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Accurate wind power prediction is crucial for the safe and stable operation of the
power grid. However, wind power generation has large random volatility and
intermittency, which increases the difficulty of prediction. In order to construct an
effective prediction model based on wind power generation power and achieve
stable grid dispatch after wind power is connected to the grid, a wind power
generation prediction model based on WT-BiGRU-Attention-TCN is proposed.
First, wavelet transform (WT) is used to reduce noises of the sample data. Then, the
temporal attention mechanism is incorporated into the bi-directional gated
recurrent unit (BiGRU) model to highlight the impact of key time steps on the
prediction results while fully extracting the temporal features of the context.
Finally, the model performance is enhanced by further extracting more high-level
temporal features through a temporal convolutional neural network (TCN). The
results show that our proposed model outperforms other baseline models,
achieving a root mean square error of 0.066 MW, a mean absolute percentage
error of 18.876%, and the coefficient of determination (R2) reaches 0.976. It
indicates that the noise-reduction WT technique can significantly improve the
model performance, and also shows that using the temporal attentionmechanism
and TCN can further improve the prediction accuracy.
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1 Introduction

Wind power is a form of clean and renewable energy. Wind power generation alleviates
environmental pollution and the dependence of power generation on traditional energies
(Han et al., 2019a; Ma et al., 2019a). At present, there are many large-capacity wind farms in
the world, which have accumulated a large amount of wind power operation data. Wind
power prediction data, as one of the functional data modules of wind power big data, can be
used to make wind power prediction. However, the instability of wind power generation
affects the performance of the power grid, so it is necessary to accurately predict the wind
power. Therefore, an effective model needs to be developed to accurately forecast the wind
power (Wang et al., 2018; Ma et al., 2019b). Non-etheless, accurate prediction of wind power
generation is hardly attainable because of the randomness and non-linearity of wind energy.
In this study, a new wind power prediction model is proposed to solve this problem, improve
the accuracy and generalization ability of the model, and thereby ensure safe and reliable
operation of the microgrid.

Recent works on wind power prediction principally employ statistical analysis
approaches or deep learning methods. Statistical analysis approaches include single-
model prediction and combined-model prediction. Typical single-model prediction
methods are support vector machine (SVM) (Dang et al., 2019), autoregressive moving
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average (ARMA), autoregressive integrated moving average
(ARIMA), autoregression model (Shao et al., 2015), fuzzy model
(Zhao and Guo, 2016), wavelet-based model (Liu et al., 2015a), and
artificial neural network (ANN) (Wu et al., 2018). Among them,
ARIMA is suitable for scenarios where the volume of training
samples is small. The ARMA is suitable for the occasions where
the wind power forecast is short and the fluctuation is large (Torres
et al., 2005; Li and Ye, 2010; Liu et al., 2015b; Haigesa et al., 2017;
Korprasertsak and Leephakpreeda, 2019; Lu et al., 2020; Sun et al.,
2020; Lu et al., 2021). Given the unsatisfactory prediction of single-
model methods, combined-model prediction, therefore, is proposed
as a solution to wind power prediction. Wang et al. (Wang et al.,
2021) put forward a wind power signal forecasting method based on
the improved empirical mode decomposition (EMD) and SVM,
which was proved to have high accuracy and strong stability of the
model in experiments. Zhao and Ding (Zhao and Ding, 2020)
proposed a wind power forecasting model termed MEEMD-
KELM and found that their model has good forecasting
performance. Huang et al. (Huang et al., 2020) optimized the
SVM model by the particle swarm optimization-genetic
algorithm (PSO-GA), and achieved good performance in
forecasting. However, statistical methods have limited ability in
extracting time-series features and cannot adapt well to the non-
linear and unstable characteristics of wind power. Deep learning
methods, especially recurrent neural networks (RNN) and their
variants, are increasingly used in wind power prediction. LSTM and
GRU, as RNN variants, can solve the long-term dependence
problem of RNN itself, and are suitable for applications such as
wind power forecasting and power grid dispatching (Liu and Zhang,
2022; Liu et al., 2022a; Niu et al., 2018; Liu et al., 2021; Yu et al., 2018;
Shahid et al., 2021; Han et al., 2019b; Duan et al., 2021; Ding et al.,
2019; Zn et al., 1016). Liu et al. (Liu and Zhang, 2022) proposed a
novel bilateral branch learning-based WPP modeling framework,
and through a comprehensive computational study, they verified
that their proposed framework achieves the state-of-the art
performance as it beats a large set of classical data-driven and
recent deep learning-based WPP methods considered in their
study. Liu et al. 2(2022a) proposed a novel LSTM-AODEN
network architecture combining a long short-term memory
(LSTM) network with an attention-assisted ordinary differential
equation network (AODEN), and showed by experiments the
superior ability of their proposed method in generating higher
resolution probabilistic wind power prediction results. Niu et al.
(2018) put forward a model that combines CNN and GRU, where
the CNN reduces the dimension of features, and the GRU captures
relations between data in the time sequence, and the model was
found to have a high accuracy in forecasting. Li and Li, 2021
proposed a short-term wind power forecasting model based on
deep learning and error correction, which uses the BiGRUmodel for
forecasting, the random forest algorithm for construction of the
error model, and continuously corrects the error; their model was
proved to be effective and applicable by experiments. Liu et al.
(2022b) proposed a hybrid deep learning model based on wavelet
transform, temporal convolutional neural network and LSTM, and
experiments proved that their model has good prediction
performance. Liao et al. (2022) proposed a short-term wind
power prediction model based on a two-stage attention
mechanism and an encoding-decoding LSTM model; in their

