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The non-intrusive load decomposition method helps users understand the
current situation of electricity consumption and reduce energy consumption.
Traditional methods based on deep learning are difficult to identify low
usage appliances, and are prone to model degradation leading to insufficient
classification capacity. To solve this problem, this paper proposes a dilated
residual aggregation network to achieve non-intrusive load decomposition. First,
the original power data is processed by difference to enhance the data expression
ability. Secondly, the residual structure and dilated convolution are combined
to realize the cross layer transmission of load characteristic information, and
capture more long sequence content. Then, the feature enhancement module
is proposed to recalibrate the local feature mapping, so as to enhance the
learning ability of its own network for subtle features. Compared to traditional
network models, the null-residual aggregated convolutional network model has
the advantages of strong learning capability for fine load features and good
generalisation performance, improving the accuracy of load decomposition. The
experimental results on several datasets show that the network model has good
generalization performance and improves the recognition accuracy of low usage
appliances.

KEYWORDS

non-intrusive, load disaggregation, deep learning, feature extraction, energy efficiency,
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1 Introduction

With the development trend of smart grid, the traditional intrusive load monitoring
method has many problems, such as high construction cost and difficult application, which
makes the non-invasive load monitoring method a unique way to solve these problems.
Non-intrusive load decomposition can help power companies more easily obtain the
power consumption of users and understand the power consumption of various electrical
appliances. Non-intrusive load decomposition can more accurately predict the distribution
of residential power consumption and the total amount of residential load by providing the
power consumption of each electrical appliance of users, reduce planning investment, save
budget, and avoid unnecessary waste of power resources. It is also conducive to the scientific
formulation of relevant policies for dynamic demand response by power companies, the
adjustment of electricity prices, the evaluation of relevant projects and the more reasonable
allocation of power resources, and the formation of a more benign and friendly interaction
between users and power companies, so as to achieve the results of peak shaving and valley
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filling, mutual benefit and win-win results. On the other hand, if
a family can know more details about electricity consumption, it
will consciously reduce energy waste. For example, most American
and British families install smart meters in their homes to facilitate
users to learn about the low peak electricity price information
in time, promote users to use electricity at night or at low
prices, alleviate the pressure of peak electricity consumption,
avoid power loss, and indirectly improve the economic benefits
of power sources (Zhao et al., 2019). In 1992, Hart proposed
non-invasive load monitoring (NILM). Its essence is non-invasive
load decomposition NILD (Hart, 1992), that is, the total energy
consumption is decomposed into a single device to analyze the
electricity consumption behavior of residential users. This provides
effective feedback on residential electricity consumption, helping
users save energy and reduce electricity charges (Paterakis et al.,
2017). Hart’s method is mainly to extract steady-state features for
power decomposition. Based on Hart’s algorithm, a simple non-
invasive charge load monitoring system can be designed. However,
this algorithm can only be used for a small number of electrical
appliances, and the number of types of features extracted is small.
When there are many types and numbers of electrical appliances,
the decomposition accuracy of this algorithm decreases significantly
(Dash and Sahoo, 2022).

In view of the problems in the above non-invasive load
decomposition, Inagaki et al. (2011) and others used the integer
programming method to monitor the load of household power
equipment, but it is only applicable to equipment in discrete
operationmode. Kolter et al. (2010) studied sparse coding algorithm
to improve decomposition performance, but this method is only
applicable to data sets containing low resolution data types. Lin Y.
and Tsai (2014) and Chang et al. (2013) used particle swarm
optimization algorithm to carry out non-invasive charge load
decomposition experiments for a small number of several electrical
appliances. This algorithm can decompose the total power data
to each electrical equipment at the same time, but the error of
the decomposition results is still large. The optimization method
is based on load characteristic analysis. First, the static and
dynamic characteristics of the load should be modeled. The total
load curve is the superposition of multiple loads. The objective
of optimization is to obtain the optimal load coefficient (i.e.,
the contribution of each load), so as to minimize the residual
between the superimposed total load and the actual load. Piga et al.
(2016) proposed a sparse optimization algorithm for non-invasive
charge load decomposition, which reduced the decomposition
error to a certain extent. Ahmadi and Marti (2015) proposed
a non-invasive charge load decomposition experiment based
on feature matching (also called load information matching),
which effectively solved the problem of high similarity between
load features. Johnson and Willsky (2013); Luan et al. (2022);
Xia et al. (2021) used the Hidden Markov Model to perform non-
invasive charge load decomposition. Similar to the combination
optimization algorithm, these algorithms first obtain the state
power of electrical appliances through clustering. Its encoding
and decoding process is the process of optimizing the power
values obtained by these clustering, and the decomposition results
are also the combination of power values obtained by clustering,
which cannot obtain more accurate electrical power consumption
values (Himeur et al., 2020a; Fan et al., 2021). Compared with

