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High penetration of renewable energy is becoming an important development
trend in new generation power system. However, frequent extreme weather
events and fragile renewable energy sources pose a huge challenge to the
power system resilience. As an important support technology of renewables,
energy storage system is of great significance in improving the resilience of the
power system. In this paper, a resilience enhancement method for power systems
with high penetration of renewable energy based on underground energy storage
systems (UESS) is proposed. Firstly, a resilience assessment model is established
and the influence of extreme weather is quantified as the failure rate of power
system components. Secondly, a bi-level optimization model for UESS operation
and planning under extreme weather is built, and the life cycle of UESS is
considered. Finally, taking the modified IEEE RTS-79 as an example, the
optimal scheme for UESS configuration and operation is given, the investment
and effectiveness of UESS is also analyzed. The results show that UESS can
significantly enhance the power system resilience under extreme weather events.
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1 Introduction

Climate change and energy issues are currently prominent global challenges (Breyer
et al., 2022; Kim and Park, 2023). On the one hand, the depletion of fossil energy and the
massive emission of greenhouse gases have exacerbated environmental pressure (Chen et al.,
2020). On the other hand, frequent extreme weather has put forward higher requirements for
energy supply security (Schweikert and Deinert, 2021). As an important part of the energy
system, power system is responding to these challenges by promoting renewable energy
utilization and power system transformation (Du et al., 2019; Yang et al., 2022). However, in
the face of large-scale and destructive natural disasters, power system with high penetration
of renewable energy is insufficient for the resistance and recovery due to their complex
energy structure and high dependence on renewable energy resources (Ma et al., 2022).
Therefore, it is of great significance to improve power system resilience against extreme
weather events.
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Natural disasters, malicious attacks, cascading failures and other
internal and external threats are the main challenges to power
system resilience. Extreme weather events have caused large
blackouts and significant damage to grid, resulting in economic
losses and prolonged outages (Bhusal et al., 2020; Plotnek and Slay,
2021). The research on power system resilience mainly focused on
the following two aspects: resilience assessment and resilience
enhancement (Huang et al., 2021a). The basic process of
resilience assessment includes disaster data acquisition, disaster
modeling, fault scenario selection and resilience index assessment
(Sabouhi et al., 2020). The power system resilience assessment
indices are divided into two categories: static and dynamic
resilience assessment indices. Static resilience assessment index is
established based on network topology, component redundancy and
resource abundance. Bajpai et al. (2018) proposed a methodology to
quantify resilience for power distribution system using graph
theoretic approach and Choquet integral. Yang et al. (2018)
developed a quantitative resilience assessment framework for
power transmission systems operated under typhoon weather
considering weather intensity and duration, fault location of
components, restoration resources, and emergency response
plans. Li et al. (2021) studied the local topological summaries
derived under a framework of topological data analysis to assess
the transmission grid resilience. Dynamic resilience index is formed
based on the response process of the system to extreme events (Lu
et al., 2018; Gasser et al., 2021), which is mainly build on the
resilience curve in disaster response shown in Figure 1. The
resilience curve can reflect the robustness and vulnerability of the
system to a certain extent (Panteli et al., 2017). Luo et al. (2018)
formulated a vulnerability curve of components and selected the
weighted loss of loads as the assessment index of resilience. Bessani
et al. (2019) developed a normalized resilience index to allow
comparison between different systems. In terms of resilience
enhancement, previous studies generally focus on the certain
power system components or certain extreme events. Villamarin-
jacome et al. (2022) provided a mixed-integer linear programming
approach for investments in transmission lines and hardening of
substations to increase the resilience of the power system under
earthquake-related outage scenarios. Haces-Fernandez (2020)

developed an undergrounding current transmission line as a
long-term solution to the transmission line failures caused by
wildfires in California. Kim and Dvorkin (2019) proposed a
mobile energy storage unit to enhance flexible scheduling of
energy storage and avoid the expected load shedding caused by
disasters. However, these resilience enhancement does not consider
both facility enhancement and operation control, which is necessary
to consider the balance between cost of power grid retrofit and
benefit of resilience improvement.

