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A compressor is one of the key components of a gas turbine engine and its
performance and characteristics significantly affect the overall performance of the
engine. Axial flow compressors are one of the most conventional types of
compressors and are widely used in turbine engines for large-scale power
generation. Intelligent techniques are useful for numerical simulation,
characterization of axial compressors, and predicting their performance. The
present work reviews studies applying different intelligent methods for
performance forecasting and modeling different aerodynamic aspects of axial
compressors. Corresponding to the outcomes of the considered research works,
it can be expressed that by using these methods, axial compressors can be
characterized properly with acceptable exactness. In addition, these techniques
are useful for performance prediction of the compressors. The accuracy and
performance of these methods is impacted by several elements, specifically the
employedmethod and applied input variables. Finally, some suggestions aremade
for future studies in the field.
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1 Introduction

Gas turbines are used around the world for power generation, with different capacities
achievable by using different fuels (Bothien et al., 2019; Kurata et al., 2019). One of the main
components of a gas turbine engine is the compressor. Compressors used in gas turbine
engines for power generation are classified into two main groups: axial flow and centrifugal
flow types. Centrifugal compressors are used in cases where a low mass flow rate and
medium pressure are required while the axial flow types are used for high mass flow rates and
low pressure. Regarding the ability of axial flow compressors to provide higher mass flow
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rates with increased pressure, these kinds are mainly used in turbines
for large-scale power generation. In axial flow compressors, the
operating fluid, mainly air, is compressed by accelerating it in the
first step and then diffusing it in order to have higher pressures. The
acceleration of the fluid is done by a row of blades that rotate, known
as the rotor, while the diffusion is done by a row of stationary blades,
known as the stator. It should be noted that increases in the pressure
are obtained by diffusion in the stator that converts increased
velocity, obtained in the rotor, to pressure increases (Boyce, 2012a).

Several studies have focused on the characteristics of various
axial compressors and the elements influencing their
performance (Huang et al., 2022; Babin et al., 2023). For
instance, Blinov and Zubkov (2020) investigated the effect of
blade row defects on the performance of a compressor. It was
found that defects in the blade row, depending on the features of
the defects such as its location, affect the characteristics of the
airfoils of the compressor and consequently the performance. Hu
et al. (2019) applied a combined flow control method, based in a
vortex generator and blade slot usable for decrement in flow loss
and enhancement of flow stability, in a single-stage transonic
compressor. They concluded that by using this approach it is
possible to enhance the mean pressure ratio by 1.82 and improve
isentropic efficiency by 0.88%; this was attributed to the
significant decrease in separations. Dong et al. (2014)
proposed a model to forecast variations of the compressors tip
clearance in various working conditions and used it for
simulation of an 11-stage axial compressor. It was found that
variations of tip clearance cause 1% and 0.5% impacts on the
determined efficiency and mass flow rate, respectively. Sun et al.
(2011) applied Computational Fluid Dynamics (CFD) to
investigate the impact of wet compression on the separation in
an axial compressor. It was found that wet compression makes it
possible to decrease and eliminate the separation of flow. Suder
et al. (1995) assessed the impact of adding roughness on the
characterizations of a transonic axial compressor. They
concluded that roughness addition at the blade’s leading edge
leads to increment in the thickness of the blade boundary layer. In
another work (Syverud and Bakken, 2006), roughness effect was
considered and it was noticed that the most remarkable impact
on increment in the roughness is the flow coefficient variation.

According to the literature review, different aspects of axial
compressors have been investigated by scholars in recent
decades, and mainly experimental and numerical simulations
have been applied for these purposes. Despite the advantages of
these approaches, they are costly and time-consuming. In this
regard, utilization of intelligent techniques can be attractive
alternatives. Intelligent methods such as Artificial Neural
Networks (ANNs) have demonstrated great performance in
modeling numerous engineering problems and systems
(Alhuyi Nazari et al., 2021; Komeili Birjandi et al., 2022;
Rashidi et al., 2022). These techniques are applicable for
different turbomachines and the related systems (Liu and
Karimi, 2020). For instance, Li et al. (2001) compared the
accuracy of a regression model and ANN in estimation of the
turbine power curve and found that ANN outperforms the
regression. In anotherr study (Lazzaretto and Toffolo, 2001),
ANN was applied for design and off-design simulation of a gas
turbine and it was observed that the model has significant

exactness. Barad et al. (2012) applied ANN for monitoring the
performance and health of a gas turbine engine. Lin et al. (2002)
used ANN to create the flowfield models and predict flow
performance of fan. The output of their model was used for
optimization of the system. Kim et al. (2009) employed a radial
basis neural network to obtain optimal design of the impeller of a
centrifugal compressor; the isentropic efficiency was improved by
1%. Nikiforov et al. (2019) used ANN for gas-dynamic
characteristics of a centrifugal compressor vane diffuser. Liu
and Karimi (2020) employed ANN for performance prediction
of a gas turbine engine. The proposed model had the ability of
capturing working characteristics with a mean error of less
than 1%.

