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Microalgae are a vital resource for the coming years to address the concern of
decrease in oil reserves and the negative impacts of fossil fuels on the environment.
Their utilization is crucial for a wide range of industrial applications. Depending on
the strain, microalgae contain a variety of chemical components and can be treated
biochemically or thermochemically. This review thus focuses on the biochemical
mechanisms that are used to convert algal biomass into sustainable fuel, including
the challenges and potential of those processes. Microalgae have been shown to be a
viable third-generation alternative to conventional biofuel feedstocks. The optimum
production of biofuel depends on the proper selection of microalgae species based
on their lipid, carbohydrate, and protein content in order to produce high-quality,
sustainable biofuel. Nannochloropsis gaditana can contribute to a maximum
biodiesel yield of 96.47%, whereas Nannochloropsis oculata can produce the
least (25%) through the biochemical process of transesterification. Higher yields
of microalgae-derived gaseous, solid and liquid fuels can be achieved by pre-treating
microalgal biomass and then employing bioconversion processes such as photo-
fermentation and hydrothermal carbonization.
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1 Introduction

The pressing demand for energy, the diminishing sources of fossil fuels, and the mounting
environmental concerns all call for a promising alternative fuel including biofuel (biodiesel,
biomethane, bioethanol etc.) (Mofijur et al., 2013a; Chuah et al., 2016; Chuah et al., 2017).
Microalgae, as a feedstock for biofuels have demonstrated a significant amount of potential.
This is as a result of the fact that it matures with copious mass creation in a matter of days as
opposed to terrestrial crops and plants, which can take anything from a few months to many
years to reach this stage of development (Wang et al., 2007; Yu et al., 2017; Chia et al., 2018). The
primary benefits of using biofuels from the microalgae are that they do not require the use of
potable water, they can be grown on land that is not suitable for agriculture, they require only
simple nutrients like CO2 and sunlight, they do not require the use of herbicides or pesticides
during cultivation, they can use carbon-neutral feedstock, and they can produce high-quality
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pyrolytic materials (Singh et al., 2011; Lee and Ofori-Boateng, 2013;
Debiagi et al., 2017; Chia et al., 2018; Gan et al., 2018). In addition, the
high photosynthetic efficiency of microalgae, which ranges from 6% to
8%, when compared to the photosynthetic efficiency of terrestrial
biomass, which ranges from 1.8% to 2.2%, as well as the high CO2

fixation by microalgae, makes them excellent biofuel feedstocks and
natural environment remediators (Kumar et al., 2017; Yu et al., 2017;
Yu et al., 2018; Brigljević et al., 2019). In addition to this, it has been
observed that the bulk of microalgae is composed of more than 70% fat
when measured based on their dry weight (Liang et al., 2010). Because
of their high lipid content, microalgae are an important component in
the manufacture of biofuels. Cultivating microalgae can, over the
course of time, result in both the production of economically viable
feedstock and the decrease of greenhouse gases.

The cultivation of microalgae for commercial purposes takes place
in a particular sort of bioreactor that creates ideal growth conditions,
resulting in high levels of output. At this time, open raceway ponds
and closed photobioreactors are both utilised for the production of
microalgae, and the selection of one or the other is determined by the
particular requirements. Raceway ponds that are open to the
environment are frequently used for the treatment of wastewater,
whereas closed photobioreactors are typically utilised for the
production of pharmaceutical and value-added goods. The quantity
of biofuel produced and the quality of that biofuel are both highly
dependent on a number of parameters, including the properties of the
microalgae, the conditions of the production process, the catalyst type
and dosage, and the configuration of the reactor (Azizi et al., 2018).
The effect of these elements should be thoroughly investigated and
modified in order to get the best output and quality of biofuels from
microalgae. This will allow to reach goals. Few researchers already
studied different microalgae conversion processes (Rowbotham et al.,
2012; Marcilla et al., 2013; Chen et al., 2015a; Elliott, 2016). A large
number of macromolecular components serve as substrate for the
biochemical conversion process, which is one of these processes. As a
result, the benefit of using microalgae in the biochemical conversion

process is that it results in a reduced level of process complexity while
simultaneously providing an energy form together with a mineralized
digestate that is rich in beneficial nutrients. Thus, the purpose of this
mini review is to highlight the utilisation of different biochemical
processes and the challenges and future prospects of those processes to
convert algal biomass into sustainable fuel.