Several studies have investigated the resilience enhancement for
power system with high penetration of renewable energy under
extreme weather events. Wind and photovoltaic power generation,
which are highly weather-dependent, hardly provide reliable power
support and even cause fundamental damage to the power grid once
shut down (Qin et al., 2022a). To make matters worse, extreme high
or low temperature-induced reduction in transmission capacities
coincides with higher electric demand on the system (Choobineh
et al., 2019). With the bidirectional power characteristics and flexible
adjustment ability, energy storage system plays an significant role in
suppressing the output fluctuation of renewable energy, balancing
the system electricity, and improving the stability and reliability of
the power system (Qin et al., 2022b). Hutchinson et al. (2022)
developed a resilience enhancement method for building-level
electrical distribution systems with energy storage using the
probability of outage survival curve. In a high penetration
scenario for rooftop photovoltaic generation, Confrey et al.
(2020) studied an architecture of energy storage system on the
power grid for resilience to faults caused by extreme disturbance
events. Khezri et al. (2022) developed resiliency-oriented optimal
planning models for power grid with renewables and energy storage
systems considering load interruption. Zhao et al. (2022) provided a
review of the use of energy storage methods for black start services.
Huang et al. (2021b) studied the role of energy storage as an available
resource in enhancing the resilience of power systems with high
penetrations of renewable energies under emergencies. Energy
storage system plays an important role in improving the
resilience of the power system with high penetration of
renewable energy. However, energy storage system used in
resilience enhancement suffers from several research gaps. First,
the current energy storage configured for the power supply, grid and
load is mainly used to respond to short-term demand, and it is
insufficient to ensure stable power support for the duration of
disasters which can take several days. Second, the energy storage
system facilities are installed on the ground like other power
facilities, and the structural and functional integrity of the energy
storage system is still at great risk in extreme weather. Winter storms
in 2021 had a significant impact on Texas, which disrupted the
production of thermal and wind energy, damaged the power
infrastructure, and cut off electricity to more than 3 million
people (Wang et al., 2021; Yan et al., 2021). Therefore, it is
imperative to build a reliable and safe energy storage system to
cope with extreme weather events with long duration and great
destructiveness.

Unlike overhead lines and wind farms, energy storage systems
do not need large span and open space, so more efficient solutions
should be considered. Underground space, a significant and
abundant land resource with broad application prospects (Xia
et al., 2022), can provide a novel solution for the planning and

FIGURE 1
Power system resilience curve.
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operation of energy storage systems. First, underground space can
provide a stable and ample operation space for the energy storage
system, protecting the devices from the impacts of extreme weather
like rainstorms, typhoons, and blizzards (Zhang et al., 2021).
Second, the stability of underground space can offer suitable and
stable conditions for the energy storage system in terms of
temperature and humidity (Yu et al., 2020), which can increase
the energy storage system’s operation effectiveness and service life
(Li et al., 2022). Third, underground space may decrease the effects
of accidents, lessen damage to nearby facilities, and offer safety
protection for the energy storage system in case of safety incidents
(Zhang et al., 2021). Finally, development of underground space can
save land resources above ground and make efficient use of space
resources. This paper proposes the resilience enhancement using
underground energy storage system (UESS) for power system with
high penetration of renewable energy resources. The bi-level
optimization model is proposed to obtain the optimal scheme of
operation and planning. The main contributions are as follows:

1) A method of resilience enhancement of power system based on
underground energy storage system is proposed. The natural
protection and stability of underground space provide reliable
power guarantee for power system in extreme weather.

2) An operation and planning model for UESS by considering the
whole life cycle is established, where the costs are translated into
each year.

3) The bi-level optimization method is formulated, and upper-
lower correlation and linearization are performed for the
solution.

The remainder of this paper is organized as follows. Section 2
studies the influence of extreme weather events on component
failure rates, and establishes resilience assessment model. Section
3 proposes the operation model of UESS under extreme weather
events. Section 4 develops the planning model of UESS. Section 5
formulates the bi-level optimization model and proposes the
technique for solution. Section 6 presents the case study that
quantifies the feasibility and effectiveness of UESS. Section 7
gives the conclusion of the research.

2 Extreme weather events modeling

In this section, a resilience model is described for power system
under extreme weather events. First, a power system resilience
assessment model is developed. Then, the failure rates of power
system components are modeled to quantify the influence of
extreme weather events on power system.

2.1 Resilience assessment model

A dynamic resilience assessment index is developed for
assessing the ability of the power system to resist extreme
events. The resilience curve for the power system in Figure 1
shows the performance following an extreme event. Under
normal operation, the performance of the system can be
expressed by Q0, and under extreme event, the operating

performance of the system will be affected to a certain extent,
at which time the operation performance curve of the system is
described by Q(t). Before t0, the system is in a normal status.
From t0 to t1, the system resists the disaster and then enter an
adaptive state from t1 to t2. The restoration completes and the
system returns to the original normal status at t3. Resilience can
be quantified according to the shaded area between the curve Q0

and Q(t) within the period from t0 to t3.

Rs � ∫t3

t0

Q0 − Q t( )[ ]dt � ∫t3

t0

∑
i∈N

PLS,i t( )dt (1)

where PLS,i(t) denotes the load shedding at node i in the t-th time
period. For power system, load is the basis of its service, whether it is
a line fault or a power failure, which will ultimately impact the
supply of load. Therefore, adopting the actual load as the
performance function of the system not only makes the
quantification process more concise, but also has more practical
significance. For convenience in calculation and comparison, Rs is
further normalized as follow.

RE � R0 − Rs

R0
(2)

Resilience assessment index RE is the ratio of R0 − Rs and R0,
ranged in [0,1], where R0 presents the full performance of power
system.

2.2 Influence of extreme weather events

Extreme weather events affect power systems in many ways.
Among them, overhead lines with wide span and fragile structure are
highly vulnerable to damage and failure, which will result in forced
load shedding of the whole system (Lian et al., 2023). Renewable
energy is also highly dependent on weather conditions. However,
different from normal weather, the failure rate of electric power
equipment in extreme weather is higher and more difficult to
properly quantify, mostly using historical data and statistical
analysis (Bollen, 2001).