Thus far, no review paper on the applications of intelligent
techniques for axial compressors has been published. According
to the mentioned references, it can be seen that intelligent
techniques can be used for modeling various aspects of
turbomachines and optimizing their performance, geometry,
and operating conditions (Joly et al., 2019). This article
focuses on the applications of these methods for aerodynamic
aspects of axial flow compressors.

2 Intelligent methods

Intelligent approaches are useful for regression, classification,
and clustering. In this section, six of the most used intelligent
methods for the analysis of axial flow compressors are explained.

2.1 Multilayer perceptron artificial neural
network

One of the most conventional kind of ANNs used for regression
is the Multilayer Perceptron (MLP), which is constructed by
coupling the intelligent approaches usable for computation and
biological principles; in Figure 1, a simple architecture of this
type of ANN is illustrated (Ramezanizadeh et al., 2019a;
Ramezanizadeh et al., 2019b).

In this network, there are several nodes in some layers. In its
simplest form, with three layers, there is a hidden layer besides the
input and output layers, while in networks with a higher degree of
complexity, the number of hidden layers can be higher. In each
network node, a weight vector is employed to link it to the upcoming
layer. The summation of the nodes is the input of the next layer. By
assumption of the input vector as X, nj is the jth node’s input that is
in the following layer which is determined by using Eq. (1) as follows
(Zendehboudi and Li, 2017):

nj �∑n
i�1
ωjixi + θj j � 1, 2, . . . ., K (1)

In Eq. (1), θj , ωji, and K are the threshold, weight, and number of
nodes, respectively. Thereafter, a transfer function is used to
determine the inputs of the next layer as provided in Eq. (2).

yj � f nj( ) � f(∑n
i�1
ωjixi + θj) j � 1, 2, . . . , K (2)
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There are different transfer functions applicable in the
abovementioned equation. Multiplying the connecting weight and
the hidden layer output will determine the output of the node. It
should be noted that there is no specific rule to define the size of the
hidden layer and its number. The number of this layer depends on
the complexity of the problems, noise of data, etc. (Du and Swamy,
2006). In the process of training the network for regression, values of
bias and weights are regulated. The backpropagation algorithm is
among the most applied training approaches.

2.2 GA-KM-radial basis function

A standard Radial Basis Function (RBF) neural network is able
to project linear data with low dimensions into non-linear data with
high dimensions. This network is applied to estimate non-linear
functions and set up mappings between the input and output
parameters. Standard RBF forward-propagation is as follows
(Tang and Liu, 2021):

F x( ) �∑n

i�1wiG x,Oi( ) (3)

In Eq. 3, n is the training samples number, i.e., the hidden nodes
number, and wi is the coefficients of weights. G(x,Oi) is presented
as follows (Tang and Liu, 2021):

G x,Oi( ) � exp − 1
2σ2

x − Oi‖ ‖2( ) (4)

In Eq. 4, Oi refers to the hidden nodes’ values and σ is the mean
expansion constant. On the basis of the Galerkin method, F(x) can
be replaced with ~F(x) as follows (Tang and Liu, 2021):

~F x( ) �∑m

i�1wiG x, ti( ) �∑m

i�1wi. exp − 1
2σ2

x − ti‖ ‖2( ) (5)

In this equation, ti refers to the clustering centers’ means
values. By minimizing the cost function, ε(~F) � ‖Y − ~F‖2, that
means the minimization of forecasting error, a set of coefficients
of weights could be calculated as follows (Tang and Liu, 2021):

min ε ~F( ){ } � min ∑n

i�1 yi −∑m1

j�1wjG xi,tj( )[ ]2 + λ D~F
���� ����2{ }

� min ∑n

i�1 yi −∑m1

j�1 wj. exp ( − 1
2σ2

xi − tj
���� ����2[ ]2 + λ D~F

���� ����2{ }
(6)

where λ is the coefficient of regularization, yi refers to the ith
training sample real fitness value, and D is the neural network output
stability factor. The first term of Eq. 6 can be rewritten as ‖Y − GW‖
where

Y � y1, y2, . . . , yn[ ]T

G �
G x1, t1( ) G x1, t2( )
G x2, t1( ) G x2, t2( )

. . . G x1, tm1( )

. . . G(x2, tm1

..

. ..
.

G xn, t1( ) G xn, t2( )
1 ..

