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Lithium-ion (Li-ion) batteries are widely used in such devices as today’s
electrical vehicles, consumer electronics, and unmanned aerial vehicles,
and will play a key role in the future. Unexpected Li-ion battery abnormities
may result in serious inconvenience and enormous replacement costs. Thus,
the diagnostic and prognostic methods play important roles in battery
replacement scheduling, maintenance strategy development, and battery
failure precaution, However, many published methods are unsuitable for
both battery capacity and end-of-discharge. In this paper, a hybrid
ensemble approach, integrating k-fold cross validation (k-CV) and genetic
algorithm with back-propagation neural network (GA-BPNN), is proposed for
capacity and end-of-discharge of Li-ion battery prognostics combined with
geometrical features. Geometrical features extracted from charge-discharge
cycles of Li-ion batteries are set as the inputs of the neural network. K-fold
cross validation is introduced to determine the number of BPNN hidden layer
neurons, genetic algorithm is used to initialize and optimize the connection
weights and thresholds of BPNN. By the critical geometrical feature extraction
and the ensemble BPNN model with k-fold cross validation and genetic
algorithm, accurate battery capacity and end-of discharge are
accomplished, making the proposed model can potentially be used for real-
time estimate for the conditions given in this article. The performance of the
proposed approach is demonstrated by using actual Li-ion battery data, which
is supplied by the NASA Ames Research Center database.
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1 Introduction

Li-ion batteries are widely used in electric vehicles, consumer electronics and
unmanned aerial for lower weight, lower self-discharge rate, longer life cycle, higher
energy density and the possibility of being recharged (Sbarufatti et al., 2017; Peng et al.,
2018). However, unexpected Li-ion battery abnormities may result in serious
inconvenience and enormous replacement costs (Liu et al., 2015). To improve the
reliability and availability of Li-ion batteries, a battery management system (BMS) is
proposed and essentially required to keep Li-ion batteries working safely and efficiently
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(Xia et al., 2015). Usually, battery capacity and end-of-discharge
(EOD) are monitored and function as useful information for
BMS (Lu et al., 2014; Ouyang et al., 2015). There are two different
definitions for the EOD (end-of-discharge) in the literature. The
first one is the time when the SoC hits a pre-determined limit
(Pola et al., 2015) while the second one is when the terminal
voltage reaches the lower cut-off voltage (Sbarufatti et al., 2017).
Actually, these two definitions are equivalent. Thus, the
diagnostic and prognostic method for battery capacity and
EOD is crucial to BMS, which can play important roles in
battery replacement scheduling, maintenance strategy
development and battery failure precaution.

Battery capacity is rated in ampere-hour (Ah), which quantifies
the available energy stored in the battery, whereas EOD is defined
as the time at which the state of charge (SOC) reaches some
predefined thresholds before the battery recharging (Saha et al.,
2009). As time goes on, both the maximum available capacity and
EOD of Li-ion battery will decrease. With the accumulation of
charge-discharge cycles, available battery capacity becomes
decreasingly worse and EOD falls sharply (Farmann et al.,
2015). Once the threshold is exceeded, the battery will fail to
supply the required energy and power. Thus, accurate estimation
for capacity and EOD is a critical factor to optimize the energy use
of Li-ion battery (Lu et al., 2014).

FIGURE 1
The flowchart of the proposed prognostic model for Li-ion battery capacity and EOD.

FIGURE 2
Six geometrical features (length, area and slope) extracted from charging and discharging process: (A) three charging related features in an
illustrative charging cycle and (B) three discharging related features in an illustrative discharging cycle.
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With significant improvements in software capabilities and
modern experimental techniques, battery modeling and
simulation have undergone prominent advancements in past
decades. Various approaches to estimating battery capacity and
EOD have been reported in recent research (Saha et al., 2009; Lu
et al., 2014; Ouyang et al., 2015; Sbarufatti et al., 2017). In general,
these approaches can be categorized as direct measurement method
(Wei et al., 2018), model-based method (Lu et al., 2014), and data-
driven method (Hu et al., 2014).