In the absence of historical data, the failure rate of overhead lines
can be obtained by empirical formulas. Eqs 3, 4 are failure rate
estimation formulas for overhead lines under ice coating and
typhoon conditions, respectively (Wang et al., 2021).

λL b( ) �

0, b≤B

exp
0.6931 b − B( )

4B
[ ] − 1, B< b< 5B

1, b≥ 5B

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(3)

λL v( ) �

0, v≤V

exp
0.6931 v − V( )

V
[ ] − 1, V< v< 2V

1, v≥ 2V

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(4)

where b is the ice thickness of the overhead lines, v is the wind speed
in the area where the lines are located. B and V present the rated ice
thickness and wind speed of the overhead lines, respectively.
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It is clear from Eqs 3, 4 that extreme weather has a significant
impact on overhead power lines. The failure rate of overhead lines
will rapidly climb to 100% failure rate level once the rated ice
thickness and wind speed are surpassed. Consequently, attention
must be paid to the performance of overhead lines in extreme
weather.

Different kind of extreme weathers have different influence
mechanism on wind and photovoltaic generation equipment. For
wind power generation equipment, the wind turbine blades are
covered with ice due to the cold wave, resulting in the failure of
normal operation. Under the typhoon, the excessive wind speed will
also cause the shutdown to protect the power generation equipment.
For photovoltaic power generation equipment, the photovoltaic
panels are covered with snow for a long time in snowstorm,
which makes it difficult to receive solar radiation. When the
sandstorm comes, the irradiance decreases, and the photovoltaic
output will also fluctuate and decline significantly. For instance, the
wind turbine will cut off from the grid when wind speeds are below
cut-in speed or above cut-out speed (Qin et al., 2019). The formula
of wind generation output varying with wind speed is as follows.

Pwind v( ) �
0, v< vci
PN
wind A + Bv + Cv2( ), vci < v< vr

PN
wind, vr < v< vco

0, v> vco

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

where PN
wind is the rated power of wind turbine. A, B and C are design

parameters of wind turbine. vr presents the rated speed, vci and vco
denote the cut-in and cut-out speed, respectively. The curve
produced by a wind speed distribution can be approximated
using a Weibull distribution. A two-parameter Weibull
distribution (Xia et al., 2020) is selected as follows.

f v( ) � β

θ

v

θ
( )β−1

exp − v

θ
( )−β[ ] (6)

where f(v) is the probability density function of wind speed. β is the
shape parameter, also called as the Weibull slope or the threshold
parameter. θ is the scale parameter, also called the characteristic life
parameter. The parameter estimation can be conducted using
measured wind speed data. In extreme weather such as typhoon
and gale, the failure rate of wind generation can be obtained
preliminarily by wind speed distribution and cut-out wind speed.
In the following analysis, different levels of extreme weather will be
divided, and these divisions are conducted by β and θ, which will
correspondingly affect the probability of various wind speeds. For
example, the more severe the weather, the greater the probability of
greater than the cut-out wind speed, the more frequent the wind
turbine shutdown, which in turn impacts the output of the entire
wind farm.

Modeling approaches for photovoltaic power generation bear
similarities to those employed for wind power. Typically, there exists
a strong correlation between photovoltaic output and light intensity.
During extreme weather events, the available light intensity
frequently falls short of maintaining the rated power of
photovoltaic systems. Under rated light intensity conditions, a
linear relationship between light intensity and power is observed.
Over a specified time period, light intensity is assumed to follow a
Beta distribution, with its corresponding probability density
function outlined below (Luo et al., 2021; Prakash andMeena, 2021).

f r( ) � Γ α + β( )
Γ α( ) + Γ β( ) r

r max
( )α−1

1 − r

r max
( )β−1

(7)

In this context, Γ(·) represents the gamma function, while a
and ß denote the shape parameters of the Beta distribution,
respectively. r and rmax refer to the solar radiation intensity
and maximum solar radiation intensity, respectively. Given that
the photovoltaic output exhibits a linear relationship with light
intensity, the probability formula for photovoltaic output can be
directly derived as follows.

f PPV( ) � Γ α + β( )
Γ α( ) + Γ β( ) PPV

PPV
max

( )α−1
1 − PPV

PPV
max

( )β−1
(8)

Where PPV and PPV
max denote the output power and maximum

output power of photovoltaic for a certain period of time,
respectively.

3 Operation model for UESS

This section provides a detailed formulation of the optimization
model to minimize operational costs and load shedding costs of power
system. The operation of traditional generation units, renewable energy
generations and UESS are considered as components in this model. In
particular, battery energy storage can be configured more flexibly for
power and capacity, and has sufficient performance to adapt to the
operating environment of the power grid (Rouholamini et al., 2022).
Therefore, UESS is modeled in the following according to the operating
characteristics of battery energy storage.