.

. . . G x1, tm1( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

W � w1, w2, . . . , wm1[ ]T (7)
In addition, ‖D~F‖2 can be rewritten as follows (Tang and Liu,

2021):

D~F
���� ����2 � 〈D~F,D~F〉 � ∑m1

i�1wiG x, ti( ), ~DD∑m1

i�1wiG x, ti( )[ ]
� ∑m1

i�1wiG x, ti( ),∑m1

i�1wiδti[ ] �∑m1

i�1∑m1

j�1wjwiG ti, tj( )
� WTG0W

(8)
In Eq. 8, ~D refers to the adjoint operator of D as the linear

differential operator and δti denotes the Dirac Delta function at
point x = ti. By combining Eq. 8, Eq. 6 would be equivalent to Eq.
9 for the matrix of weight as follows (Tang and Liu, 2021):

GTG + λG0( )W � GTY (9)
Susbequently, the weight matrix could be directly solved by

using Eq. 10 as follows (Tang and Liu, 2021):

W � GTG + λG0( )−1GTd (10)

FIGURE 1
Structure of MLP-ANN (Ramezanizadeh et al., 2019a).
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Corresponding to the above theorem, coefficients of weight
could be calculated. In standard RBF, the hidden nodes number is
equal to the samples of the training number; consequently, a long
convergence time and overfitting is typical when there is too large
a number of training samples. When there are a small number of
training data, mapping relation cannot be captured. To restrict
the number of hidden nodes in standard RBF and enhance its
performance, a combination scheme has been presented: GA-
KM-RBF. A clustering algorithm of K-Means++ (KM) is
employed in order to calculate the hidden nodes’ number.
Subsequently, the Genetic Algorithm is utilized for
optimization of network hyperparameters that further
decreases the empirical coefficient dependence (Tang and Liu,
2021).

2.3 Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference system (ANFIS) is another
intelligent technique applicable for regression and proposing
predictive models. The architecture of this method in its
simplest form, in the case of a single output and two inputs, is
illustrated in Figure 2. The first layer of this structure is used to
convert input variables to fuzzy sets and project them based on
fuzzy membership in span of 0 and 1. The inputs’ signals are
created in the following layer and the weights are checked.
Afterwards, normalized firing strength is determined in the
3rd layer. Subsequently, in the 4th layer, the obtained values
are converted into defuzzy sets. In the last layer of this
architecture, inputs from the previous part are summed up
and the output is determined.

2.4 Least square support vector machine
(LS-SVM)

SVM is another intelligent method utilizable for regression
and training (Sreedhara et al., 2019); however, this approach is
not usable for solving overfitting problems. In order to resolve

this issue, LS-SVM is applied, which will be introduced here. In
general, Eq. (11) is applied as the non-linear function of this
method (Suykens and Vandewalle, 2000; van Gestel et al., 2004;
Ahmadi and Mahmoudi, 2016):

f x( ) � wtφ x( ) + b (11)
In Eq. (11), f denotes the association between the input and

output and w and b are weight vector and value of bias, respectively.
φ is employed in order to convert inputs into the characteristics’
vector (Ahmadi andMahmoudi, 2016; Ramezanizadeh et al., 2019a).

A fitting error function is applied to be minimized in order to
have the highest accuracy. This function is obtained by using Eq.
(12) as follows (Ahmadi and Mahmoudi, 2016; Ramezanizadeh
et al., 2019a):

Min J w, e( ) � 1
2
wTw + γ∑m

k�1ek
2 (12)

In this regard, a limitation equation is defined as follows
(Ahmadi and Mahmoudi, 2016; Ramezanizadeh et al., 2019a):

yk � wTφ xk( ) + b + ek, k � 1, 2,/,m (13)
where ek and γ and are loose variables of kth x and margin

parameter, respectively (Ahmadi and Mahmoudi, 2016;
Ramezanizadeh et al., 2019a).

Lagrange multipliers are used in order to calculate the
optimization process solution. The multiplier is defined as
follows (Ahmadi and Mahmoudi, 2016; Ramezanizadeh et al.,
2019a):

L w, b, e, α( ) � J w, e( ) −∑m

k�1αi w
T∅ xk( ) + b + ek − Yk{ } (14)

By implementing partial derivatives of Eq. (14) based on the
variables, as provided in Eq. (15), it is possible to determine the
optimal state.

w �∑m

k�1αi∅ xi( )
∑m

k�1αi � 0
αi � γei

wT∅ xi( ) + b + ei − Yi � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

(15)

FIGURE 2
Structure of the ANFIS model (Ramezanizadeh et al., 2019a).
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The linear form of the abovementioned equation is as follows
(Ahmadi and Mahmoudi, 2016; Ramezanizadeh et al., 2019a):