The direct measurement of battery capacity and EOD is based
on the complete discharging of a cell after a full charging process
(Wei et al., 2018). One of the most commonly used direct
measurement methods is coulomb counting, which can
estimate the battery capacity by a simple integration of
current over time (Kong et al., 2008; Hu et al., 2014) and
obtain the EOD when the minimum safe voltage threshold is
reached (Saha et al., 2009). Although the direct measurement
method is the most accurate measurement technique, it is
impractical considering its time-consuming and energy-
wasting drawbacks.

The model-based method can be highly accurate if the models
are consistent with the failure mechanism. Extended Kalman
filter (EKF) (Lai et al., 2020; Li et al., 2020; Zhu et al., 2020) and
particle filter (PF) (Saha et al., 2009; Schwunk et al., 2012; Li et al.,
2017) are the commonly adopted methods to build the battery
prognostic model. EKF is used to estimate battery capacity based
on the state models involved (Plett et al., 2004; Dong et al., 2016),
while PF is used for the estimation of battery capacity and EOD
by tracking the state vector (Saha et al., 2009; Li et al., 2017).
Besides these two methods, other model-based methods are also
applied in battery prognostic. Lu et al. (2014) proposed a
geometrical model to calculate battery capacity under different
operating conditions with the help of extracted geometrical
features. Liaw et al. (2003) used an integrated approach to
model the capacity fade during thermal aging, and the
applicability of the proposed model is illustrated by an
equivalent circuit model. Although the right model can ensure
the performance of the estimation algorithms, the suitable model
is difficult to be established because of the individual battery
stochastic and environmental influences.

Data-driven methods are widely used in battery prognosis
because of the flexibility of modeling, fast processing of
prediction and the unnecessary consideration of

electrochemical process. Data-driven methods for battery
capacity and EOD estimation include the k-nearest neighbor
algorithm (kNN) (Hu et al., 2014), radial basis function neural
networks (RBFNN) (Sbarufatti et al., 2017), support vector
machine (SVM) (Pattipati et al., 2011) and Bayesian
framework (Saha et al., 2009; Ng et al., 2014). KNN has been
used to predict the battery capacity by capturing the dependency
of the capacity on the charge-related features (Hu et al., 2014).
RBFNN along with PF has been proposed to predict EOD of Li-
ion battery, and the number of hidden neurons was determined
by a trial-and-error procedure (Sbarufatti et al., 2017). Battery
capacity fade is predicted by SVM based on the collected baseline
data (Pattipati et al., 2011). A Bayesian framework is used for
tracking the capacity fade (Saha et al., 2009) and a naïve Bayes is
proposed for capacity depletion modeling (Ng et al., 2014). Long
short-term memory (LSTM) network is used to establish battery
sate of health (SOH), which is proven to have better estimation
accuracy compared with the other three machine learning
algorithms, SVM, relevance vector machine (RVM), and
Gaussian process regression (GPR) (Deng et al., 2022). To
enable battery SOH estimation under actual vehicle operating
conditions, a data-driven method based on a random partial
charging process and the sparse GPR is proposed and obtained a
good estimation accuracy (Deng et al., 2022). In (Hu et al., 2021),
a hybrid EOL prediction method based on PF and LSTM neural
network is proposed. The grey neural network (GNN) with a
sliding window is proposed to track the battery capacity
degradation trend (Lin et al., 2021). Since the estimated
results are highly dependent on the quality of experiment
data, data-driven methods can function well on the base of
high data quality.

Considering the merits and drawbacks of the aforementioned
prognostic methods, an integrated model with the combination of
geometrical features and GA-BPNN with k-CV is proposed to
estimate the capacity and EOD of Li-ion batteries. There are two
innovations in this work. Firstly, the features both in time and
frequency domains are replaced by the geometrical features as the
inputs of the neural network, which can reflect the intrinsic
degradation, avoid abnormal data affecting and sharply reduce
the computation cost. Secondly, the proposed model determines
the number of hidden neurons instead of empirically obtaining,
and optimizes the initial weights and thresholds to solve the local
minima problem of neural network (Montana et al., 1989; Wang

TABLE 1 The relationship between the selected features and key indicators.

ID Feature Geometry Strong correlation with key indicatior Charging/Discharging process

1 F1 Length Voltage Charging Process

2 F2 Length Current Charging Process

3 F3 Area Current Charging Process

4 F4 Length Voltage Discharging Process

5 F5 Length Temperature Discharging Process

6 F6 Slope Temperature Discharging Process
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et al., 2014; Patil et al., 2015; Wang et al., 2021). The prognostic
results demonstrate that both the novel contributions could
ensure the accurate estimation of capacity and EOD of Li-ion
batteries.