3.1 Objective function for operation

Under extreme weather events, UESS collaborates with other
components of the power system, balancing system power and
consuming renewable energy. Furthermore, it can be considered
that when the ground facilities of the power system suffer
damage that cannot be restored in a short time, UESS can still
provide power support for the loads in the system and reduce the
loss of load shedding. Therefore, the operation costs considered
are the unit generation cost, the penalty costs for curtailment of
wind and solar, and the penalty costs of load shedding.
The optimal daily operation cost of the system is expressed as
follows.

minCopd � ∑
g,t

ag Pgen,g,t( )2 + bgPgen,g,t + cg

+Fab ∑
i,t

Pab,i,t + FLS ∑
i,t

PLS,i,t (9)

where Copd is the daily operation cost of the system. Pgen,g,t

represents the output of the g-th generation units in the t-th time
period. ag, bg, and cg are the cost coefficients of the units, and the
units generation cost is formulated as a quadratic function. Pab,i,t

denotes the curtailment of wind and solar at node i in the t-th time
period. Fab is the unit penalty cost for curtailment of wind and solar.
PLS,i,t represents the lost load at node i in the t-th time period. FLS is
the unit penalty cost for load shedding.
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3.2 Constraints for operation

The operation constraints should be fulfilled to maintain reliable
operation of power system. In this paper, generation, renewables and
UESS during dispatching are considered. These constraints are
explained as follows.

(1) Power balance supply and demand of the system

∑
g

Pgen,g,t +∑
i

Pwind,i,t + PPV,i,t−Pab,i,t − PESc,i,t+PESd,i,t(
−Pload,i,t + PLS,i,t) � ∑

j

Pij,t (10)

Where Pwind,i,t and PPV,i,t are the output of the wind and
photovoltaic generation at node i in the t-th time period. Pab,i,t is
the curtailment of wind and solar at node i in the t-th time period.
PESc,i,t and PESd,i,t are charging and discharging power of UESS at
node i in the t-th time period. Pload,i,t denotes the load power at node
i in the t-th time period. Pij,t is the active power flowing from nodes i
to node j in the t-th time period.

(2) DC power flow of the system

To avoid the nonlinear equations when solving a full AC power
flowmodel, DC power flow is adopted to reduce the complexity to a set
of linear equations. In DC power flow, the difference of node voltage
and branch resistance are ignored (Yan et al., 2015). Voltage phase angle
is also constrained, and the phase angle of slack node is set to 0.

Pij,t � δi,t − δj,t
Xij

(11a)

−π
2
≤ δi,t ≤

π

2
(11b)

Where δi,t is the voltage phase angle at node i in the t-th time
period. Xij is the impedance between node i and node j.

(3) Transmission capacity constraints

−Pij
max ≤Pij,t ≤Pij

max (12)
Where Pij

max is the transmission capacity of line from node i to
node j.

(4) Upper and lower power generation limits

Pgen,g
min ≤Pgen,g,t ≤Pgen,g

max (13)

Where Pgen,g
min and Pgen,g

max are lower and upper power generation
of units.

(5) Climbing constraints for generators

Pgen,g,t − Pgen,g,t−1 ≤RUg (14a)
Pgen,g,t−1 − Pgen,g,t ≤RDg (14b)

Where RUg and RDg are the maximum climbing rate upwards
and downwards.

(6) Upper and lower power generation limits for wind and
photovoltaic generation

0≤Pwind,i,t ≤PN
wind,i (15a)

0≤PPV,i,t ≤PN
PV,i (15b)

Pab,i,t ≥ 0 (15c)
Where PN

wind,i is the rate power of wind generation at node i.
PN
PV,i is the rate power of photovoltaic generation at node i.

(7) Load shedding constraints

0≤PLS,i,t ≤Pload,i,t (16)
The above objectives and constraints complete the modeling of

operation at the system level. The model takes the power flow
equation as the core, and is developed with multi-node, multi-period
and multi-device. In addition to system-level constraints, the energy
storage system mentioned above is the main equipment for
operation optimization. It also has more complex operation
characteristics, and more detailed operation constraints need to
be carried out.

(1) Upper and lower charging and discharging power limits
for UESS

0≤PESc,i,t ≤PES,i
max (17a)

0≤PESd,i,t ≤PES,i
max (17b)

Where PES,i
max is the maximum charging and discharging

power of energy storage system at node i.

(2) Power balance constraints for UESS

EES,i,t � EES,i,t−1 + ηcPESc,i,tΔt − PESd,i,tΔt
ηd

(18)

Where EES,i,t represents the remaining electricity in the
energy storage system at node i in the t-th time period. ηd and
ηc, respectively, represent the discharging and charging
efficiency.

(3) SOC constraints for UESS

The state of charge (SOC) represents the percentage of
available capacity in the current battery that can be released
under specified discharge conditions. The percentage of SOC
status ranges from 0% to 100%. However, considering the
chemical cell reaction characteristics: threshold boundary,
static and dynamic differences, multiplication differences,
estimation accuracy differences, etc., SOC estimation needs to
set aside buffer intervals to ensure that the battery always works
in a safe area.

SOCi,t � EES,i,t

EES,i
max (19a)

SOC min ≤ SOCi,t ≤ SOC max (19b)
Where EES,i

max is the maximum capacity of the energy storage
system at node i. SOCmin and SOCmax are the upper and lower
limits of SOC available range of energy storage system.