0 −YT

Y ZZT + 1/γ[ ] b
α
[ ] � 0

1
[ ] (16)

Where α, Y, and Z are assumed as: α = [α1,. . .,α1], {Y = Y1;. . .;
Yym }, and Z = φ(X1)

TYi,. . ., φ(Xm)TYm, respectively. Applying kernel
function of K (X,Xk) = φ(X)Tφ(Xk), i = 1,2,. . .,m, the regression is as
follows (Ahmadi and Mahmoudi, 2016; Ramezanizadeh et al.,
2019a):

f x( ) �∑n

k�1αkK x, xk( ) + b (17)

There are several functions such as RBF that can be used as a
kernel in regression errors, as in Eq. (17). In regression models,
radial basis function is a regular kernel (Ahmadi and Mahmoudi,
2016; Ramezanizadeh et al., 2019a). In the process of
optimization, to obtain the parameter of kernel function,
mean squared error (MSE) is considered as the objective
function to be minimized (Fazeli et al., 2013; Ahmadi and
Ebadi, 2014; Ahmadi et al., 2014).

2.5 Group method of data handling (GMDH)

In this approach, a Volterra series is used for defining the
relationship between the inputs and output. This series is similar
to Kolmogorov discerete polynomial functions. In GMDH, the
total estimator models are replaced by the incrementing iterative
algorithm. In this method, polynomial neurons are generated
and combined with each other in order to create a complex
system with proper performance. GMDH is composed of a
number of neurons with binomial transfer function that arise
from the linking between various pairs of variables via the 2nd
order Kolmogorov relation according to Eq. (18) (Moosavi et al.,
2019).

y � c0 +∑m

i�1cixi +∑m

i�1∑m

j�1cijxixj (18)

where x � [x1, x2, . . . , xm] is the input vector and c �
[c1, c2, . . . , c]T is the weight vector which is obtained by the
least-squares approach. Similar to MLP, GMDH is a
multilayer feed forward network and the outputs of the
previous layer are utilized as the inputs of the current layer.
In this method, the architecture of the model and number of
neurons and layers is determined in the process of training. In
general, a large number of basic models are created in GMDH
and some of them are selected to be combined amd utilized for
reconstruction of other functions. Selection and generation
steps are repeated till the best model is obtained (Moosavi
et al., 2019).

2.6 Support vector data description (SVDD)

In addition to modeling and regression, intelligent methods
are applicable for clustering and classification. SVDD is a one-
class classification approach. The principle idea of this method is

finding a hypersphere with a small radius and as many as possible
points in this. Support vectors are the points on the hypersphere
surface. Eq. (19) is applied for the definition of the structure error
function as follows:

F R, a( ) � R2

s.t. xi − a‖ ‖2 ≤R2, ∀i (19)

where R is the radius and a is the center. The distance from xi

point to centre could not be strictly less than R in order to allow
the training set to have outliers induced by noise or other
parameters. A relaxation factor is introduced to punish the
outliers. Consequently, the minimization error can be written
as follows:

F R, a( ) � R2 + C∑
i
ξi

s.t. xi − a‖ ‖2 ≤R2 + ξi, ξi ≥ 0∀i
(20)

In this equation, C is applied for controlling the compromise
between the false treated points number and hypersphere
radius. To solve this problem, Lagrange multipliers are used as
follows:

L R, a, αi, γi, ξ i( ) � R2 + C∑
i
ξi −∑i

αi R
2 + ξ i − xi‖ ‖2 − 2a.xi( ){ }

−∑
i
γiξ i (21)

where αi ≥ 0 and γi ≥ 0 refer to Lagrange multipliers. By applying
partial derivative to L, we obtain the following equations:

zL

zR
� 0,→∑

i
αi � 1 (22)

zL

za
� 0,→ a �∑

i
αixi (23)

zL

zξ i
� 0 → C − αi − ξ i � 0 (24)

Therefore, Eq. (25) can be written as follows:

L �∑
i

αi xi.xi( ) −∑i,jαiαj xi.xi( )
0≤ αi ≤C

(25)

When the description of the data set by the hypersphere in the
original space is not sufficient, the data set could bemapped from the
space with a low dimension to a high-dimension one. In order to
substitute the interproduct, kernel function K (xi.xj) is applied as
follows:

L �∑
i
αiK xi.xi( ) −∑

i,j
αiαjK xi.xj( ) (26)

The definition of distinguish function is as follows:

I A( ) � I( z − a‖ ‖2 ≤R2 � 1 A is true
0 A is false

{ (27)