2 Methodological approach

The objective of this section is to detail a novel model based
on geometrical features and GA-BPNN with k-CV to estimate
the capacity and EOD of Li-ion batteries, as shown in Figure 1.
This model consists of three parts: 1) geometrical features
extraction, 2) GA-BPNN with k-CV, 3) estimation and
prediction. In Part 1, the geometrical features are extracted
from the curves of voltage, current, and temperature in
charge and discharge cycles. In Part 2, the number of BPNN
hidden layer neurons is determined by k-CV method and the
values of initial weights and thresholds are determined by GA
algorithm. In Part 3, the capacity and EOD of Li-ion batteries are
estimated and predicted.

2.1 Geometrical features extraction

Features extracted from the charging process (Hu et al.,
2014), discharging process (Patil et al., 2015) and both
charging and discharging process (Lu et al., 2014) are used to
estimate the capacity and EOD of Li-ion batteries. Compared
with the feature extracting methods proposed (Hu et al., 2014;
Patil et al., 2015), the geometrical features proposed by Lu et al.
(2014) are easier to pick up, and both charging process and
discharging process are considered. Besides of the current and
voltage, the working environment temperature also plays an
important role in battery degradation (Xing et al., 2013; Liu
et al., 2014). In view of the above-mentioned facts, the
geometrical features from both current and voltage curves and
temperature curves are extracted. In recent years, features are
extracted using electrochemical model in some studies (Xu et al.,
2022; Xu et al., 2022; Li et al., 2023).

Given the basic measurements (voltage, current and
temperature) of a Li-ion battery during charge and discharge
cycles, we estimated the capacity and the EOD of Li-ion
batteries. In this work, we extracted six geometrical features as
the inputs of the proposed model, three features from charging
curves and other three from discharging curves (Figure 2).
Geometrical features extracted from the charging process are the
length of time from the start to the maximum in voltage curves (F1),
the length of constant current in current measured curves (F2) and
the area under constant voltage in current measured curves (F3)
(Figure 2A). Geometrical features extracted from the discharging
process are the length between the two maximum-curvature points
in voltage curves (F4), the length from the first local maximum
curvature point to the maximum in temperature measured curves
(F5) and the slope between the first maximum curvature point and
the maximum in temperature measured curves (F6) (see Figure 2B).
Of the six geometrical features, four of them are length (F1, F2, F4,
F5), one is area (F3) and the last is slope (F6). The relationship

between the selected 6 features and the key indicators for battery
capacity estimation are shown in Table 1,2.

2.2 Methodology

Because of having a strong generalization ability for non-
linear mapping among parameters, BPNN has always been one of
the most wildly used methods (Liu et al., 2014; Zhang et al., 2021;
Ma et al., 2022; Wen et al., 2022; Zhang et al., 2023). The fact that
a single hidden layer BP network can approximate any
measurable function arbitrarily has been proved (Hornik et al.,
1989), and the larger number of hidden neurons, the higher the
capability of the algorithm in approximating complex
relationships (Bishop et al., 1995). However, on the one hand,
having a greater number of hidden neurons is not necessarily
better, as two drawbacks will appear as the number grows
(Sbarufatti et al., 2017). The first drawback is overfitting, as
once the prediction is outside the training domain, the results
differ more significantly. The second drawback involves an
increase in the computation burden. More unknown
parameters need to be optimized if the number of hidden
neurons grows, which may significantly increase the
computation burden. On the other hand, the initial weights
and thresholds of the traditional BPNN are largely random,
which may result in falling intointo a local minimum during
the training process. Considering the above defects, we introduce
k-CV method to determine the number of BPNN hidden layer
neurons, and GA to initialize and optimize the connection
weights and thresholds of BPNN.

2.2.1 BPNN model based on k-CV
In this section, we selected a single hidden layer BPNN as the

prognostic model and used k-CV to determine the number of BPNN
hidden layer neurons and avoid overfitting to some extent (Prechelt
et al., 1998). The flowchart of BPNNmodel based on k-CV is shown
in Figure 1. The empirical method (Sbarufatti et al., 2017) to
determine the number of hidden neurons for BPNN, h, is shown
as Eq. 1:

h � int
�����
m + n

√( ) + p, p � 0, 1, 2, ..., N (1)
where m is the number of input neurons, n is the number of output
neurons, int (·) is an integer function and p is an integer between
0 and N, empirically.