2 Conversion technologies of
microalgae into biofuels

Converting microalgae into biofuels can be accomplished through
the use of a variety of different technologies. As shown in Figure 1,
these conversion methods can be categorised into two primary
categories: biochemical and thermochemical. Because certain
biomass feedstocks include high levels of lipids, it is possible to
extract those lipids using either physical or chemical separation
methods. After that, the triglyceride portion of the extracted lipids
can be converted into biodiesel by using the transesterification process.
The biochemical conversion processes also result in the production of
biogas or ethanol, and the conversion itself is a somewhat slow process,
typically lasting hours, days, or weeks depending on the kind of
feedstock (Bridgwater, 2010). Thermochemical conversion
including pyrolysis and gasification process, on the other hand,
results in the production of several products in a relatively short
amount of time and the quality of the products that are intended for
consumption may frequently be improved with the application of
catalysts.

One of the most important steps in ensuring that the production of
biofuel is both economically viable and environmentally sustainable is
making the choice of the appropriate conversion technology. At this
point in time, there are no obvious advantages that can be
demonstrated between the thermochemical and biochemical routes.
However, according to a review that was done by Sims and colleagues
(Sims et al., 2010), thermochemical conversion is regarded as being
more favourable. The properties of the feedstock are one of the most
significant challenges for biochemical conversion. Feedstock
modifications, such as those involving pre-treatment processes, call
for a significant investment of capital, which, in turn, drives up
production costs. In addition, the efficiency with which biomass
may be converted into biofuel by using biochemical processes is
quite low. In addition, the biochemical pathway could only result
in the production of a single type of end product for each application,
in contrast to the thermochemical pathway, which may result in the
production of multiple types of end products from a single operation.
In the next subsections, a concise discussion of each kind of
conversion technology is presented.

2.1 Chemical and biochemical conversion
technologies of microalgae

2.1.1 Transesterification of microalgae
The typical process that is utilised to convert the triglyceride found

in microalgal lipid into biodiesel is called transesterification (Sinha
et al., 2008; Rajan and Senthilkumar, 2009). This is the reaction that
occurs when TG is combined with an acyl-acceptor (Fan and Burton,
2009; Helwani et al., 2009). Acyl-acceptors might come in the form of
carboxylic acids, alcohols, or even another ester. When alcohol is used

FIGURE 1
Various conversion technologies for biofuel production, modified
from (Suali and Sarbatly, 2012).
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as the acyl-acceptor in transesterification, glycerol is produced;
however, triacylglycerol is produced when ester is utilised (Ma and
Hanna, 1999; Dubé et al., 2007; Ranganathan et al., 2008; Sharma et al.,
2008; Robles-Medina et al., 2009). According to the principles of
stoichiometry, 3 mol of alcohol are needed for every mole of TG. In
most cases, however, a greater molar ratio of alcohol is employed in
order to accomplish the highest possible level of biodiesel generation.
This molar ratio changes depending on the type of feedstock that is
used, the type of catalyst that is used, the temperature, and the amount
of time that the reaction takes. Methanol, ethanol, and propanol are
the three types of alcohol that are utilised most frequently (Mofijur
et al., 2013b; Mofijur et al., 2014; Rozina et al., 2022). In point of fact,
the yield of biodiesel is not affected by the type of alcohol that is used;
rather, the selection of alcohol is determined by cost (Al-Zuhair et al.,
2007; Sinha et al., 2008).

The process of transesterification that makes use of a catalyst is
referred to as a catalytic transesterification process, whereas the
process that does not make use of a catalyst is referred to as a
non-catalytic transesterification process (Gerpen, 2005; Meher
et al., 2006; Marchetti et al., 2007). In addition, a catalytic process
might be one of two categories: homogeneous or heterogenous, and
this classification is determined by the catalyst that is being employed
(Fjerbaek et al., 2009; Lin et al., 2009). It has been reported that the
heating value of biodiesel made frommicroalgae is 41 MJ/kg (Xu et al.,
2006) and this value is in accordance with the ASTMD6751 standards
(Li et al., 2007). According to a number of studies, the enzyme that
comes from lipase is fantastic for the process of converting a variety of
vegetable oils to methyl ester. The transesterification process in
generally take place at 35–50°C at atmospheric pressure and a
molar ratio of 3:1–6:1 (Fjerbaek et al., 2009; Mata et al., 2010).