hidden Markov algorithm, Tsai and Lin (2012) proposed a method
achieves more accurate non-invasive load decomposition through
K-nearest neighbor regression algorithm. However, when the power
consumption difference between appliances is large, this algorithm
cannot achieve accurate decomposition. Other researches, such
as algorithms based on Adaboost algorithm (Hassan et al., 2014),
2D phase encoding algorithm (Himeur et al., 2020b; Himeur et al.,
2021a), fuzzy algorithm (Lin Y. H and Tsai, 2014), bagging
tree algorithm (Himeur et al., 2020c), histogramming descriptor
algorithm (Himeur et al., 2021b) and neural network algorithm,
have made certain achievements in non-invasive charge load
decomposition tasks. For the machine learning model, non-
intrusive load decomposition is to take the total power time
series data as the input, take the power data of each electrical
appliance as the output (fitting method) or take the electrical
appliance category as the output (classification). These two tasks
are consistent in nature, although it is more difficult to take the
power data of each electrical appliance as the output. For machine
learning methods, a large number of sample data are needed for
training. Non-intrusive load decomposition based on machine
learning is to fit the machine learning model through training of
a large number of samples, so as to obtain the power distribution
of various loads under different total power conditions, which has
no essential difference from traditional machine learning fitting
and classification. For 1/60 Hz sampling data, it can meet the needs
of non-intrusive load decomposition very well. In Lin’s work, the
fuzzy C-means algorithm based on particle swarm optimization is
combined with the fuzzy neural algorithm for non-invasive charge
load decomposition experiments. This algorithm can identify the
state of an electrical appliance at a certain time, and also solve
the problem of high similarity between the power consumption
characteristics of electrical appliances. Park et al. (2019) proposed
an equipment status recognition algorithmbased onneural network,
which is simple and fast in decomposition. Welikala et al. (2019)
proposed a NILD method, which combines the application usage
patterns (AUPs) of equipment to improve the state recognition
performance of high-frequency appliances. Himeur et al. (2021c)
proposed a histogrampost-processing of 2D local binary patterns for
smart grid applications. Guo et al. (2021) proposed a multi-model
combination model for non-intrusive load disaggregation, which It
can integrate the advantages of various methods and improve the
accuracy of decomposition. The traditional methods mainly use
artificial features to realize the identification of electrical appliances
by optimizing methods, but it is difficult to extract effective artificial
features. The algorithm is highly sensitive to noise and has low
decomposition accuracy.

Traditional load feature extraction needs manual design, so it
is difficult to extract effective features, and it is difficult to analyze
the features of time series. Recently, deep learning technology has
been widely used in various fields (Qu et al., 2021; Chen et al.,
2022; Gao et al., 2022; Song et al., 2023). The application of deep
learning in non-invasive load decomposition has gradually attracted
researchers’ attention. So far, there are a large number of load record
data for model training. For model training, we need to record
the power data of a household user and each load. At present,
there are many data sets, such as UK-DALE public data set and
WikiEnergy data set, which provides a data basis for the application
of deep learning. Different from traditional pattern recognition,
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deep learning can automatically extract features without manual
extraction. In Kelly’s experiment (Kelly and Knottenbelt, 2015),
it is proved that AutoEncoder method has the best effect in
sequence pair sequence method. Singh and Majumdar (2018),
Singh and Majumdar (2019) proposed deep sparse coding for
non-intrusive load monitoring, improved decomposition efficiency.
Xia et al. (2019) constructed a deep dilated residual network for
load feature extraction, it can improve feature utilization. Jia et al.
(2021) used bidirectional dilated residual network to realize the
sequence to point non-intrusive load decomposition. At present,
there are two main load decomposition methods: sequence to
sequence and sequence to point. Sequence-to-sequence refers to
the direct decomposition of the input sequence into different load
sequences. Instead of training a network to predict a window,
the sequence to point method is only to predict the midpoint
element of input window. The idea is that the input of the
network is a mains window, the output is the power at one
point of various electrical devices. Zhang et al. (2016) realized
sequence to sequence and sequence to point non-invasive charge
load decomposition using convolutional neural network. In Zhang’s
experiment, sequence to point decomposition method has achieved
good results in the decomposition of most electrical equipment.
Compared with other deep learning methods, convolutional neural
network has been proved to be more effective in the application
of non-invasive load decomposition. However, Zhang’s experiment
uses a relatively shallow convolutional neural network, which
is prone to the phenomenon of gradient disappearance, and
cannot extract the deep level charge load characteristics. It is
difficult to capture the relationship between long time series data.
Xia et al. (2020) constructed a deep LSTM model to realize the
decomposition of sequences into multiple sequences, and improved
the decomposition accuracy through depth feature extraction.
However, the current deep learning model is prone to model
degradation and other problems, resulting in insufficient fitting
ability. In addition, because it is difficult to extract the features of low
usage appliances, theweight of low usage appliances in deep learning
training is too small.Therefore, the existing deep learningmodel has
poor decomposition effect on low utilization rate appliances.