Assume F1 ~ F6 are the inputs of BPNN extracted in Section 2.1,
the battery capacity is the output. Here, we select a tanh-function as
the activation function and the capacity can be calculated as follows
(Hornik K, 1989):

Cappred � ∑h

j�1wj · 1 + exp −2 · ∑6

i�1wij · Fi − θj( )( )( )−1
− ε (2)

where Cappred is the predicted battery capacity.
After completing iterations using the classical BPNN model

proposed in Section 2.1 and obtaining accepted errors, then the sum
of squares due to error (SSE) can be estimated by Eq. 3 (Bishop C,
1995):

SSE � Capreal − Cappred( )2 (3)
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where Capreal is the real battery capacity.
Using k-CV, the training data set is divided into K groups, we set

qth (j = 1,2, . . ., K) group as the testing group, and the other K-1
groups are set as training groups, the calculation process is shown in
Algorithm 1.

The array of SSEs can be obtained after iterations,
SSE � SSEpq|p � 0, 1, ..., N; q � 1, 2, ..., K{ }. At each number of
hidden neurons, the mean values of SSEs can be calculated as
follows:

SSEp � 1
K
∑K

q�1SSEpq, p � 0, 1, 2, ..., N (4)

The minimum value is calculated as Eq. 5:

SSEp′ � min SSEp

∣∣∣∣∣∣∣ p � 0, 1, ..., N{ }( ) (5)

where p’ is the position of the selected SSE.
Then the most suitable number of hidden neurons, h0, can be

determined by Eq. 6:

h0 � int
�����
m + n

√( ) + p′ (6)

2.2.2 BPNN model integrated with GA
The initial weights and thresholds of BPNN are largely

random, and it is easy to fall into a local minimum during the
training process, which led to large errors and uncertainties in the
training results. GA is a parallel random search optimization
method that simulates the genetic mechanism of nature and the
theory of biological evolution, it has the characteristics of global
search. To solve the local minima problem of neural network
(Patil et al., 2015; Wang et al., 2021), GA is integrated BPNN to

FIGURE 3
Features F1~F3 extracted from battery #5: (A) voltage curves in charging process (B) the tendency of F1 over time (C) current curves in charging
process (D) the tendency of F2 over time (E) current curves in charging process (F) the tendency of F3 over time.
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determine the initial weight and threshold of BPNN (Montana
et al., 1989; Wang et al., 2016).

The flowchart of BPNN optimization based on GA method is
shown in Figure 1. The detailed process is as follows.

1) Initialization

In this section, the individuals are encoded, and the length of
the individuals is initialized. Each individual is encoded with the
weights and thresholds of BPNN, and the number of elements (or
genes) in each individual, Nsum, can be calculated as Eq. 7 (Wang
et al., 2016).

Nsum � m × h + h + h × n + n (7)
where m, h and n are the number of nodes for input layer, hidden
layer and output layer, respectively.

As the size of population, Spop, affects the results of genetic
optimization and the execution efficiency of GA, too big or too small
size is not suited.

2) Fitness function and selection

The fitness function is used in each iteration to evaluate the
quality of all proposed individuals in the current population. In this
work, the individual fitness value is formulated as Eq. 8 (Wang et al.,
2016):

fl � 1/SSEl, l � 1, 2, ..., Spop (8)

wherefl is the fitness value of individual l, and SSEl can be calculated
by Eq. 3.

A selection mechanism, fitness proportionate selection, is used
to determine the number of copies of each parent individual that can
participate in the crossover process. According to a certain
proportion, the individuals of the highest fitness are selected to
extend to the next-generation.

We selected the individuals of highest fitness and directly
entailed to the next-generation. The probability Pl of each
individual l is calculated as Eq. 9:

Pl � fl/∑Spop

s�1 fs, l � 1, 2, ..., Spop (9)

where K is the population size.