model, the two-stage attention mechanism can select key
information, where the first stage focuses on important feature
dimensions, and the second stage focuses on important time
steps in the time series; the model was proved to have good
prediction performance.

In summary, the single-model method has poor sensitivity to the
sample data, so it cannot achieve high accuracy in predicting wind
power which comes with large fluctuations. In contrast, the
combined-model method has better performance in this regard.
However, the combined-model method has poor capacity in
grasping the dependence of time series, and it cannot adapt well
to the characteristics of non-linearity and instability of wind power.
With the extensive use of deep neural networks (Dong et al., 2023;
Ning et al., 2023), deep learning methods, especially models such as
LSTM and GRU, can effectively grasp the non-linear relationship
between wind power, wind speed and other features while effectively
mining the time-dimensional features of the data and dealing with
complex time series. Its combination with techniques such as
dimensionality reduction, feature extraction, and attention
mechanism can improve the prediction effect of the models to
varied degrees.

Given analyses above, deep learning provides a better solution to
short-term wind power forecasting than other methods because
wind power is characterized by fluctuations and uncertainties. Some
studies (Han et al., 2019b; Liu et al., 2022a; Liu et al., 2022b; Liao
et al., 2022; Liu and Zhang, 2022) used LSTM as the basic prediction
model with complex model parameters and high expressiveness, but
did not show high operational efficiency. Although some others (Niu
et al., 2018; Li and Li, 2021) used GRU as the basic model, which
simplified the model parameters, but the time-series data features
were not sufficiently extracted, which affected the accuracy of
prediction. Therefore, to obtain better operational efficiency and
prediction results, this study integrates three aspects: data denoising
and smoothing, simplification of the base model parameters, and
adequate extraction of data features, which is innovative in
construction of prediction models. The wavelet transform is used
for data denoising, and suitable wavelet functions are selected for
different sample features to reduce the impact of abnormal data on
the accuracy of prediction. Meanwhile, the GRU model, which has a
simpler structure than the LSTMmodel, is chosen as the base model,
which is conducive to improving the operational efficiency, and the
GRU model can be applied to larger-scale wind power data
forecasting. Moreover, a bi-directional GRU is used for more
adequate extraction of timing features, while an attention
mechanism is introduced to enhance the weights of key time
steps in order to highlight the degree of influence of different
time-series nodes on wind power, and further extracts more
high-level temporal features by a temporal convolutional network
(TCN) layer. Based on the combination of several aspects, the
operational efficiency, stability, and accuracy of the model are
significantly improved. The model is expected to help control the
performance of wind turbines and provide statistical support for safe
operation of wind power stations (Yang and Zhou, 2019).