To solve above problem, a dilated-residual aggregation network
(DRA-Net) is constructed and applied to non-invasive load
disaggregation. The network model increases the receptive field

of convolution kernel through hole convolution to capture more
features. In addition, a feature enhancement module is proposed
to improve the learning ability of the model to fine load features,
and further improve the generalization performance of non-invasive
load decomposition. In conclusion, our contributions are as follows:
1)The differential processing of raw power data enhances the ability
of data expression. 2) A structure combining residual structure and
dilated convolution is proposed to realize cross-layer transmission
of load characteristic information and capture more long sequence
content. 3) A feature enhancementmodule is proposed to recalibrate
the local feature mapping to enhance the learning ability of network
for fine features.

2 Dilated-residual aggregation
convolutional neural network

Since different load devices in residential houses have different
electrical characteristics and some other influencing factors such
as interference noise, this work realizes the optimization and
improvement of the common convolutional network structure,
and proposes a new network model, Dilated-residual Aggregation
Convolutional Neural Network (DRAnet) to realize Non-intrusive
power load disaggregation, whose overall structure is shown in
Figure 1.

As shown in Figure 1, the network model includes the ordinary
convolutional layer, the Dilated Resblock, Feature Enhancement
Module (FEM), Information Fusion Module (IFM), and Fully
Connected Layer (FC). There are a total of three void residual
modules, namely, Dilated Resblock1, Dilated Resblock2, andDilated
Resblock3. There are a total of three feature enhancement modules,
namely, FEM1, FEM2, and FEM3. The total load power is
differentially processed and then recombined with the original
data as the input side, which enriches the edge information of
residential power data. The convolutional layer of the Dilated-
residual Aggregation Convolutional Neural Network enhances the
extraction of load features of different residential electrical devices
by combining multiple convolutional kernels to retain the basic
load characteristic information. The initial convolutional layer for
load disaggregation feature mapping is followed by three void
residual modules. The non-intrusive power load disaggregation

FIGURE 1
Structure of the dilated-residual aggregation convolutional neural network.

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1140685
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yu et al. 10.3389/fenrg.2023.1140685

task enhances the model’s ability to fit the load features without
increasing the number of parameters through these three cavity
residual modules. At the same time, it ensures that the signal passed
layer by layer in the network will not be lost when back propagation
is performed. The dilated residual module is based on the idea of
“cross-layer connection” and uses the residual connection to further
extract features from the low-order load features Hu et al. (2022).
The higher-order residential load feature mapping contains more
abstract load characteristics and timing information.

To enhance the disaggregation performance of the network for
load, a feature enhancement module is proposed to process the
output mapping of different stages in the network to obtain the
attention weight matrix.This matrix is multiplied and summed with
the corresponding vectors with the output of the dilated residual
module. This module facilitates the integration and strengthening
of the base load characteristics extracted by the first three void
residual modules, and fully utilizes the load characteristics and
timing information of each network stage, which makes the fitting
ability of the whole network structure enhanced, especially for
the load devices with low usage frequency like washing machines
and dishwashers, and has a great disaggregation improvement
effect. The output dilated residual convolutional feature mapping
and the feature-enhanced load feature mapping both contain a
large amount of different higher-order load information. Using
the dimensional splicing in the information fusion module and
conventional convolutional operation processing, these two parts
are then integrated, and finally the power prediction results
of the electrical equipment are output by the full-connected
operation. Dilated-residual Aggregation Convolutional Neural
Network constructed in this section is mainly designed to make
up for the defects of insufficient utilization of residential load
characteristics, poor disaggregation of low-use appliances and
disappearance of gradients, reflecting the more excellent feature
extraction capability and learning ability of the dilated residual
aggregation convolutional network.

2.1 Dilated resblock

The dilated convolution uses the parameter Dilated Factor
(DF) to adjust the size of the dilated convolution (Miao et al.,
2022). Since loads like washing machines and dishwashers are used
less frequently and have sparse temporal features, the proposed
dilated convolution allows resampling of the underlying load feature
mapping. Pooling and down-sampling operations cause the loss of
temporal information of the load, while the advantage of the dilated
convolution is that it can both replace the pooling effect and increase
the field of sensation exponentially (field of sensation refers to the
corresponding size of the convolution kernel, that is, the range of the
convolution for the load series.), allowing each convolution output
to capture a larger range of feature information, which has a good
feature extraction effect for load appliances like washing machines
without adding extra redundant number of parameters.

