaOH Use of ELM-RSM and SVM-RSM
to optimize biodiesel production
process

28 ELM-RSM
and
SVM-RSM

M:O ratio = 3:
1–9:1

Biodiesel yield ELM-
RSM = 96.86%

ELM: (R = 0.9815,
RMSE = 1.78)

ELM and SVM showed high
estimation capability

Faizollahzadeh
Ardabili et al.
(2018)

CC =
0.5–1.0 wt%

SVM-RSM = 95.5% SVM: (R = 0.9656, RMSE =
2.407)

RT = 50°C–80 °C

Rt = 30–90 min

SS =
300–900 rpm

Mountain
almond oil

KOH Optimization of biodiesel
production by Artificial Bee

14 ABC M:O ratio = 4:
1–6:1

Biodiesel yield 96.1% SD = 0.22 High accuracy optimization Rostami et al.
(2016)

Colony Algorithm Rt = 3–9 min

Waste Sunflower oil NaOH Optimization of biodiesel
production by ANN

6 ANN M:O ratio = 6:
1–712:1

Biodiesel yield of
92.17%

R = 0.9955 Product meets ASTM-D6751
and EN-14214 standards

Kolakoti (2020)

CC = 5–15 wt%

RT = 45°C–65 °C

Rt = 60–180 min

Waste cooking oil NaOH Modelling of biodiesel production
by ANN and RSM

30 ANN
and RSM

M:O ratio = 3:
1–7:1

Biodiesel yield of 94% ANN: R = 0.9950, R2 = 0.9901 ANN outperform RSM Soji-Adekunle et al.
(2019)

CC =
0.9–1.3 wt%

RSM: R = 0.992,140, R2 =
0.984,342

RT = 40°C–60 °C

Rt = 40–80 min

(Continued on following page)
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TABLE 6 (Continued) Application of ML models for modelling, predicting, and optimizing biodiesel process parameters.

Feedstock Catalyst Research aim(s) No. Of
data

ML model
used

Model
inputs

Model output Statistical parameters Remark Ref

Waste domestic
cooking oil

NaOH Optimizing biodiesel production
using GA

55 GA M:O ratio = 6:
1–9:1

Improved biodiesel
yield

RMSE = 10.4 3% Quality biodiesel produced Corral Bobadilla
et al. (2018)

CC =
1.0–2.0 wt%

RT = 20°C–40 °C

Rt = 20–40 min

SS =
500–1000 rpm

Thevetia peruviana
seed oil

Sodium methoxide Optimization of biodiesel
production using ANFIS and RSM

13 ANFIS
and RSM

M:O ratio = 4.76:
1–12:1

Biodiesel yield
ANFIS = 99.8%

ANFIS: R2 = 0.9999,
MAPD = 0.05%

ANFIS performed better
than RSM

Ogaga Ighose et al.
(2017)

CC =
0.79–2.0 wt%

RSM = 98.8% RSM = R2 = 0.9670,
MAPD = 0.84%

Rt = 20–60 min

Sunflower oil CaO Optimization of biodiesel
production using RSM and
ANN-GA

330 RSM and
ANN-GA

M:O ratio = 6:
1–18:1

Biodiesel yield of 99.2% RSM: (R = 0.850,
MRPD ±10.1%)

ANN-GA more accurate
than RSM

Avramović et al.
(2015)

CC = 10–20 wt% ANN: (R = 0.973,
MRPD = ±6.9%)

RT = 65°C–75°C

Rt =
360–480 min

Waste sunflower oil TiO2–ZnO (nano) Modelling and optimization of
waste sunflower oil conversion
into biodiesel

20 RSM M:O ratio = 4:
1–6:1

Biodiesel yield of 96.4% R2 = 0.8726 RSM successfully optimized
biodiesel production

Zahed et al. (2021)

CC = 0–400 wt% Adj.R2
D = 0.9507

RT = 50°C–70°C

Rt =
360–480 min

M:O ration = Methanol: Oil ratio, CC, catalyst concentration; RT, reaction temperature, Rt = Reaction time, SS, Stirring/agitation speed.
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production fromMountain Almond oil was demonstrated by Rostami
et al. (2016). The ABC algorithm technique demonstrated high
accuracy in estimating the optimal process parameters for biodiesel
production. The summary of the application of ML technology in the
optimization of process parameters for biodiesel production is shown
in Table 6.

6 Implications, challenges, and future
research direction

Demand for affordable, easily accessible, and environmentally
benign energy sources will continue to increase in the foreseeable
future. There will be more pressures on the fuel refiners, energy
producers, researchers, and all stakeholders to escalate energy
production to meet up with the global energy demand.
Therefore, researches geared towards making more renewable
energy available will continue to be at the front burner.
Biodiesel, a prominent member of renewable fuel, will continue
to occupy a prime place in the renewable energy space. The current
research is therefore relevant to the contemporary times as it
provides an updated information in the research domain with a
view to provoke the interest of researchers in the field. Bearing in
mind the continuous application of innovative technologies is
diverse fields, including R and D, the application of ML and
similar technologies will simplify and create technology-based
techniques for the expansion of the biodiesel research. The
deployment of modelling, simulation, numerical, mathematical,
statistical, and optimization techniques in biodiesel production will
contribute towards democratizing biodiesel production and energy
sufficiency.