3) Crossover and mutation

The crossover operator is mainly responsible for the global
search property of the GA, whereas the mutation operator is
used to prevent the permanent loss of any gene value (Kumar
et al., 2007). The crossover and mutation operators can be
obtained from both the binary coded method (Zoumas et al.,
2004) and the real coded method (Zheng et al., 2017). In a real
coded genetic algorithm, the simulated binary crossover and
polynomial mutation are used. A real coded method is selected
in this work.

The kth individual ak and lth individual al perform a crossover
operation at the jth element as described in Eq. 10 (Zheng et al.,
2017):

akj � akj 1 − b( ) + aljb
alj � alj 1 − b( ) + akjb

{ , 1≤ k, l≤ Spop and k ≠ l (10)

where b is a random value in [0,1], j � 1, 2, ..., Nsum.
The mutation operator for the jth element of lth individual, alj,

can be expressed as Eq. 11 (Zheng et al., 2017):

alj � alj + alj − a max( ) · f gen( ), r> 0.5

alj + a min − alj( ) · f gen( ), r≤ 0.5
⎧⎨⎩ (11)

where amax and amin are the maximum value and minimum value of
alj; gen is the number of current iterations (or generations);
f(gen) � r2(1 − gen/Gmax)2; Gmax is the maximum number of
iterations, r and r2 are random values in [0,1].

4) The optimized BPNN model

When the maximum iteration is reached, or the required
accuracy is met, we obtained the optimized initial weights and
thresholds for the BPNN. At this time, the training process is
completed, and this obtained optimized BPNNmodel can be used
for forecasting in the testing process.

2.3 Capacity and EOD estimation

We determined the number of hidden layer neurons with the
help of k-CV in Section 3.2.1 and initialized the connection
weights and thresholds by GA in Section 3.2.2. Then we
estimated the capacity of Li-ion batteries by the GA-BPNN
model with k-CV (see Algorithm 1). To obtain the EOD of Li-
ion batteries, the equation for calculating the SOC (Zheng et al.,
2017) is used:

SOC � SOC0 − 1
CapN

∫t

t0

η · i · dτ (12)

where SOC0 is the initial SOC at time t0, CapN is the nominal
capacity, i is the current, η is the coulombic efficiency (CE) and its
value is equal to or less than 1 (Zhang et al., 2011).

In the training process, we set t0 = 0, then CapN is the initial
capacity after charging, and SOC0 = 1. At the end of discharge,
SOC = 0 and t = EOD, as discharge was carried out at a CC (i0), then
Eq. (18) is modified to Eq. 13.

0 � 1 − 1
Cap0

∫EOD

0
η · i0 · dτ (13)

The CE is estimated by Eq. 14:

η � Cap0

i0 · ∫EOD

0
dτ

� Cap0

i0 · EOD (14)

In the testing process, the calculated capacity Capcal is
obtained, and the predicted EOD (EODPred) can be estimated
by Eq. 15.

EODpred � Capcal

η · i0 (15)
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FIGURE 4
Features F4~F6 extracted from battery #5: (A) voltage curves in charging process (B) the tendency of F4 over time (C) temperature curves in
charging process (D) the tendency of F5 over time (E) temperature curves in charging process (F) the tendency of F6 over time.

FIGURE 5
Box plot of SSE for batteries #5 and #6: (A) the distribution of SSE with different hidden neurons and (B) zoom in the first four boxes in (A).
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FIGURE 6
Capacity estimation results of battery #7. (A) the real and the estimated capacity by BPNN, (B) the real and the estimated capacity by proposed
model, (C) the absolute errors of BPNN based model and proposed model, (D) the error distribution of BPNN based model and proposed model.

FIGURE 7
Capacity estimation results of battery #18. (A) the real and the estimated capacity by BPNN, (B) the real and the estimated capacity by proposed
model, (C) the absolute errors of BPNN based model and proposed model, (D) the error distribution of BPNN based model and proposed model.
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//Determine the number of BPNN hidden neurons based
on k-CV.
//Tr_data is the training data set, Tr_dataj is qth group of Tr_
data
Initialize K, N
Divided the Tr_data into K groups using k-CV
For p = 0: N
Calculate h using Eq. 1
For q = 1: K

Set the qth group Tr_dataq as the testing group
Set the other K-1 groups as the training group
Build the prediction model using Eq. 2
Predict the capacity using BPNN as Section 2.1
calculate SSEpq using Eq. 3