(4) Operation state constraints for UESS
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Energy storage system can only be in one of the three states of
charging, discharging, and not charging and discharging at each
moment. The initial electricity storage and the last electricity storage
should be equal to ensure that the energy storage system has the
same control performance in the new dispatching cycle.

PESc,i,t · PESd,i,t � 0 (20a)
EES,i,0 � EES,i,T (20b)

4 Planning model for UESS

Building on the operation model of UESS in Section 3, this
section constructs a planning model to optimizes the configuration
of UESS. The purchasing cost, building cost, maintenance cost and
residual revenue of UESS are considered. The objective function of
the planning model can be formulated as

minCinv � Cpur + Cbuild + Crm − Cres (21)
where Cpur is the annual value of the energy storage purchasing cost,
Cbuild is the annual value of energy storage construction cost, Crm is
the annual maintenance cost of energy storage, Cres is the annual
salvage value of energy storage. The costs mentioned above can be
calculated as follows.

(1) Purchasing cost

There are two parts of the purchasing cost: the initial
purchasing cost and the replacement cost. The initial purchase
cost is related to the capacity and power of the energy storage
system. The capacity purchase cost includes the purchase,
transportation and installation costs of energy storage
batteries and capacity-related ancillary equipment. Power
purchase cost includes energy storage converter and boost
equipment. The replacement cost is related to the initial
purchase cost and the replacement plan.

Cpur � Cinit
pur + Crep

pur (22a)
Cinit

pur � ζCR ∑
i

FEinitE
N
ES,i + FPinitP

N
ES,i( ) (22b)

Crep
pur � ζCR∑Nrep

n�1
Cinit

pur 1 + γ( )− nY
Nrep+1 (22c)

ζCR � γ 1 + γ( )Y
1 + γ( )Y − 1

(22d)

Where Cinit
pur and C

rep
pur are initial purchasing cost and replacement

cost. FEinit and FPinit are the unit capacity and the unit power
purchasing cost. EN

ES,i and PN
ES,i are rated capacity and power of

energy storage system at node i. ζCR is investment recovery
coefficient, which can be calculated with discount rate (γ) and
project life (Y). Nrep represents the replacement times of energy
storage system.

(2) Building cost

The building cost includes land cost and architecture cost, which
is one of the differences between UESS and ground energy storage

system in cost. Generally, these costs are related to the energy storage
capacity and can be approximately proportional.

Cbuild � Cland
build + Carchi

build (23a)
Cland

build � ζCR ∑
i

FlandE
N
ES,i (23b)

Carchi
build � ζCR ∑

i

FarchiE
N
ES,i (23c)

Where Cland
build and Carchi

build are the land cost and construction cost,
respectively. Fland and Farchi are the unit capacity land and
construction cost, respectively.

(3) Maintenance cost

The maintenance cost of UESS generally increases linearly with
energy storage power and annual power generation, but the annual
power generation is generally not easy to determine, so this part of
the cost is approximately converted into energy storage power.

Crm � ∑
i

FrmP
N
ES,i (24)

Where Frm is the unit power maintenance cost.

(4) Residual revenue

After the end of the project execution cycle or the completion of
a device replacement, the performance of UESS has not been
completely exhausted, and this part will be deducted from the cost.

Cres � ζCR ∑Nrep+1

n�1
ρresC

init
pur 1 + γ( )− nY

Nrep+1 (25)

Where ρres is salvage value rate.
To ensure the optimization results of energy storage capacity

and power within a suitable range, the influence and restrictions of
the UESS installation site and operation scenario must be
considered, and the upper and lower limits of energy storage
capacity and power configuration are stated as follows.

FIGURE 2
Structure of bi-level optimization model.
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ENmin
ES,i ≤EN

ES,i ≤E
Nmax
ES,i (26a)

PNmin
ES,i ≤PN

ES,i ≤P
Nmax
ES,i (26b)

where ENmin
ES,i and ENmax

ES,i are the lower and upper limits of the
capacity that energy storage at node i can be configured. PNmin

ES,i

and PNmax
ES,i are the lower and upper limits of the power that energy

storage at node i can be configured.
Base on the relation between operation and planning model, a

bi-level optimization model is adopted to describe the collaborative
optimization of UESS. The structure of the bi-level optimization
model is shown in Figure 2. The upper model represents the
planning, and establishes the objective function with the
minimum annual investment cost. The lower model builds the
optimal operation scheme of UESS, and establishes the objective
function with the minimum daily operation cost considering the
penalty of load shedding. The upper model passes the rated capacity
and rated power of UESS to the lower model. The lower model
uploads the daily operation cost to update the configuration of
UESS. The collaborative optimization model can be defined as
follows.

minCinv

s.t.
Equations 26( )

minCopd

s.t. Equations 10( ) − 20( )

⎧⎪⎨⎪⎩
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (27)

5 Solution technique

The bi-level optimization model is developed in Eq. 27 to
address the issue of integrated planning and operation. The
operational and planning layers are separately established in
Sections 3, 4, necessitating parameter exchange between the
upper and lower layers during the iterative cycle. This process
can decrease the model’s solving efficiency or render it
unsolvable (Ben-Ayed et al., 1988). To mitigate this issue, the
first step involves consolidating the objective functions and
decision variables of both layers into a single-layer model for
more straightforward resolution. Subsequently, the transformed
single-layer problem remains a nonlinear programming
challenge, requiring the nonlinear component to be linearized to
satisfy the requirements of the commercial solver.