2.1.2 Fermentation
The production of ethanol from organic substrates like sucrose,

bagasse, cellulose, or starch is the goal of the metabolic process known
as fermentation (McKendry, 2002a; Lee and Lee, 2016). The
fermentation of starch, sugar, and cellulose found in microalgal
biomass is the primary route that leads to the synthesis of ethanol
frommicroalgae (Kim et al., 2011), with starchmaking up the majority
of the carbohydrate content and having a potential range of up to
60 dw% depending on the culture conditions (Nahak et al., 2011;
(Brányiková et al., 2011). Controlling the amount of nitrogen or iron
present during culture of microalgae can result in increased starch
production (Liu et al., 2008; Dragone et al., 2011). In its most basic
form, fermentation can be broken down into two categories: (Chuah
et al., 2016) aerobic and (Chuah et al., 2017) anaerobic, with the
distinction between the two based on whether or not the process
requires oxygen.

Before microalgae biomass or starch can be fermented, it must first
undergo pretreatment in the form of milling, which turns the biomass
or starch into sugars. Next, the sugars are combined with
Saccharomyces cerevisiae yeast and water in a fermenter for the
fermentation process (Demirbaş, 2001). After fermentation, the
diluted alcohol that was generated is put into a holding tank where
it waits to be distilled. The ethanol concentration in the diluted alcohol
product typically ranges from 10% to 15% (McKendry, 2002a). The
product can be purified through the distillation process, which also
results in the production of concentrated ethanol that has a purity level
of 95% and is therefore appropriate for use as a supplement or
substitute for transport fuel (McKendry, 2002b). This fermentation

process uses less energy because the CO2 produced can be used to grow
microalgae and the leftover material can be recycled as a medium for
microalgae growth or used as animal feed (McKendry, 2002a; Milledge
et al., 2014).

There are four primary processes that take place during the
fermentation of ethanol. Ethanol has replaced gasoline in many
vehicles over the last decade because to its ability to reduce
emissions of CO2 and many harmful pollutants (CO, NO) during
combustion (Demirbas, 2008). As a transportation fuel, bioethanol is
widely available on the market and is utilised often (Walker, 2010).
Nevertheless, bioethanol has a few downsides, including the fact that it
is caustic, has a low energy value, is hazardous to the ecology, and has a
low vapour pressure. However, in order to achieve long-term benefits
and sustainability, additional efforts are required to upgrade
bioethanol to a higher quality fuel that can stand alone and is
compatible with fossil fuel. At the moment, bioethanol is ready to
be integrated with the fuel that is already being used for transportation.
C. vulgaris is a type of microalgae that is excellent for the production of
bioethanol. This species has a high starch content (about 37%), which
enables it to achieve up to 65% of ethanol conversion (Adeniyi et al.,
2018). In addition to Chlamydomonas, Dunaliella, Scenedesmus, and
Spirulina, which all contain more than fifty percent starch, there are
also species that are thought to be promising candidates for the
synthesis of bioethanol (Hu et al., 2012). Table 1 provides a
summary of the findings of studies conducted on the production of
biofuel using various biochemical processes.

2.2 Anaerobic digestion of microalgae

When the biomass to be converted has a high-water content, the
biochemical process of anaerobic digestion becomes crucial. In this
process, biogas, NH3, and CO2 are produced, along with other
undesirable gases like H2S from the biomass’s organic content
(Mahmudul et al., 2021). Microalgae biomass, both pre-treated and
untreated, and lipid extraction leftovers can be employed to generate
methane (Siddiki et al., 2021). Steps of hydrolysis, fermentation, and
methanogenesis follow one another in the digestive process. First, the
organic matter is broken down into soluble sugars, and then the
bacteria ferment those sugars to produce methane and carbon dioxide.
As a result of the digesting process, a gas is produced that contains
20%–40% of the lower heating value of the feed in terms of energy. To
get the best possible end result from the anaerobic digestion process, it
is necessary to tune the hydraulic retention, organic loading
parameters, pH, and temperature (Ahmed et al., 2021). The
majority of current biogas research is devoted to improving
wastewater treatment and finding ways to integrate biogas
generation with other algal-based manufacturing techniques. In
addition to lowering odours, hazardous gas emissions, and oxygen
demand in wastewater, anaerobic digestion of microalgae has a few
other advantages.

3 Challenges of chemical/biochemical
conversion of microalgae

Capital-intensive efforts to convert algae into biofuels have
been advocated for on the basis of the plant’s rapid expansion,
manageable size, and high oil content. There are a number of
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challenges that need to be addressed before algae can emerge as a
financially feasible substrate to replace petroleum and, thus,
decrease CO2 release. These challenges range from where and
how to cultivate these algae to advancements in oil extraction

and fuel processing (Hannon et al., 2010). Some of the
challenges of converting microalgae into biofuel through
chemical/biochemical conversion processes (Siddiki et al., 2022)
are discussed as follows.