3 Applications of intelligent techniques
for axial compressors

Intelligent approaches are employable for modeling various
aspects of compressors. In the following subsections, research
works on each aspect are represented and reviewed.
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3.1 Characteristics of axial compressor

As previously stated, intelligent methods can be applied for
different turbomachines in order to model their behavior, predict
the output, and design control systems (Javadi Moghaddam et al.,
2011; Zhang et al., 2021). Different aspects of axial compressors, as
the main components of gas turbine engines, have been modeled by
using these approaches (Yu et al., 2007). In a study by Benini and
Toffolo (2002), cascade performance was modeled by using ANN
under generalized conditions. In this regard, quasi 3D CFD
simulations were applied to prepare a database for the training
network. As the model knew the characteristics of the geometry,
including the effects of IGV depending on the mass flow rate and
speed of rotation, it could directly determine the operating point of a
compressor. In another work (Fei et al., 2016), three different
intelligent techniques, namely, Back Propagation Neural Network
(BPNN), SVM, and Gaussian kernel function Back Propagation
Neural Network (GBPNN), were employed to estimate the
performance of an axial compressor. They found that increments
in the number of training datasets leads to enhancement in the
exactness of the generated models by all of the applied approaches.
Furthermore, it was demonstrated that making use of GBPNN
provides the highest accuracy, followed by the SVM and BPNN.
In another work, Sohail et al. (2021) focused on the forecasting tool
of transonic compressor instability. In this regard, they utilized a
dataset obtained from CFD for supervised learning of an ANN. The
input variables and outputs of their model are shown in Figure 3.
Obtained results from the deep learning ANN revealed that it is a
promising method to forecast the performance of the compressor
and rotor blade parameters.

Yue et al. (2022) generated a model for spanwise loss of a
compressor stator. In order to construct the model, a significant
number of numerical simulations were implemented to provide a
database. Afterwards, intensity of secondary flow was introduced as
the independent variable in order to implement feature engineering.

The proposed model contained a selector that was obtained by using
Support Vector Machine (SVM) regression in addition to estimators
that were obtained on the basis of K-nearest neighbor regression.
The proposed model reflected proper exactness for mid-span
position loss coefficient with R2 value of 0.97; however, its
precision was lower for all spans. Intelligent methods are usable
for modeling more than one output. For instance, in a work (Wu
et al., 2019), two methods, Gaussian Process Regression (GPR) and
Support Vector Regression (SVR), were applied to model adiabatic
efficiency and total pressure ratio. In the case of applying SVR, the
predicted error of the empirical model was reduced by 62.2% and
48.4% for the total pressure ratio and adiabatic efficiency,
respectively. These values, in the case of employing GPR, were
55.2% and 50.1% for the denoted parameters, respectively.
Gholamrezaei and Ghorbanian (2010) made use of ANN and rig
data to generate compressor map. Two models were proposed in
their research applicable for the prediction of mass flow rate and
pressure ratio. In the first model, compressor pressure ratio was
formulated based on the function of corrected mass flow rate for
constant speed lines, while in the second model, the corrected mass
flow rate was formulated as a function of pressure ratio for constant
speed lines. It was observed that the first model is more precise for
cases of relatively low speed lines while the second model showed
higher robustness for cases of higher speed lines.

The performance of intelligent methods is dependent on several
parameters, namely, the applied algorithm and the function
(Ghorbanian and Gholamrezaei, 2007). Their performance could
be enhanced by applying some modifications. A work was done to
consider different Neural Networks (NNs) including General
Regression NN (GRNN), Radial Basis Function (RBF), Multilayer
Perceptron (MLP), and modified approach based on GRNN, called
Rotated GRNN (RGRNN) (Ghorbanian and Gholamrezaei, 2009),
to model compressor pressure ratio and mass flow rate by using two
models. It was observed that making use of RGRNN leads to the
highest accuracy; however, it is just applicable for representing

FIGURE 3
Inputs and outputs of the developed model for the compressor with distorted flow by Sohail et al. (2021).
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characteristic curves for cases where experimental data is provided.
The superior performance of RGRNN compared with GRNN in
performance prediction of axial compressors has been observed in
some other studies (Ghorbanian and Gholamrezaei, 2007).
Integration of various intelligent techniques can determine
outputs with better accuracy. For instance, Gholamrezaei and
Ghorbanian (2015) assessed the performance of ANN and Fuzzy
Inference System (FIS)+ANN for map generation of a compressor.
The success rates in cases of using the mentioned approaches were
88% and 94%, respectively. In some studies, different functions and
architectures are applied to find the optimal model in terms of
accuracy. For instance, Yazar et al. (2014) applied various types of
FIS structures and utilized different numbers of membership
function. They found that number of membership function can
affect the model exactness. Integration of optimization algorithm
with intelligent techniques, used for modeling and regression, to
tune the hyper parameters is another approach for modification of
precision. Tang and Liu (2021) coupled Genetic Algorithm (GA)
and generalized RBF. In their work, deviation angle and total
pressure loss coefficient were predicted in the first step by
applying surrogate model. Afterwards, these variables linked the
model with throughflow theory. Efficiency and pressure ratio were
predicted in the next stage and compared with the actual values
determined in the experiments. In comparison with the traditional
models and spanwise mixing model, the proposed approach
provided much better performance.