The dilated convolution kernel in the Dilated-residual
Aggregation Convolutional Neural Network is shown in Figure 2B.
Figure 2A shows the ordinary convolutional kernel convolution,
where xl and xl+1 are the input and output of l+ 1 layer respectively.
Assuming that the convolutional kernel size kernel is a and the

FIGURE 2
Comparison of ordinary convolution and dilated convolution. (A)
Normal convolution. (B) Dilated convolution.

step stride is 1, when the hole rate d is 1, i.e., the number of filled
“0” weights is 0. From the calculation of Eq. 1, we can see that the
mapping range length of layer l+ 1 (Ll+1) and layer l (Ll) is the same.

Ll+1 =
[Ll + 2× padding− kernel− (kernel− 1) × (d− 1)]

stride
+ 1, (1)

where padding is the number of padding zeros. The dilated rate
d is 2 in Figure 2B, and the perceptual field is expanded to 5× 1.
So, the advantage of the dilated convolution lies in the ability to
increase the local receptive field during the convolution operation
and capturemore information about the load characteristics without
introducing additional parameters. For load feature extraction,
dilated convolution can control the receptive field without changing
the size of the feature map, so as to extract multi-scale information
and effectively improve the accuracy of load decomposition. The
combination of the three-layer dilated convolution and the residual
connection constitutes a dilated residual module, as shown in
Figure 3.

The feature mapping is performed sequentially using the dilated
convolution kernel with convolution of the dilated rate of 1, 2,
and 3, including Leaky-Relu (Leaky ReLU is the commonly used
activation function of convolution neural network at present), Batch
Normalization (Similar to common data standardization, it is a
way to unify scattered data and a common method to optimize
neural network at present.), and other operations for processing,
and the reason why Relu is not used as a non-linear activation
function is that when the input value of the convolution layer
is negative, the learning speed of Relu will be slow (Wang et al.,
2022), even deactivating the neurons and preventing them from
updating weights, resulting in the disappearance of the network
gradient. Leaky-Relu activation function can correct the distribution
of load data and retain the negative values in the gradient
calculation process (Lu et al., 2022), which indirectly improves the
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FIGURE 3
Structure of dilated resblock.

retention of power load timing information in the network. The
residual connection also solves the problem of network degradation
caused by the gradual disappearance of information in the reverse
transmission of network layers, so the dilated residual module
enhances the fitting ability of the network itself to the load samples
and improves the disaggregation accuracy of the model.

2.2 Feature enhancement module

The structure of the feature enhancement module proposed
in this work is shown in Figure 4. The two input mappings of
the internal structure of the null residual aggregated convolutional
network are used as the input side of the feature reinforcement
module, which are feature map1 and feature map2. Where feature
map1 is the output feature map of the current null residual module,
while feature map2 is the output feature map of the previous stage.
As known from Figure 4, there are two optimization branches
of the feature reinforcement module, the first branch includes
operations such as Convolution, GlobalAvgPooling (GAP), FC,
Sigmoid, Reshape, etc. The second branch contains operations such
as tensor multiplication of feature maps, i.e., feature rescaling.
Feature map1 and feature map2 are processed by the feature
reinforcement module to obtain the output mapping feature map3.

The specific process of the enhancement module in loading
information is shown in Figure 5. In Figure 5, feature map2 is the
previous stage feature mapping, so it is not consistent with the
dimensionality of the output mapping feature map1 of the null
residual module, and the dimensionality of feature map2 is C.
The number of convolution kernels of the convolution is 1× 1×C.
The convolution operation of this 1× 1 convolution makes the
two dimensions consistent, which is convenient for subsequent
processing. The weight vector1 (weight vector1 in the figure)
is obtained after the GlobalAvgPooling layer operation, which
compresses the pre-multi-dimensional load feature map to a one-
dimensional feature map. Weight vector1 is essentially a one-
dimensional vector containing low-order load feature information,
which characterizes the global information on the feature layer, and
its dimension is 1×C. weight vector1 is then processed by FC layer,
Relu non-linear activation function to obtain weight vector2 (weight

vector2 in the figure), weight vector2 is a high-dimensional vector of
higher-order global features obtained on the basis of weight vector1,
whose dimension is also 1×C. Through this series of operations,
the weight vector2 further represents the change in dimensional
response of residential housing load characteristics as described as
follows:

W1 = GAP (conv (F1)) , (2)

W2 = FC (Relu (W1)) , (3)

Where F1 is the feature mapping of feature map1, GAP(⋅) is
global average pooling, FC(⋅) is fully connection. W1 and W2 is the
weight vector 1 and weight vector 2, respectively.

Sigmoid non-linear activation processing is similar to a gated
filtering mechanism to achieve a filtering function on load
information. Sigmoid processes each feature of the weight vector2
to generate a different weight variable. When the load feature of a
channel is more effective, its corresponding weight variable is closer
to 1; when the load feature of a channel is invalid, its corresponding
weight variable is closer to 0. In this way the feature reinforcement
module filters the useless information effectively.Then after Reshape
operation to complete the dimensional change, the weight vector2
processed by the above operation is multiplied with feature map2
to complete the feature rescaling of feature map2, and finally the
reinforced output mapping feature map3 is obtained, the specific
calculation is as Eq. 4.