End
Calculate the mean value of SSE using Eq. 4
Calculate the most suitable number of hidden neurons, h0,

using Eqs 5, 6
End
return h0 as the number of hidden neurons.
//Determine the values of BPNN initial weights and thresholds
integrated with GA
Calculate Nsum using Eq. 7, and initialize the individuals.
Set the elements of each individual as the weights and thresholds
of BPNN shown in Eq. 2
Calculate the fitness of each individual using Eq. 8 based
on BPNN
For k = 1: Gmax

Select the individuals of the highest fitness using Eq. 9
Create new individuals using the crossover operator as Eq. 10
Evolve the individuals using the mutation operator as Eq. 11
Calculate the fitness of each individual using Eq. 8 based
on BPNN
Trace the best fitness value and best individual.
if the mean value of fitness reaches the required accuracy

break;
end

End
Set the elements of best individual as the weights and thresholds
of BPNN
Calculate the capacity using the optimized BPNN model
Calculate the EOD using Eq. 15

Algorithm 1: Description of the GA-BPNN with k-CV.

3 Case study

3.1 Data description

In this paper, we used experimental data from both the charging
and discharging processes of Li-ion batteries. The battery cycling data
was provided by the Prognostics Center of Excellence (PCoE) at the
NASA Ames Research Center25. The experimental system is composed
of a set of Li-ion cells, chargers, loads, electrochemical impedance
spectroscopy equipment for battery health monitoring, sensors, data
acquisition system and a control computer. The sensors gather signals
of voltage, current and temperature.

Table 1,2 lists the batteries (Batteries #5, #6, #7 and #18) used in this
work, along with their respective operating parameters. The experiments
are run through three different operational profiles (charge, discharge and
impedance) at room temperature levels. Charging was carried out in a
constant current (CC)mode at 1.5Auntil the battery voltage reached 4.2 V
and then continued in a constant voltage mode until the charge current
dropped to 20mA. Discharging was stopped at different EODs. The
experiments were stopped when the batteries reached end-of-life criteria,
such as 30% fade in rated capacity. In this paper, batteries #5 and #6 are set
as the training set, and batteries #7 and #18 are set as the testing set.

The data repository contains capacity, voltage, current,
temperature, current load and voltage load recorded for each
charge and discharge cycle of the batteries. With the exception
of the cell capacity in discharge cycles, we recorded all other
parameters over time. We observed that as the battery ages,
measured voltage, current and temperature would change.
Hence, the usual approach is to extract the relevant features
from these curves to build the Li-ion battery degradation model
(Hu et al., 2014; Lu et al., 2014; Patil et al., 2015).

3.2 Modeling with the proposed
methodology

3.2.1 Geometrical features extraction
Three charging related features (F1, F2, F3) shown in Figure 2A

are extracted from current and voltage curves from charging process.
The original current and voltage curves of battery #5 and the tendency
of F1, F2 and F3 are shown in Figure 3. Four cycles (9th, 138th, 304th,
471th) in battery #5 are depicted to illustrate the degradation of the
three charging related features.

Three discharging related features (F4, F5, F6) shown in
Figure 2B are extracted from voltage and temperature curves

TABLE 2 List of batteries with their operating parameters.

Battery Charging Discharge EOL criteria

Cycles CC (A) Max voltage (V) Cycles CC (A) End voltage (V)

#5 170 1.5 4.2 168 2 2.7 30% fade in rated capacity (from 2Ahr to 1.4Ahr)

#6 170 1.5 168 2 2.5

#7 170 1.5 168 2 2.2

#18 134 1.5 132 2 2.5

Frontiers in Energy Research frontiersin.org09

Xu et al. 10.3389/fenrg.2023.1144450

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1144450


FIGURE 8
The capacity of batteries #5 and#6 and value of EOD · i0. (A) the value of EOD · i0 for batteries #5, (B) the value of EOD · i0 for batteries #6, (C) the CE
at each cycle, (D) the CE distribution.

FIGURE 9
Estimated EODs and their relative error for batteries #7 and #18. (A) the estimated EODs for batteries #7, (B) the estimated EODs for batteries #18,
(C) the relative errors for batteries #7 and #18, (D) the relative errors distribution for batteries #7 and #18.
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from discharging process. Original voltage and temperature curves
of battery #5 and the tendency of F4, F5 and F6 are shown in
Figure 4. Four cycles (9th, 138th, 304th, 471th) in battery #5 are
depicted to illustrate the degradation of the three discharging related
features.