3.2 Surge and stall

There is a useful range for operation of axial compressors, as
shown in Figure 4. At high mass flow rates, chocking occurs and
sonic velocity is reached in some units. One the other hand, at low
mass flow rate, there is possibility for the occurrence of stall and
surge that causes instabilities in the fluid flow and performance of
axial compressors. Stall is a type of instability caused by the
disturbance of the circumferential flow (Gravdahl and Egeland,
1999; Wang et al., 2022). In terms of aerodynamics, there are

two types of stall: individual blade stall and rotating stall. The
first one happens when all of the blades around the annulus of
the compressor simultaneously stall without propagation of stall.
The second type, rotating stall, happens when there are large zones
of stall that cover various passages of the blade and there is
propagation in the rotation direction and at relative rotor speed
(Boyce, 2012b). Surge refers to the flow axisymmtrical oscillation in
the compressors and is featured by a limit cycle in the characteristics
of these machines (Gravdahl and Egeland, 1999). This phenomenon
is the flow reversal and continuous steady flow complete break down
via the compressor. This phenomenon, surge, is the reversal of flow
and complete break down of continuous flow in the compressor.
Surge induces mechanical problems due to the high fluctuations of
flow that causes changes in the direction of thrust force in the rotor
section (Boyce, 2012b; Zhao et al., 2023).

In addition to performance prediction and the characteristics of
fluid flow, intelligent methods are useful for other purposes in
different energy-related systems (Hipple et al., 2020). For
instance, Changzheng and Yong (Li and Lei, 2012) applied
Support Vector Data Description (SVDD), developed on the
basis of the SVM theory, to detect compressor surge. In their
work, total pressure at the outlet was used as the characteristic
signal and ten spectral lines were utilized in order to create vectors of
the feature. For the applied technique, 400 vectors were determined
to provide a training dataset. The outcomes of the training were
applied to distinguish surge of the compressor. It was shown that the
applied technique can provide a warning signal 50 ms prior to the
surge point. In another work, Amanifard et al. (2008) proposed a
model based on evolved Group Method of Data Handling (GMDH)
by using experimental data tomodel multiple short-length-scale stall
cells. Flow rate coefficient, pressure coefficient, and rotor rotational
speed were the inputs of the generated model. Exactness of the
model in prediction was acceptable with R2 and Mean Absolute
Percentage Error (MAPE) of around 0.86268 and 0.00065,
respectively. In addition to modeling surge, it is possible to apply
ANN to provide backstepping active control for axial compressor
surge. In a study by Sheng et al. (2020), a closed coupled valve was
used as the actuator in order to generate a compression system
second order Moore-Greitzer surge model. The controller was
designed on the basis of a wavelet neural network. They found
that by using the proposed method, the compressor is allowed to
stably work with high efficiency and pressure ratio beyond the
boundary of surge. In another work, Methling et al. (2004) used wall
static pressure signals to train a network to indicate when instability
was being neared. They found that the provided monitoring system
based on the ANN has the ability to cover the whole working range
of the compressor to provide adequate training datasets.

3.3 Design and optimization

Aerodynamic design of modern compressors is challenging
because of the higher gradient of adverse pressure and increment
in the interaction blade rows that induce internal turbulent flow.
In this regard, it is beneficial to develop new approaches and
algorithms for design and optimization of axial flow compressors
(Ning et al., 2016). There is significant potential for applying
intelligent methods for these intentions. In this condition,