F3 = F2 ⋅ Sigmoid (W2) , (4)

Where F3 is the feature mapping of feature map3, Sigmoid(⋅)
is the Sigmoid fuction. The main role of the feature enhancement
module is to integrate and optimize the features of the output
mapping feature map1 of the dilated residual module and the
output load feature mapping feature map2 of the previous part
to complete the rescaling of the weights. This module makes use
of the feature maps obtained at different stages of the network
model, thus enabling the discrimination of the importance of the
load features. The feature reinforcement module of the null residual
aggregated convolutional network learns the dependencies of load
timing information through the weight vector weight vector1 and
weight vector weight vector2 and learns the importance of each
load feature in the network accurately. Feature mappings that are
favorable to the load decomposition task are given biased weight
vectors, which serve to improve the decomposition accuracy, and
conversely are given biased weight vectors that are small, which
suppress irrelevant load features and achieve filtering of invalid
information.

In summary, the null residual aggregated convolutional network
model improves the decomposition accuracy of low-use appliances
by completing the rescaling operation of load features through the
feature reinforcement module.

2.3 Information fusion module

The structure of the information fusion module proposed in
this work is shown in Figure 6. In total, it is composed of Add
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FIGURE 4
Structure diagram of feature enhancement module.

FIGURE 5
Schematic diagram of the process of the feature enhancement module.

FIGURE 6
Information fusion module structure diagram.

operation, 3× 1 Conv, Leaky-Relu non-linear activation function,
and Batch Normalization. The output feature mapping of the null
residual module is different from the output feature mapping of
the feature reinforcement module, so the two parts are fused using
the information fusion module. The dimensionality of feature map1
and feature map2 of Figure 6 is made consistent using the base
convolution, and the dual input feature mappings are fused by
Add operation, and feature re-extraction is performed using 3×
1 convolution. After that, the load feature mapping is further
adjusted and optimized using Leaky-Relu activation function, Batch
Normalization and other operations. Finally the output feature
mapping of the information fusion module is a one-dimensional
vector, and then the prediction results of residential load devices are
obtained by the full join operation.

The null residual aggregated convolutional network uses
multiple null residual blocks to extract the electric load features
of residential houses, which improves the network model’s ability
to encode and decode load information, and also uses residual
connections to transfer feature information to further ensure the
effectiveness of load transfer between layers and avoid problems

such as gradient disappearance of the network model. The non-
intrusive load decomposition based on DRAnet uses the combined
power data X as input samples and the power data Y of individual
load devices as output labels to train and tune the network model.
When tested on the test set, the decomposition results will be
predicted based on the mapping relationship between X and Y
during the training of the network.Themodel’s feature enhancement
module and information fusionmodule achieve optimal integration
of load features extracted at different stages, thus improving the
accuracy of the networkmodel for load decomposition applications,
especially improving the decomposition and identification of low-
use appliances.

3 Simulation and analysis

3.1 Data sets

In this paper, two datasets [UK-DALE public data set and
WikiEnergy data set (Kelly and Knottenbelt, 2015)] are used to
verify the algorithm. WikiEnergy data set is a research power
data set released by Pecan Street, and it is the most abundant
residential power energy database in the world to study power
load decomposition. It contains power data collected by nearly 600
household users over a period of time, including single load and
total household power consumption. The active power of all loads
and residential buildings is obtained at the sampling frequency of
1/60 Hz. The collection of power data began in 2011, but it has
not stopped. The database is still expanding, providing a good data
support for the research of non-intrusive load decomposition. The
UK-DALE public data mainly contains the information of single
load and total household power consumption of five household
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TABLE 1 Load decomposition evaluationmetrics comparison onWikiEnergy data sets.

Index Method Air condition Fridge Microwave Washing machine Dish washer

MAE KNN 38.484 43.014 26.928 16.677 30.630

DAE 36.964 39.520 17.015 12.081 25.107

FHMM 40.212 22.898 12.787 12.787 19.782

CNN s-p 39.635 13.760 13.155 11.959 11.624

CNN s-s 61.129 38.413 9.973 18.497 19.084

CD-LSTM 39.921 19.989 7.898 10.989 9.989

D-ResNet 38.881 16.787 8.878 12.762 9.727

DRAnet 36.388 10.841 4.879 1.894 1.948

SAE KNN 0.0006 0.096 2.160 2.323 1.121

DAE 0.0001 0.071 2.317 2.835 1.405

FHMM 0.004 0.076 0.452 1.002 0.926

CNN s-p 0.006 0.074 0.319 2.467 0.098

CNN s-s 0.013 0.051 0.060 3.925 0.886

CD-LSTM 0.065 0.045 0.172 1.190 0.158

D-ResNet 0.011 0.021 0.182 1.022 0.152

DRAnet 0.011 0.019 0.133 0.08 0.084

Bold indicates the best result.

users. The number of load devices in each household is up to
9, but the sampling period of each household is different. In the
experimental, 70% of the sequences are used for training and 30%
for testing.