TABLE 1 Summary of the findings of studies conducted on the production of biofuel from microalgae using various biochemical processes.

Biochemical process Microalgae species Biodiesel yield References

Transesterification Aurantiochytrium sp. 89.50% Kim et al. (2016)

Botryococcusbraunii 95% Hidalgo et al. (2015)

Chlamydomonas sp. 101% Chen et al. (2015b)

Chlorella pyrenoidosa 10.50%–92.50% Cao et al. (2013), Cheng et al. (2013)

Chlorella vulgaris 51.54%–100% Levine et al. (2010), Nguyen et al. (2020), Malekghasemi et al.
(2021)

Nannochloropsis gaditana 96.40% Im et al. (2015)

Nannochloropsis oculata 25% Jafari et al. (2021)

Nannochloropsis sp. 20.90%–85.80% Koberg et al. (2011), Patil et al. (2011), Wahidin et al. (2016)

Biochemical process Microalgae species Bioethanol yield References

Fermentation Chlorella sp. 0.43 g ethanol/g sugars Seon et al. (2020)

C. Vulgaris 0.07 g ethanol/g microalgae Yu et al. (2020)

Chlorella sp. 0.19 g/g glucose Abdulla et al. (2020)

Chlorella Vulgaris 33.21 g/L Bhuyar et al. (2021)

Arthrospira platensis, chlorella marina, and ulva
linza

45.49% Ismail et al. (2020)

Saccharomyces cerevisiae 0.46 g/g glucose Shokrkar et al. (2017)

Nannochloropsis oculata and tetraselmis suecica 7.26% Reyimu and Özçimen (2017)

Porphyridium cruentum 2.98 mg/mL Kim et al. (2017)

Saccharomyces cerevisiae 18.57 g/L El-Mekkawi et al. (2019)

Saccharomyces cerevisiae 0.46 g ethanol/g glucose Shokrkar et al. (2018)

Chlamydomonas sp. 0.22-g/g residual biomass Kim et al. (2020)

Chlorella 0.28 g ethanol/g microalgae Phwan et al. (2019)

Biochemical process Microalgae species Biomethane yield References

Anaerobic digestion Porphyridium cruentum 179 mL CH4/g VS Kendir Çakmak and Ugurlu (2020)

Chlorella vulgaris 168.9 mL CH4/g COD Llamas et al. (2021)

Haematococcus pluvialis 91.9 mL CH4/g VS Hosseini et al. (2020)

Chlorella pyrenoidosa 147 mL CH4/g VS Kumari et al. (2021)

Chlorella sp. 194.63 mL CH4/g VS Wu et al. (2020)

Chlorella sp. 0.14 m3/kg Solé-Bundó et al. (2020)

Chlorella vulgaris 0.062 m3 CH4/kg VS Assemany et al. (2019)

Scenedesmus obliquus 0.16 m3 CH4/kg VS Assemany et al. (2019)

Scenedesmus sp. 0.185 m3 CH4/kg VS Zamorano-López et al. (2019)

Nannochloropsis limnetica 0.41 m3 CH4/kg VS Tsapekos et al. (2018)

Chlorella sp. 0.2 m3 CH4/kg VS Solé-Bundó et al. (2019)

Nannochloropsis limnetica 0.41 m3 CH4/kg VS Tsapekos et al. (2018)

Chlorella sp. 0.26 m3 CH4/kg VS Solé-Bundó et al. (2017)
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• The process of conversion is greatly governed by environmental
factors.

• The products made through biochemical processes are more
selective and can be processed at lower temperatures.

• Ideally suitable for processing algal biomass with a moisture
content higher than 50%.

• The first step in this process of transformation is the pre-
treatment of the feedstock.

• The slower reaction rate necessitates longer residence times for
product formation.

• Biological conversion is a major bottleneck that reduces
productivity. More money would need to be spent on
infrastructure upgrades, like a larger reactor, to accommodate
the increased production.

• To achieve any kind of feasible findings, the use of bacteria,
enzymes, or chemicals is essential. Sludge, an undesirable waste
product, is produced and needs to be treated in some way.

• Due to the biological nature of the conversion process, the
amount of production is relatively low.

• In most cases, limited to a few products and additional
microorganisms are required to produce additional products.