3.2.2 Modeling
We set the data set of batteries #5 and #6 as training and

validation data, the value of k in k-CV as 10 and the value of N in Eq.
1 as 11. The value of m and n of BPNN used here are 6 and 1,

respectively. The function of “newff” inMATLAB is used to train the
BPNN model, the number of epochs is set as 2000, the learning rate
is set as 0.1, and the training performance goal is set as 1 × 10̂(-8).
Using Algorithm 1, the SSEs are calculated and the box plot of SSE is
shown in Figure 5. The distribution of SSEs with different hidden
neurons is shown in Figure 5A, and the first four boxes (h = 3,4,5,6)
in Figure 5A are zoomed in Figure 5B.When h = 5, the mean value of
SSEs is minimum, and the degree of SSEs dispersion is the lowest.
Thus, the number of hidden neurons is determined as 5. Therefore,
the structure of the proposed BPNN model has 6 inputs (the six

FIGURE 10
Capacity curves versus cycle intervals curves of batteries #5 and #6. (A) Capacity curves versus cycle intervals curves of batteries #5, (B) Capacity
curves versus cycle intervals curves of batteries #6.

FIGURE 11
Re-estimation battery capacity and EOD of batteries #7 and #18. (A) the estimation capacity of batteries #7, (B) the estimation capacity of batteries
#18, (C) the EOD prediction of batteries #7, (D) the EOD prediction of batteries #18.
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extract features in Section 2.1) and 1 output (the Capacity), and has a
single hidden layer with 5 neurons.

After the number of hidden neurons is calculated, we can get the
value of Nsum is 41. Considering results accuracy and computational
efficiency, we set the size of the population is 20 and the maximum
number of iterations is 50. The crossover probability and the
mutation probability are set to 0.4 and 0.2 respectively. Using
Algorithm 1, the final optimized weights and thresholds from
GA are determined, and the updated model as Eq. 2 is used to
estimate the capacity of Li-ion battery.

3.3 Results and discussion

3.3.1 Capacity estimation
To illustrate the proposed approach, we used batteries #7 and

#18 for demonstration, all data training and testing processes are
performed in a MATLAB environment. The prediction results of
battery #7 are shown in Figure 6. Figure 6A shows the real and the
estimated capacity by BPNN, while Figure 6B depicts the results
estimated by GA-BPNN with k-CV. The absolute errors of BPNN
based model and proposed model are shown in Figure 6C, and the
error distribution is depicted in Figure 6D. The estimation capacity
and prediction errors of battery #18 by BPNN and proposed model
are depicted in Figure 7. Images (a) and (b) in Figures 6, 7 show that
the degradation curve estimated by the proposed model are closer to
the real degradation curve than classic BPNN, while Images (c) and
(d) in Figures 6, 7 illustrate that results predicted by proposed model
are more accurate than classic BPNN.

The mean absolute error (MAE) and root mean square error
(RMSE) by BPNN, GA-BPNN with k-CV, the models in
References (Lu et al., 2014) and (Li et al., 2015) are shown in
Table 3. The Error 1 used in Reference (Lu et al., 2014) is MAE used

in this paper. The simple linear model, p1*t + p2, represents the
capacity degradation trend is reported in (Li et al., 2015), which is
used for estimating the capacity. The parameters, p1 and p2 here,
are regressed by the capacity values of all cycles based on the
minimum variance principle. The proposed integration model gets
the minimum MAE and RMSE in Battery #7 (0.0179 and 0.0218)
and #18 (0.0207 and 0.0285), which demonstrates that the
proposed model obtains more accurate results than the other
three models.

3.3.2 EOD estimation
The capacity of batteries #5 and #6 and the value of EOD · i0 are

shown in Figures 8A, B. The CE of batteries #5 and #6 can be
estimated by Eq. (19). The CE at each cycle is estimated and the value
is close to 1 (Figure 8C). The CE distribution is depicted in Figure 8D,
and the values of CE for battery #5 mostly fall into [0.998,1], whereas
the values fall into [0.99,0.992] for battery #6, which indicates that the
values of CE for different batteries slightly differ. The mean value of
CE for batteries #5 and #6 is 0.9940, which is used to calculate CE in
Eqs 19, 20.