In deep learning, artificially adding some noisy “dummy
samples” combined with real data is beneficial to improve the
robustness of the model and the generalization performance of
the model. In this work, differential processing is performed on
the raw power data. The load power signal is essentially a set of
time-varying data, similar to a set of linear time-series information,
and the total power samples are subjected to first-order differential
processing, where the differential signal is a representation of the
difference between two data. After the processing, the performance
state of each non-zero-valued load device in the time dimension
changes. Main purposes: 1) Each non-zero value power is changed
to eliminate data fluctuation of load power signal and make the data
tend to smoothness. 2) Combining raw data and differential data
as the data input side enhances the data expression capability. The
equation for differential processing is shown as follow Equation.

ΔXt = Xt −Xt−1, (5)

whereXt represents the instantaneous total power data at the current
moment t, Xt−1 represents the instantaneous total power data at the
moment point t− 1, ΔXt is the result of differential processing.

3.2 Analysis of experimental results for the
WikiEnergy dataset

For the network model proposed in this work, experimental
simulations and analyses are performed using several load devices,

namely, air conditioner, refrigerator, microwave oven, washing
machine, and dishwasher inWikiEnergy data set. DRAnet conducts
non-invasive load decomposition experiments on the corresponding
load devices on the WikiEnergy dataset, and compares K-
Nearest Neighbor (KNN) algorithm, factorial hidden Markov
model (FHMM), Denoising AutoEncoder (DAE) algorithm, CNN
Sequence to Sequence (CNN s-s) algorithm, and CNN Sequence
to Point (CNN s-p) algorithm, composite deep long short-term
memory network (CD-LSTM) (Xia et al., 2020), and deep dilated
residual network (D-ResNet). In this work, the input size of the
network is 100. For the sequence-to-sequence method, the output
size is 100. For the sequence to point method, the output size
is 1. The average absolute error (MAE) and the comprehensive
absolute error (SAE) are used to evaluate the performance of the
algorithm. Table 1 and Figure 8 shows the comparison between the
load decomposition effects of the above algorithms and the real
power data on the WikiEnergy dataset.

The experimental results show that the KNN algorithm has
the worst load decomposition effect on the following loads, such
as microwave oven, washing machine and dishwasher. Because
these loads have the characteristics of low frequency use, the KNN
algorithm cannot effectively identify and decompose the sudden
change point of load power due to its own algorithm structure. All
algorithms can effectively decompose the air conditioning load with
periodic laws. From the decomposition results of refrigerators, it
can be found that D-Resnet algorithm and DRAnet network model
proposed in this paper can be decomposed better, mainly because
they can accurately identify the peak area of load power. In fact,
for load decomposition, the most important thing is to improve the
decomposition ability at high power consumption. For the moment
of very low power, although all methods are different, they have little
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TABLE 2 Load operating state index comparison onWikiEnergy data sets.

Index Method Air condition Fridge Microwave Washing machine Dish washer

Recall KNN 0.998 0.996 0.759 0.290 0.561

DAE 0.999 0.996 1 0.451 0.833

FHMM 0.999 0.996 0.912 0.174 0.674

CNN s-p 0.999 1 0.987 0.129 0.596

CNN s-s 0.999 0.990 0.949 0.290 0.868

CD-LSTM 0.999 0.994 0.957 0.453 0.856

D-ResNet 1 0.997 0.947 0.675 0.887

DRAnet 1 1 0.988 0.880 0.982

Precision KNN 0.987 0.870 0.198 0.236 0.336

DAE 0.987 0.853 0.050 0.229 0.281

FHMM 0.991 0.966 0.061 0.132 0.421

CNN s-p 0.995 0.996 0.050 0.047 0.414

CNN s-s 0.939 0.847 0.033 0.428 0.391

CD-LSTM 0.976 0.902 0.213 0.562 0.415

D-ResNet 0.986 0.976 0.453 0.612 0.568

DRAnet 0.999 0.997 0.712 0.758 0.823

Accuracy KNN 0.991 0.889 0.967 0.993 0.978

DAE 0.991 0.872 0.812 0.992 0.967

FHMM 0.987 0.877 0.854 0.993 0.971

CNN s-p 0.997 0.980 0.816 0.986 0.982

CNN s-s 0.958 0.864 0.729 0.995 0.978

CD-LSTM 0.976 0.978 0.821 0.995 0.968

D-ResNet 0.975 0.981 0.942 0.987 0.971

DRAnet 0.999 0.986 0.979 0.996 0.996

Bold indicates the best result.