5.1 Single-level transformation

Bilevel programming has been proved to be an NP-hard
problem, and its transformation is necessary to solve it. The first
step of transformation is to establish a relation of objective function
and decision variables between the lower and upper model
mathematically. According to the above analysis of the model,
the rated capacity and rated power of UESS in the upper
planning model are equivalent to the capacity and power limit
parameters of the energy storage in the lower operating model,
which can be expressed as follows.

PES,i
max � PN

ES,i

EES,i
max � EN

ES,i
{ (28a)

After establishing the relationship between the upper model and
the lower model, the model can be solved by the upper and lower
interactive iterationmethod. However, this reciprocating iteration of
the upper and lower parameters will reduce the efficiency of the
solution, and a more efficient way is to merge into a single-layer
programming. The obvious difference is that the time scale of the
planning layer is year, and the day of the operating layer. The
difference between the two can be unified by the following equation.

Cop � DyearCopd (28b)
WhereCop is the annual operation cost of the system,Dyear is the

operating days of the system throughout the year, generally set to
365 days.

For the planning layer, the objective function of the operation
layer is one of its constraints, but considering that the optimization
is carried out in the whole life cycle of the system, the cost of
planning and operation is included in the total cost, and the total
objective function is formed as follows.

Cyear � Cinv + Cop (28c)
Where Cyear is the equivalent annual value of the system life

cycle cost. The decision variables are the rated capacity of energy
storage and the rated power of energy storage, as well as the charging
and discharging power of energy storage, grid power distribution,
the curtailment of wind and solar, the power of load loss and the
remaining electricity in the energy storage.

The lower layer parameters can be directly replaced by the upper
model decision variables in the transformed model. In addition, the
objective function of the operation layer is associated with the
planning cost to form a new objective function. The transformed
model can be equivalent as follow.

minCyear

s.t.
Equations 26( )

Equations 10( ) − 20( )
Equations 28a( )

⎧⎪⎨⎪⎩
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (29)

5.2 Linearized constraints

Even if the bi-level optimization model is transformed into a
single layer, this model is still a nonlinear programming model. The
nonlinearity is mainly reflected in two aspects: the quadratic term
expression and the nonlinear logical constraints. Among them, the
quadratic term can be expressed by the piecewise linearization
method, and the nonlinear logic constraint can be transformed
by the large M method.

When conducting the generation cost of the units in Eq. 9, the
objective function contains a nonlinear item because the coal
consumption of the generation units is a quadratic function
about the output. The piecewise linearization method is used to
convert the quadratic function into piecewise linear function. The
generation cost of the units after processing can be expressed as
follows.

Cgen � ∑
g,t

Cgen
min +∑N

j�1
mg,jPgen,t,j

⎛⎝ ⎞⎠ (30a)
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mg,j � Cgen,j+1 − Cgen,j

Pgen,j+1 − Pgen,j
(30b)

0≤Pgen,t,j ≤
Pgen,j+1 − Pgen,j

N
(30c)

where N is the number of segments. Cgen,j is the maximum
generation cost for j-th segment. Pgen,j is the units output at the
right endpoint of j-th segment. mg,j denoted the slope of j-th
segment.

Eqs 18, 20a are nonlinear logic constraints, which are
determined by the charging and discharging characteristics of
energy storage. Eq. 20a will be replaced by the following
equations to linearize the charging and discharging constraints of
energy storage.

0≤PESc,i,t ≤ c1M
0≤PESd,i,t ≤ c2M

c1 + c2 � 1
c1, c2 ∈ 0, 1{ }

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (31)

whereM is high penalty, always large positive number. c1 and c2 are
binary variables. These variables are introduced only for the

FIGURE 3
A modified version of RTS-79.

FIGURE 4
Daily output curves of renewables.
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feasibility of the model and have no physical significance, which are
eliminated before reaching a final solution. After the above
linearization transformation, the MILP model is formulated.

6 Case study

6.1 Case description

To verify the feasibility and effectiveness of UESS, a modified
version of the IEEE Reliability Test System 1979 (RTS-79) shown in
Figure 3 is used in this paper as a test case (Subcommittee, 1979).
Starting from the RTS-79, renewables are added as follows. Three wind
farms with maximum output of 200, 150, and 100MW are located at
bus 8, 19, and 21. Three photovoltaic fields withmaximumoutput of 60,
100, and 150MWare located at bus 4, 5, and 17. Daily output curves for
each wind farm and photovoltaic field are shown in Figure 4. In order to
establish a new balance between power source and load demand, the
rated capacity of select units within the original system is decreased,
with renewable energy sources compensating for the diminished output
power. In the modified RTS79, the renewable energy share surpasses
20%, thus classifying the system as one characterized by high renewable
energy penetration. The lithium iron phosphate batteries are adopted as
the energy storage technology of UESS. It is assumed that the UESS has
an initial SOC of 10% at the beginning of the dispatching cycle. The
planning and operation parameters of UESS are shown in Table 1.