FIGURE 4
Map of axial flow compressor (Gravdahl and Egeland, 1999).
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outputs of the models, e.g., characteristics of the compressor such
as pressure ratio and mass flow rate, could be used for design or
optimization in a faster process since these methods can generate
databases for the mentioned intentions based on their prediction
ability. As an example, Ghalandari et al. (2019) utilized a hybrid
machine learning model composed of ANN, genetic algorithm,
and design of experiment to optimize an aeromechanical aspect
of compressor first row. In their work, ANN was trained by
employing the results of 3D CFD simulation that was generated
by design of experiment. The procedure of the optimization was
initiated with values of approximated function by the ANN and
the optimization algorithm (GA) was applied to reach the
optimized point of the function; it was validated by the results
of the simulation in order to update the model based on ANN. By
using this process, the behavior of the blade and aerodynamic
performance was increased by around 5.7%. Ju and Zhang (2011)
applied a method consisting of Design of Experiment (DOE), GA,
and ANN to optimize cascades of axial compressors. In their
work, ANN was trained by using a back propagation algorithm
and GA where the training sets were gathered by means of DOE
approach and analyzed by CFD. The model based on ANN and
GA was created to be used as a rapid flow solver to forecast

aerodynamic performance. Multi-objective GA was employed in
order to search a series of Pareto-optimum solutions. It was
found that, depending on the incidence angle, the pressure loss
coefficient can significantly decrease by employing the proposed
approach.

Uelschen and Lawerenz (2000) applied ANN and GA for design
of compressor airfoils. In their study, ANN was employed to map
coherence between aerodynamics and geometry. In comparison
with flow calculations, which are very time-consuming processes,
much lower computational effort is required for the assessment of
the trained network; consequently, the optimization and design is
accelerated. Giassi et al. (2003) applied ANN for optimization of
aerodynamic aspects of axial compressors and inverse design
problem resolution. Their approach was based on the integration
of ANN and a classical optimizer. Flow solver, on the basis of
Navier-stokes, was applied for precise determination of the objective
function. The trained network in the first stage, by using the primary
datasets, was applied to reach a new design point. It was determined
by the solver to update datasets used for training for more iterative
steps. The proposed method showed significantly lower
computational effort in comparison with the classical
optimization approaches. In another work by Pakatchian et al.

TABLE 1 Summaries of the studies on the use of machine learning approaches for axial compressors.

References Approach Findings

Benini and Toffolo (2002) ANN A model was proposed for direct determination of the operating point

Yue et al. (2022) SVM and K-nearest neighbor The model was able to model pressure loss better in mid-span compared with all-span

Wu et al. (2019) SVR and GPR Making use of the intelligent methods reduced the prediction error of empirical models

Sohail et al. (2021) ANN Significant performance of the model in prediction of four outputs was observed

Gholamrezaei and Ghorbanian
(2010)

ANN Using pressure ratio for constant speed lines for modeling corrected mass flow rate was preferred
compared with utilizing corrected mass flow rate for constant speed lines at higher speed

Ghorbanian and Gholamrezaei
(2009)

ANN RGRNN provided higher accuracy compared with the other applied methods

Ghorbanian and Gholamrezaei
(2007)

ANN RGRNN outperformed GRNN in predicting the performance of the compressor

Yazar et al. (2014) ANFIS Structure of the model influences the exactness

Tang and Liu (2021) GA-RBF Compared with the traditional models, the surrogate model was more suitable for modeling efficiency and
pressure ratio

Li and Lei (2012) SVDD The applied approach was able to properly detect compressor surge

Amanifard et al. (2008) Evolved GMDH R2 of the applied model for stall cell prediction was around 0.862

Sheng et al. (2020) Wavelet neural network An active controller was designed for compressor surge

Methling et al. (2004) ANN Using pressure signals for the network can provide a proper monitoring system for stall prediction

Ghalandari et al. (2019) Hybrid machine learning
method

Performance of the compressor was improved by the applied optimization

Ju and Zhang (2011) ANN and GA Depending on the incidence angle, pressure loss coefficient can be significantly reduced by using the
proposed optimization based on ANN.

Uelschen and Lawerenz (2000) ANN Using ANN can accelerate the design process compared with using flow calculations

Giassi et al. (2003) ANN Optimization by using ANN for database generation significantly reduced computation efforts compared
with the classic optimization procedures

Pakatchian et al. (2019) ANN Using ANN and an optimization tool led to increase in the isentropic efficiency
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(2019), optimization of blade shape was implemented by making use
of ANN. In their study, ANN was employed to develop datasets for
2D sections. Subsequently, trained ANNs were employed for
optimization of 3D shapes along with the stacking line
parametrization. This algorithm was applied for the first four
stages. Utilization of the optimization process led to 1.5%
increment in the isentropic efficiency of first four stages of a 16-
stage axial compressor.

In Table 1, studies related to the employment of machine
learning techniques in axial flow compressors are summarized.