impact on practical applications.Therefore, effective decomposition
of load peaks is particularly important. The experiment shows
that the DAE algorithm has certain advantages in identifying
and decomposing regions with zero power consumption. For low
frequency load equipment such as microwave ovens, washing
machines and dishwashers, CNN s-s and CNN s-p convolutional
neural networks can not accurately realize power decomposition. In
terms of MAE and SAE, decomposition errors are relatively large.
The main reason is that the number of layers of these two network
models is small, and the load feature extraction is insufficient. D-
ResNet’s performance is better than CNN s-s and CNN s-p, but it
still cannot accurately realize the decomposition. That is because,
although the residual structure makes the network deeper and
improves the feature extraction ability, the feature extraction of
electrical appliances with less frequency of use is still insufficient.
Due to the structural advantages of the model, DRAnet uses dilated
convolution to deepen the receptive field of convolution kernel,
capture more time series information of fine load characteristics,
and improve the decomposition effect. Compared with the existing
decomposition algorithms, the DRAnet network model has better
decomposition effect and better decomposition performance. In

particular, the load decomposition curve is closer to the real
power consumption curve on the load of microwave oven, washing
machine, dishwasher and other low-frequency use.

After the load is decomposed, the start and stop status of the
electrical appliances can be distinguished by the threshold value.
The threshold values of five kinds of appliances are: air conditioner
100 W, refrigerator 50 W, washing machine 20 W, microwave oven
200 W, dishwasher 100 W. Table 2 shows the comparison of the
evaluation indexes of load operation status after load decomposition
by each algorithm. In Precision and Accuracy indexs, the DRAnet
network model achieves the best decomposition performance in
each appliance. In Recall metrics, good metrics performance was
also achieved on Air Wither, Refrigerator, Washing Machine and
Dishwasher. ForCNNs-s, CNNs-p,DAE,CD-LSTMandD-ResNet,
combining the decomposition results of microwave oven, washing
machine and dishwasher in Figure 7 with the load operation state
metrics Recall and Precision analysis, the actual power consumption
of these three loads is significantly less in the proportion of samples
in the on state compared to the other two loads. Therefore, from
the indexes, for these low-frequency use load devices, none of them
can accurately identify the operating state of the load switch. The
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FIGURE 7
Partial view of load decomposition for WikiEnergy dataset.

FIGURE 8
Partial view of load decomposition for UK-DALE dataset.
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TABLE 3 Load Decomposition EvaluationMetrics Comparison on UK-DALE data sets.

Index Method Kettle Fridge Microwave Washing machine Dish washer

MAE KNN 1.413 2.407 1.078 4.032 3.274

DAE 8.867 8.218 1.226 14.920 12.756

FHMM 9.432 6.432 1.123 15.773 12.722

CNN s-p 4.002 4.517 1.159 23.881 9.747

CNN s-s 8.829 3.866 1.125 20.696 9.101

CD-LSTM 3.139 3.762 1.021 17.622 7.653

D-ResNet 3.028 2.862 0.972 14.526 6.525

DRAnet 0.703 2.133 0.811 3.618 2.403

SAE KNN 0.076 0.015 0.054 0.018 0.001

DAE 0.377 0.021 0.748 0.006 0.340

FHMM 0.004 0.076 0.452 1.002 0.926

CNN s-p 0.242 0.024 0.845 0.302 0.154

CNN s-s 0.522 0.032 0.880 0.315 0.213

CD-LSTM 0.271 0.020 0.421 0.102 0.061

D-ResNet 0.121 0.014 0.226 0.081 0.052

DRAnet 0.002 0.011 0.237 0.0007 0.020

Bold indicates the best result.

best load identification is the network model proposed in this work,
which is most capable of accurately predicting the operating state
of such load switches. In general, the power of the refrigerator is
relatively regular, that is, it will stay at a relatively high power position
for a period of time after starting. Although there is a power peak
during the period, this does not affect the judgment of the start and
stop of the electric appliance.

3.3 Analysis of experimental results for the
UK-DALE dataset

In order to verify the generalization performance of the
networkmodel in this paper, relevant comparative experiments were
carried out in UK-DALE. In the electric power data, five typical
loads of kettle, refrigerator, microwave oven, washing machine
and dishwasher are selected for experiment and analysis. As
shown in Table 3, the above five algorithms can achieve effective
power decomposition for frequently used load equipment such
as air conditioners and refrigerators. For loads such as washing
machines, microwave ovens and dishwashers, KNN algorithm,
FHMM algorithm, CNN s-s algorithm and CNN s-p algorithm are
far less effective thanCD-LSTMalgorithm,D-ResNet algorithm and
DRAnet network model. This is mainly due to the advantages of the
proposed network structure, which can better detect the peak state
of power consumption and the operating state change of load switch.