Under extreme weather events, the failure rates of power system
components are calculated preliminary according to Eqs 3–8 and
historical data. Different extreme weather events are considered, and
the scenario set is formed in Table 2. The meteorological parameters
of diverse extreme weather events, such as temperature and wind
speed, serve as direct indicators of the severity of these conditions.
Upon normalizing this data, the failure rates of overhead lines and
renewable energy generation systems can be determined using
empirical and probabilistic equations. To account for the distinct
impacts of extreme weather on UESS, failure rates are estimated by
referencing failure incidents from similar underground facilities.
Although the calculated failure rates may not be precise, they

primarily function to classify extreme weather events in order to
demonstrate their varying effects within this study. It is assumed that
failure rates are equal to the performance loss of the power system
components.

In the optimization, the penalty coefficient for load shedding is
FLS = 800 CNY/MWh, and the penalty coefficient for curtailment of
wind and solar is Fab = 100 CNY/MWh. The determination of the
aforementioned penalty coefficients embodies a particular
inclination towards optimization problems, including a
preference for renewable energy utilization and enhanced system
resilience, which may not inherently possess market significance.
The establishment of specific values necessitates referencing other
parameters within the model, such as unit generation costs, energy
storage configuration costs, which are contingent upon market
pricing. The time period is set as 1 hour in operation. All
simulations have been conducted using Gurobi 9.5.2 on Python
3.10.1 and the MIP gap is set at 0.01%.

6.2 Results and discussions

The collaborative optimization model in Eq. 29 is solved with
one scenario from the scenario set in Table 2, i.e., λT = 0.30, λR =
0.50, λU = 0.02. The project life is set to 30 years, while the normal
life of lithium iron phosphate battery is 15 years, that is, there will be
a replacement in the middle of the project. The resulting investment
decisions for UESS including sizing and siting are presented in
Table 3. First, node 3, 4, and 18 were selected for UESS added to the
grid, by following the sizing policy explained in Section 3. Second,
with a share of more than 80%, the purchasing cost is the largest
component of the investment. However, the purchasing cost is
independent of whether the installation location is aboveground
or underground. Finally, construction cost and maintenance cost
account for a relatively small proportion of investment, although
these costs of UESS are generally higher than those of the
aboveground energy storage system.

Over the 30 years of the project life, the annual expenditure for
UESS will be 6,902,656 CNY. Following the defined penalty cost for
load shedding, this expenditure will be covered assuming UESS
supports all of the loads in RTS-79 for 3 h per year. In the case
scenario of severe extreme weather, the planning results are
economically acceptable. Considering the characteristics of
various costs such as purchase, construction, and maintenance,
the ground energy storage system does not have a strong
advantage over UESS in terms of cost. Moreover, the
contribution of UESS in consuming renewable energy, optimizing
power quality and improving load characteristics is not included.

TABLE 1 Planning and operation parameters of UESS.

Para-
meter

Capacity
purchasing cost

Power
purchasing

cost

Land
cost

Building
cost

Annual
maintenance cost

Salvage
value rate

SOC Charge-
discharge
efficiency

Unit CNY/MWh CNY/MW CNY/
MWh

CNY/MWh CNY/MW 1 1 1

Value 1200000 350,000 30,000 480,000 30,000 0.05 [0.1,
0.9]

0.95

TABLE 2 Scenario set with failure rates.

# of scenarios 1 2 3 4 5

Overhead lines 0.5 0.4 0.3 0.2 0.1

Renewables 0.7 0.6 0.5 0.4 0.3

UESS 0.04 0.03 0.02 0.01 0
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The case study considering operation of UESS is conducted
following the scenario selected in investment for UESS. The daily
operation state of UESS installed at nodes 3, 4. and 18 is shown in
Figure 5. The battery power flow is positive when charging and
negative when discharging, and the SOC of the battery changes

accordingly. It can be seen that the charge-discharge power of the
battery mainly jumps frequently in the rated charging power, 0 and
rated discharge power, even during loops. This can be considered, on
the one hand, UESS performs actively and plays a significant role in
the operation of the system, on the other hand, the system still has a
large demand for UESS. Therefore, the parameters are set
conservatively, which is primarily caused by the cost of load
shedding generated artificially and scenario setting, which will be
further discussed at the end of this section.

The primary benefits of UESS in extreme weather are to
minimize the value of lost load and ensure power supply. It is
essential to mention that although while UESS is distributed in each
node, it serves the power system as a whole. Therefore, the
mechanism of load shedding at each node should be examined.
The resilience index developed in Eq. 2 can effectively indicate the
value of lost load of the system, and Figure 6 displays the resilience
and the value of lost load for each node. The resilience index, strictly,
is used to evaluate the level of resilience for the entire system, but it
can also be addressed for each node considered as a subsystem. As
can be observed, there are 15 nodes without load shedding
(including nodes without load), while node 13 has lost far more
load than other nodes, and nodes 10 and 19 are the nodes with the
most load lost among the other nodes. In order to further analyze the
mechanisms of load shedding, the three nodes with themost value of
lost load are selected to evaluate the load curve, as shown in Figure 7.
As one can see, the peak of the load curve is where the load cutting

TABLE 3 Investment for UESS.