Researchers and biodiesel refiners must evolve fast, cost
effective, and efficient methodologies that will not waste
materials (Goswami et al., 2022). Efficient conversion of various
natural oil, waste oil, animal fats and other feedstocks into
biodiesel will continue to attract the attention of researchers
and biodiesel refiners alike. The application of ML and other
novel technologies for the modelling, prediction, estimation,
and optimization of biodiesel; production will continue to be in
demand. Ml technologies will continue to be preferred to
mathematical and numerical models in modelling biodiesel
yield. The implication of continuous use of ML technologies in
advancing biodiesel research will be manifested in the discovery
and utilization of other novel and easy to use technologies to
advance biodiesel research. The implication of the current
research efforts in the application of ML technologies for
biodiesel research will be escalation of more research
particularly in cost effective production strategies and eco-
friendly utilization pathways (Albuquerque et al., 2022).

Real life production of biodiesel is very challenging. There are
several non-linear factors and unpredictable occurrences that can
affect the process. The use of simulation, optimization and
modelling tools to such as ANN, ML, numerical, mathematical,
multiphysics, etc. Are also not straightforward and requires
painstaking efforts and concentration to be able to survive with
the high degree of uncertainty and complexity involved. Selection
of raw materials, choice of production process and methods, choice
of reaction conditions, optimization of input variables, improving
the procedures, intensification and upscaling of the production and

purification infrastructure are crucial to taking biodiesel
production to the next phase. The economic, infrastructural,
manpower, environmental factors, policy formulation and
implementations, biodiesel mandates and standards and other
factors connected to biodiesel value chain needs holistic
interrogation and improvement. The infrastructural
requirements of modelling, prediction, and optimization of
biodiesel generation process must be met and developed to meet
the demands of the new age.

There is no doubt that the introduction of ML technologies and
other prediction and optimization tools have been beneficial to
biodiesel research. However, it is not yet a flawless and total
solution that can solve all the complexities involved in the research
domain. There are obvious inherent shortcomings that must be
tackled headlong. For instance, there are challenges in the
interpretation of ANN, RSM, and other statistical results. Some of
the results are not completed, cannot stand alone, and difficult to
interpret. Some of these need to be fine-tuned, analysed, and calibrated
according to the training data. ML technologies are designed to
monitor biodiesel production, purification, characterization, and
utilization processes in a real life. More studies are required to
develop and upgrade ML technologies and similar tools to be able
to monitor and control biodiesel quality and maintain standards. The
impact of biodiesel production and utilization on the environment,
ecosystem, humanity, bioeconomy and biodiversity needs further
scrutiny.

7 Conclusion

Population explosion, need for renewable energy, and
environmental sustainability have continued to ensure increased
demand for renewable fuel. Biodiesel, a form of liquid biofuel is a
renewable, cost effective, biodegradable and environmentally benign
fuel capable of replacing the fossil-based diesel fuel. Production of
biodiesel involved several non-linear factors that must be considered
to ensure the effective conversion of the diverse feedstocks to quality
biodiesel. Factors such as choice of feedstock, state of feedstcoks,
choice of catalysts, method of conversion, reaction time, process
temperature and pressure, stirring or agitation speed, alcohol: oil
molar ratio, catalysts concentration, catalysts particle size, choice of
reactor, etc. Affects not only the conversion efficiency, but also
biodiesel yield, biodiesel properties, and application.

In this study, we have examined the use of ML technologies in
modeling, predicting, estimating, and optimizing biodiesel
production. We surveyed the trend in global biodiesel production
and market size and other issues relating to biodiesel production
including feedstock, techniques, and catalysts for biodiesel production.
A brief introduction to ML and other technologies for predicting,
estimating, and optimizing biodiesel production. Specifically, we
considered the five major factors affecting biodiesel production
such as methanol: oil ratio, reaction temperature, reaction time,
catalyst concentration, and agitation speed. The use of technologies
such as ANN, RSM, ANFIS, GWO, GA, SVM, and other ML
technologies commonly used in biodiesel research space was
studied. Published works on the applications of ML technologies
for the prediction, estimation, and optimization of biodiesel yield
were interrogated and summarized. The implications, challenges, and
future research trajectory of ML application in optimizing biodiesel
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yield were offered. The outcome of this current study will help to
stimulate further investigations on the application of novel and
innovative technologies that can enhance biodiesel production.
After a careful study, it is, therefore, safe to conclude as follows.

• The most influential factors commonly optimized to increase
biodiesel yield are alcohol: oil molar ratio, reaction time, process
temperature, catalysts concentration and dosage, and stirring or
agitation speed.

• The application of ML technologies, statistical techniques,
modelling, and optimization tools in biodiesel research has
opened a new vista in biodiesel production research.

• Biodiesel is one of the most popular and easy-to-produce
biofuels. Applying ML and other innovative technologies to
its production will stimulate more interest in biodiesel synthesis
and utilization.

• As a way of recommendation, the deployment of ML
technologies for monitoring, controlling, predicting,
stimulating, and modelling of biodiesel production processes
should first be implemented in a laboratory scale before
escalating the methodology to large industrial scales. This
way, challenges and problems are easier to mitigate and at
lower cost.

There is a necessity for the development and implementation of
simple, easy-to-use, and robust advanced technologies for the
monitoring and controlling of the entire biodiesel production
ecosystem. More training and capacity building are recommended
to ensure better understanding and wider application of technologies
in the entire biodiesel value chain, including raw materials selection,
oil extraction, feedstock pre-treatment, reactor selection and
configuration, biodiesel purification and quality assurance, biodiesel
utilization, and emission reduction in biodiesel fuelled engines.
Targets policies and programmes aimed are encouraging
production and utilization of biodiesel for diverse applications
towards decarbonisation of the environment should be enacted and

consistently implemented. Government should democratise and
encourage the use of biodiesel and other biofuels, particularly at
the household levels to relieve the pressure on the fossil-based
diesel fuels and its attendant implications.
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