4 Recommendations for future

The previous section focused on reviewing the scientific works
performed on the usage of machine learning methods in axial flow
compressors. Despite the significance of the studies on the
utilization of these methods for aerodynamic aspects of axial flow
compressors, there are some issues and potential for enhancement.
For instance, the comprehensiveness of the proposed models for
different purposes such as determination of characteristics, design,
and surge or stall prediction is not sufficient. Furthermore, some
ideas can be developed to achieve more precise models with higher
exactness. According to the knowledge of the authors, some
recommendations are presented here for upcoming studies.
Corresponding to the influence of model characteristics and type
on the precision of the predictions (Maleki et al., 2021), it is strongly
suggested to apply more types of intelligent techniques such as
SVMs with various functions for different intentions like prediction
of pressure ratio, mass flow rate, efficiency, surge, and stall. In
addition, regarding the potential of improvement by using
optimization, it is beneficial to couple several novel optimization
algorithms with intelligent approaches applied for characteristics
determination of compressors to enhance the precision
(Ramezanizadeh et al., 2019c); moreover, the performance of the
models coupled with optimization algorithms can be compared by
consideration of different criteria such as time and computational
costs and exactness. Furthermore, owing to the relatively remarkable
influence of functions and structure of models on the performance
of intelligent approaches in some cases, it is suggested to the scholars
to apply different networks by changing the mentioned factors that
would enable them to find the model with more exactness. In
addition, it is highly recommended to develop more
comprehensive models with usability for different axial
compressors with various features. These models are achievable
by considering more inputs for the models. In this regard, additional
inputs such as the number of stages and geometrical parameters
such as dimensions of hub, tip, chord and cambers, and blade profile
type, such as NACA series (Amin et al., 2021) and C4 (Chhugani
et al., 2023), can be used.

In addition to the mentioned suggestions, mainly on the
characteristics of the applied approaches, there are some
recommendations for the applications of these techniques with
focus on the axial compressors. Some studies have applied
intelligent methods for flow field modeling and prediction. For
instance, Santos et al. (2020) made use of a convolutional neural
network to forecast flow field via porous media. It was reported that
the information obtained by the proposed model was adequate to

reach accurate forecasting of flow field in less than a second without
any requirement for numerical simulation. In another work, Sekar
et al. (2019) approximated flow field over an airfoil as a function of
angle of attack, Reynolds number, and geometry of air by utilizing
deep neural network without solving Navier-Stokes equations. In the
first step, a convolutional neural network was applied for extracting
the geometrical parameters from the shape of airfoil. Afterwards,
these parameters in addition to the other inputs were used in MLP
ANN to determine an approximation model for flow field
prediction. Similar procedures can be employed for axial flow
compressors to obtain their flow field characteristics. The
obtained data related to flow field is usable for prediction of
more phenomena such as flow separation, causing some
problems such as blockage of passage that limits the static
pressure and loading increment reachable by the compressor
(Gbadebo et al., 2005). In this condition, proper inputs must be
employed to reach acceptable outputs. For instance, in the case of
predicting hub corner separation, consideration of secondary flow, and
adverse pressure gradient, as applied in a study (Lei, 2006), intelligent
approaches can be useful to develop a model based on intelligent
techniques. Casing treatment and applying slots (Lu et al., 2023),
grooves (Wu et al., 2021), or both of them on the casing (Li et al.,
2019), is one of the techniques used by the scholars to modify the
stability of compressors. It is can be helpful to develop intelligentmodels
for the modified compressors, e.g., the compressors with casing
treatment (Vuong and Kim, 2021). In these cases, specifications of
the applied modifications such as the dimensions of the grooves and
slots should be employed as additional inputs. Moreover, regarding the
applicability of intelligent techniques for clustering and classification,
utilization of these methods in axial compressors can be developed for
these purposes.

5 Conclusion

Regarding the time-consuming process of numerical 3D simulation,
it is essential to develop novel, efficient, and fast methods for the
modeling and forecasting characteristics of axial compressors.
Intelligent techniques are suitable alternatives for 3D numerical
simulations. In this article, studies on this field are reviewed. The key
findings of the considered research works are as follows.

• Using intelligent techniques makes it possible to properly
determine the operating point of axial compressors.

• Different characteristics of axial compressors such as pressure
ratio, mass flow rate, and pressure loss can be predicted by
intelligent methods with acceptable exactness.

• Modification on the intelligent techniques such as applying
optimization approaches for tuning the hyperparameters can
further enhance the exactness.

• Outputs of intelligent methods could be usable for providing
databases to optimize the performance and other
characteristics of axial compressors.

• Prediction of surge and stall is possible by utilization of
different intelligent methods such as GMDH and SVDD.

• Similar to optimization, intelligent methods are attractive
alternatives for generating databases for the design of
compressors.
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• Specification of the intelligent methods such as architecture,
applied functions, and formulation influence the exactness.

• Some recommendations such as utilization of intelligent
methods for flow field analysis of axial flow compressors
have been suggested for forthcoming works.
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