# of
node

Rated
capacity
(MWh)

Rated
power (MW)

Purchasing
cost (CNY)

Building
cost (CNY)

Maintenance
cost (CNY)

Salvage
value (CNY)

Total
cost (CNY)

3 8.536 3.594 2,262,703 286,531 125,796 55,403 2,619,627

4 0.704 0.535 186,655 23,636 18,730 4,972 224,049

18 13.226 5.569 3,505,943 443,966 194,916 85,845 4,058,980

Total 22.466 9.698 5,955,301 754,133 339,442 146,220 6,902,656

FIGURE 5
Daily operation of UESS at nodes 3, 4, and 18.

FIGURE 6
Resilience and load lost of each node.
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periods are all located. The difference is that, during hours 17, 18, 19,
and 20, node 13 totally failed to give sufficient power support for the
load. Node 19 made load shedding in hours 17 and 19, and only
about half of the load was removed in hour 19, while node 10 only
lost the load in hour 19. The reason for this result can be analyzed as
follow. After the 16th hour, the load reached to the second peak, but
the units output remained stable, the renewables output was also
relatively flat, and only the UESS installed at node 18 could provide
temporary power support. In Figure 6, UESS at node 18 discharged
continuously at a high power in hours 17 and 18 to supply the load at
nodes 15, 16, 18, and 19. However, due to the limitation of energy
storage capacity, there was no more discharge after the load curve
dropped. After the 19th hour, the load at the aforementioned nodes
all suffered similar degree of load shedding, but none experienced
peak load shedding. It should be noticed that the UESS placed at
node 3 has a lower capacity and power than node 18, and the load at
node 3 also had a large value of lost load at peak, so the UESS at node
3 had little contributions to the power supply for other nodes during
the peak.

The implementation of the UESS not only enhances the reserve
capacity of the power system, but also warrants attention to two critical
points. Firstly, it establishes a defensive bottom line for the power
system that is vulnerable to extreme weather conditions. Secondly, the
flexible adjustment capacity of the UESS enables the system to dispatch
limited resources to avoid severe losses. Since the modified RTS-79
system is connected to a high proportion of renewable energy, the
optimal configuration of UESS should not solely prioritize resilience
enhancement. Therefore, analyzing the results of sizing and siting from
a singular perspective is difficult. However, it is evident that nodes
equipped with UESS are profoundly affected by the volatility of
renewable energy, resulting in a sharp decline in output during
extreme weather events. These nodes are the weakest links in the
system and are vital to maintaining system stability. By balancing the
configuration requirements in normal and extreme scenarios, UESS can
achieve a more economical and effective implementation plan.

Furthermore, the optimization objectives and resilience
enhancements under different extreme weather scenarios are
calculated and analyzed in Figure 8. In scenarios 1 to 5, the
impact of extreme weather is decreasing, and the probability of
occurrence is also increasing. The two cases of whether UESS is

configured are also involved in the comparison. From the horizontal
analysis, the worse the extreme weather, the greater the target value,
and as the impact weakens, the target value also tends to be gentle,
which is obvious: the system needs to configure a larger UESS to
resist more extreme conditions. At the same time, although the
system resilience is improved with the weakening of extreme
weather effects, in the case of configuring UESS, the
improvement from scenario 1 to scenario 2 is the largest,
indicating that in the worst scenario, UESS is also difficult to
maintain the system resilience at a high level, but this extremely
low probability of occurrence will not occupy too much weight in
decision-making. From the longitudinal analysis, in the most
extreme cases, the gap between the target values with and
without UESS is doubled. These gaps are mainly contributed by
the cost of UESS, which makes the use of UESS to improve the
resilience of the system will bear a very high cost. In other scenarios,

FIGURE 7
Load shedding at nodes 13, 19, and 10.

FIGURE 8
Comparison of resilience in different scenarios.
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the gap between the target values is not large. In scenarios 4 and 5,
because UESS can reduce the penalty cost, its target value is even
higher than that without UESSS, but in either scenario, the
improvement of resilience by UESS is above 0.15. The significant
effect of this enhancement also proves the feasibility and
effectiveness of UESS.

7 Conclusion

This paper develops a resilience enhancement approach of high
penetration renewable energy power system with UESS as the core for
disaster scenarios under extreme weather events. Under harsh
conditions like primary energy block and power equipment damage,
UESS can provide power support for the power system. The proposed
optimization is a bi-level optimizationmodel that takes into account the
two stages of operation and planning, and themodel is transformed into
the MILP model for solution. The simulation results demonstrate that
UESS can enhance the resilience of the power system in disaster
scenarios, and it is more significant when extreme weather has a
severe impact on the power system.

However, it is essential to mention that this paper simplifies the
power flow calculation in the operation model. The contribution of
UESS to power quality needs to be highlighted through more
accurate power flow analysis. The local influence of extreme
weather events on power system and its components will be
considered in future work.
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