Figure 8 shows the local load decomposition of UK-DALE data
samples. Observe the decomposition curves of other methods. It is
not well represented in the peak area of load power consumption,

and the curve has some burrs. But it performs well in the range
of power close to zero. To sum up the four local decomposition
renderings, the load decomposition result of DRAnet network
model is the closest to the real power consumption compared
with other algorithms, indicating that DRAnet decomposition
performance is superior to other algorithms.

The decomposition performance of the algorithm is further
evaluated by using the evaluation indexes of load start and stop
operation states such as recall, accuracy and precision. As shown
in Table 4, it is the comparison of load switch operation status
indicators of five algorithms in UK-DALE data set. From the index
point of view, DRAnet network model achieves the best numerical
performance on these types of loads, and can accurately identify
the operation status of load startup and shutdown. From the Recall
index and Precision index, other algorithms performwell on kettles,
dishwashers and refrigerators, and can also judge the start and stop
status of electrical appliances, but they do not perform very well on
othermicrowave ovens andwashingmachines.The accuracy of non-
invasive load decomposition based onDRAnet is obviously superior
to other methods.

On the two experimental results of WikiEnergy dataset and
UK-DALE dataset, the dilated residual aggregated convolutional
network based on its own structural advantages, the proposed
dilated residual module enhances the network’s ability to extract
low-frequency load features, rescale the features using the
feature enhancement module, filter the useless information,
and reinforce the useful load features, thus to be have better
decomposition effect and generalization performance than other
methods.
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TABLE 4 Load operating state index comparison on UK-DALE data sets.

Index Method Air condition Fridge Microwave Washing machine Dish washer

Recall KNN 0.987 0.988 0.254 0.911 0.968

DAE 0.985 0.944 0.345 0.921 0.938

FHMM 0.992 0.937 0.362 0.931 0.941

CNN s-p 0.993 0.923 0.425 0.838 0.928

CNN s-s 0.969 0.990 0.463 0.857 0.904

CD-LSTM 0.964 0.978 0.429 0.862 0.914

D-ResNet 0.973 0.992 0.653 0.902 0.934

DRAnet 1 0.996 0.947 0.926 0.969

Precision KNN 0.998 0.974 0.933 0.617 0.799

DAE 0.650 0.932 0.421 0.471 0.813

FHMM 0.991 0.966 0.061 0.132 0.421

CNN s-p 1 0.968 0.435 0.701 0.829

CNN s-s 0.946 0.944 0.632 0.663 0.835

CD-LSTM 0.964 0.964 0.643 0.673 0.801

D-ResNet 0.973 0.976 0.732 0.701 0.823

DRAnet 1 0.996 0.989 0.771 0.850

Accuracy KNN 0.982 0.954 0.956 0.981 0.934

DAE 0.997 0.955 0.949 0.967 0.976

FHMM 0.972 0.954 0.954 0.943 0.965

CNN s-p 0.987 0.981 0.967 0.936 0.967

CNN s-s 0.988 0.987 0.966 0.955 0.974

CD-LSTM 0.987 0.977 0.964 0.954 0.971

D-ResNet 0.988 0.985 0.952 0.962 0.976

DRAnet 0.999 0.986 0.979 0.985 0.998

Bold indicates the best result.

4 Summary

This work firstly introduces the overall structure of the dilated
residual aggregated convolutional network, which mainly has the
differential processing of data, the dilated residual module, the
feature enhancement module, and the information fusion module.
The differential data enhances the expressiveness of the data and
improves the robustness of the network model, and then the null
residual module, feature reinforcement module, and information
fusion module are proposed for the characteristics of sparse
features of low-usage load devices. In this work, the dilated
residual aggregated convolutional network is trained and tested on
the WikiEnergy dataset and UK-DALE dataset samples. Through
experimental simulations and result analysis, the proposed method
is significantly better than other methods. In terms of load sequence
decomposition, the method proposed in this paper has significantly
improved on MAE and SAE indicators compared with the existing
deep learning decomposition method, and in terms of electrical
start and stop judgment, the method in this paper is superior to
the existing method in three indicators. The fundamental reason is

mainly that the dilated residual aggregated convolutional network
model has a stronger extraction capability for higher order load
features, and therefore has better decomposition results for low
usage appliances. However, there are still many problems in non-
intrusive load decomposition that need further study. 1) In order
to improve the decomposition accuracy of load equipment, it is
often to train the corresponding model for each load equipment.
The process is complex and the time cost is high. Therefore, we can
further study the deep neural network model with adaptive learning
ability, such as the confrontation network model, which can be
transplanted to the application of non-invasive load decomposition.
2) The decomposition of low power electrical appliances is more
susceptible to noise interference and is not easy to decompose. The
decomposition of low power loads needs further research. 3) The
non-intrusive load decomposition algorithmbased on deep learning
in this paper has certain requirements for computing resources,
and cannot be integrated with smart meters at present. In the
future research work, we can consider further improvement of the
algorithm, so that the algorithm can be directly used on embedded
platforms and other hardware devices.
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