4 Future prospects of chemical/
biochemical conversion of microalgae

There are challenges, but at the current rate of development,
biofuels derived from microalgae may be capable of competing with
existing energy sources within decades. Industrial-scale chemical/
biochemical conversion of microalgae into biofuels will require
concerted efforts to optimise strains and increase production
volumes. As a result, on the basis of the most recent state of the
art, the following are some proposals for potential future
developments.

• The productivity of a specific strain of microalgae can be
increased to some degree by updating the design of the
photobioreactor, regulating the physical conditions, giving
growth nutrients, and adding metal ions. Further progress
can be made by improving strains utilising recombinant
DNA technology, which could lead to enhanced
metabolic pathways that concentrate more biofuel-grade
compounds.

• In order to make the process of algal harvesting more efficient, it
is possible to make use of cutting-edge methods like fungi-
mediated harvesting and the application of tailored
nanoparticles. This will make it easier to separate the farmed
microalgae from the broth in which they were grown.

• The amount of biofuel that can be extracted from harvested
microalgae depends on the pre-treatment processes that are
employed. Additionally, the linking of more than one pre-
treatment processes has emerged as a promising strategy;
nevertheless, this technique requires additional study before it
can be used at industrial scales.

• The application of physicochemical and physical pre-treatments
in combination have shown the enhancement of carbohydrate
release from algal biomass.

• The improvement of efficiency with which enzymes transform
sugar into its constituent molecules.

• The enhancement of fermentation efficiency through nutritional
supplementation of both liquid and gaseous media.

5 Environmental viability assessment of
microalgal biofuels

Microalgae are able to withstand and absorb significantly higher
quantities of CO2 than terrestrial plants. Because of this, microalgae
are able to utilise CO2 released from petroleum-based power stations
or other industrial sources, which can reduce the production of
glasshouse gas (Nigam and Singh, 2011). It is possible to transform
the entire algal biomass as well as extracts of algal oil into various
forms of fuel. Because algae are able to extract nutrients like nitrogen
and phosphorus from a wide range of wastewater sources, they are able
to provide a sustained bioremediation of these wastewater sources,
which has benefits for both the environment and the economy (Shilton
et al., 2008). Carbon credits can be generated through the use of algal
biofuels thanks to their ability to connect the generation of CO2-free
fuel with the sequestration of CO2 from other power industries
(Dismukes et al., 2008). When compared to terrestrial feedstock
crops, algae have a number of advantages that make them more
desirable. Despite the fact that their development requirements are
comparable to those of terrestrial plants, they make very effective use
of the resources available to them and as a result, they have great
productivity despite using a relatively small amount of water (Brown
and Zeiler, 1993; Chelf et al., 1993). The algae take in the additional
CO2 that is present, storing it as biomass as a result of their accelerated
rate of development. Microalgae offer other benefits in addition to
their potential for capturing CO2 from fossil fuel power plants. This is
because direct CO2 capture procedures are preferred to indirect CO2

capture processes. Passing flue gases directly through a media where
microalgae can grow is an efficient technique to capture the CO2 in
such streams (Benemann, 1997). While it’s likely to be extremely
expensive to apply CO2 directly to terrestrial crops via enclosures, an
indirect technique that uses flue gases to stimulate land species could
be cost-effective while being much less direct and less efficient (Packer,
2009).

6 Conclusion

Increased interest in microalgae biofuel production has been
driven by rising concerns about the use of fossil fuels, greenhouse
emissions, and the conflict between food and fuel when it comes to
conventional biofuel sources. This study reviewed the biochemical
mechanisms used to convert algal biomass into sustainable fuel, as well
as its challenges and potential. Microalgae were found to be the largest
renewable, clean energy resource with the potential to replace fossil
fuels. Cultured microalgae in a photobioreactor could meet the
biomass requirements for continuous biofuel generation in addition
to repairing CO2 emissions and treating wastewater. The best method
for converting wet biomass into biofuel is the biochemical conversion
process provided that the biomass’s moisture content is higher than
50%. Although microalgae hold great potential, neither upstream nor
downstream methods now available can completely tap into this
potential. Consecutive growth of microalgae requires extremely
efficient and cost-effective processing in order to provide
sustainable and high-quality biofuel production and reduce reliance
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on fossil fuels. However, there is still a significant knowledge gap in
microalgal biofuel research since it is difficult to compare the chemical
composition of different feedstocks to that of synthesized products. To
bridge the gaps for future development, more comprehensive
characterisation studies are needed.
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