The capacity estimated by proposed model is used to calculate
the EOD (Eq. 15). The current in the discharge cycle is 2A, the EOD
of batteries #7 and #18 can be estimated by Eq. (20). The estimated
EODs for batteries #7 and #18 are shown in Figures 9A, B,
respectively. The relative errors (|real_EOD—estimated_EOD|/
real_EOD) are shown in Figure 9C and the relative errors
distribution is depicted in Figure 9D. The estimation EOD curves
shown in Figures 9A, B are consistent with the real EOD curves,
Figures 9C, D illustrate that the maximum relative errors for
batteries #7 and #18 are 0.0426 and 0.0443, and more than 90%
of the relative errors are smaller than 0.03. Both indicate that the
proposed model exhibits high accuracy in battery EOD estimations.

3.3.3 Discussion
In the battery capacity curves (the red line in Figure 10), the

capacity regeneration (Hu et al., 2020) appears. The capacity
regeneration makes the geometrical features extracted from two
adjacent cycles differ greatly, which leading to larger errors. The
reason for the capacity regeneration is that the battery capacity will
increase in the next cycle if the battery is allowed to rest (Saha et al.,
2009). Therefore, a long rest causes a high increase in battery capacity,
which explains the appearance of the capacity regeneration.

The charge-discharge cycle intervals of batteries #5 and #6 are
analyzed. We found that the long intervals (See Figure 10) generally
match the jumps in the battery capacity curves, in accordance with
the long rest times leading to jumps. To avoid the effects of these
jumps, the jump points in the capacity curves are deleted and the
capacity and EOD are re-estimated.

The estimation capacity of batteries #7 and #18 is shown in
Figures 11A, B, and the EOD prediction is shown in Figures 11C, D;
theMAE and RMSE of the re-estimation battery capacity of batteries
#7 and #18 are shown in Table 4. The optimized results calculated
with the proposed integration model gets the minimum MAE and
RMSE in Battery #7 (0.0171 and 0.0178) and #18 (0.0114 and
0.0142), which demonstrates that the proposed model obtains
more accurate results than the other three models. Therefore, the
results of re-estimated capacity demonstrate that avoiding the effects
of jumps would improve the accuracy of the proposed model.

TABLE 3 Comparison of the estimation accuracy.

Battery #7 #18

MAE RMSE MAE RMSE

BPNN 0.0319 0.0348 0.0567 0.0733

GA-BPNN with k-CV 0.0179 0.0218 0.0207 0.0285

Model in Ref. [5] 0.0242 - - -

Model in Ref. [35] 0.0212 0.0247 0.0329 0.0377

TABLE 4 MAE and RMSE of the re-estimation battery capacity.

Battery #7 #18

MAE RMSE MAE RMSE

BPNN 0.0319 0.0348 0.0567 0.0733

GA-BPNN with k-CV 0.0179 0.0218 0.0207 0.0285

Results optimized 0.0171 0.0178 0.0114 0.0142

Model in Ref. [5] 0.0242 - - -

Model in Ref. [35] 0.0212 0.0247 0.0329 0.0377
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4 Conclusion

In this work, a hybrid ensemble approach, GA-BPNN with
k-CV, integrated with geometrical features, is proposed for
capacity and EOD prognostics. The geometrical features reflect
the intrinsic degradation and sharply reduce the computation
cost compared with the features both in time and frequency
domains, while the proposed model improves the prognostics
accuracy contract with the classic BPNN. The values of MAE and
RMSE calculated by the proposed approach for capacity and EOD
for batteries #7 and #18 have a better performance than the
classic BPNN model and the other two models. After optimizing
the jump phenomenon in the capacity curves, the proposed
approach gets a more accurate result. The case study
demonstrates that the proposed integration model can be used
to estimate the capacity and EOD of Li-ion batteries accurately
under the conditions similar with this work.

However, the proposed model in this paper has its limitation.
The proposed six geometrical features used to estimate the capacity
and EOD of Li-ion batteries are extracted from both charging and
discharging process, once the curves of voltage, current and
temperature are unknown or unable to obtain, the method
introduced would not work. Therefore, our future work will
focus on the universality of the methodology for battery capacity
estimation and EOD prognostics.
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