The remainder of the paper is organized as follows. First, Section
2 introduces the concepts and theories related to the WT-BiGRU-
Attention-TCN model, and then discusses the structure and
workflow of the model. Then, Section 3 elaborates on the
experiments we have made and the discussions, detailing the
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source of the data sample set and various descriptive statistical
metrics, data denoising and model evaluation; four models (LSTM,
GRU, WT-GRU,WT-BiGRU-Attention) are compared with our
model to illustrate the effectiveness of our model, and the
performance of each model is discussed through the
experimental results. Finally, in Section 4, conclusions are made
based on the experiment result.

2 Model construction

2.1 Data denoising based on wavelet
transform

There are noises in the sample data of wind power, which need
to be cleansed before model training.

In the denoising process, effective signals and noises are
separated. The wavelet transform (WT) technique, which can
achieve the separation based on the difference between signals
and noises in their time domain and frequency domain, provides
a good solution to data denoising. In the present work, the WT
method is employed to reduce the noises in the wind power sample
data while maintaining effective data (Li, 2007) to ensure the
complete time sequence and reliability of the sample data. WT
can decompose the time sequence, decomposing the original signals
into child signals, so that the time sequence and other details can be
observed. There are two types of WT methods: continuous wavelet
transform (CWT) and discrete wavelet transform (DWT). The latter
can discretize the scale and time, keep the construction error at a low
level, and reduce the time cost and computing overheads. Therefore,
DWT is employed in our work to decompose the time sequences.

The specific steps to reduce noise by using wavelet transform
method are as follows.

(1) Selection of wavelet functions: proper wavelet functions are
selected as per the features of the samples to decompose the
signals. In the present work, three common discrete wavelets are
used: Daubechies wavelet (db), Coiflet wavelet (coif) and Symlet
wavelet (sym).

(2) Thresholding: one threshold is selected for each layer to perform
soft-thresholding of high-frequency coefficients to smoothen
the reconstructed signals. The soft threshold is to solve the local
jitter and wavelet domain mutation of the denoising results
brought by the unified threshold of the hard threshold function.
The significance of the threshold is not only for signal denoising,
but also for data compression to improve data transmission
efficiency.

(3) Wavelet reconstruction: the wavelet reconstruction of the signal
is calculated from the high frequency coefficients of each layer
and the low frequency coefficients of the last layer.

(4) Identification of the best wavelet function: two indicators, root
mean square error (RMSE) and signal-to-noise ratio (SNR), are
used to evaluate the noise reduction effect of each wavelet
transform function so as to determine the wavelet function
with the best noise reduction effect for each feature of the
sample.

2.2 Attention mechanism

Despite the good performance of GRU in processing long time
series, it does not discriminate the information of different time
steps of long time series, and hence it can possibly overlook
information in some key nodes of the time sequence that may
affect the forecasting result. Therefore, the time sequence-based
attention mechanism can highlight the impact of different nodes on
the wind power and hence improve the model’s performance.

The attentionmechanism in the time sequence is the summation
of weights of hidden-layer vectors output from the GRU network,
where the weight reflects the impact of each time node on the
forecast result. Figure 1 shows the attention mechanism, where there
are N time steps,H1, H2, . . . , HN represent the hidden state value of
each time step, and q is assumed to be the output of the last hidden
layer HN.

The similarity score ei between HN and the output of hidden
layer of each time step Hi is calculated:

ei � Dot Hi,HN]( ). (1)
The importance of each time series node to the prediction result

is different. Therefore, the state value of the hidden layer at the i-th
time step and the state value of the final N-th time step are used to
perform the dot product operation. A larger the result of the dot
product operation indicates a stronger association between the time
series node and the final predicted value.

Then, the Softmax function is employed for normalization to
calculate the focus probability bi of the input sequence at the i-th
time step:

FIGURE 1
Attention mechanism based on the time sequence.
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bi � ei/ ∑N

j�1ej( ). (2)

Last, the attention weight bi is multiplied by the corresponding
hidden state value to obtain the output vector O of the attention
layer:

C � ∑N

j�1bj pHj. (3)

The vector O is transferred to the fully-connected layer of the
model to reach the final forecasting result.

2.3 BiGRU model

2.3.1 GRU model
The recurrent neural network (RNN) can create connections,

i.e., short-term memories, between adjacent samples in a time
sequence. When the input sequence is long, however, the
problem of the vanishing gradient emerges, the long-distance
dependence relations cannot be learned.

As a variant of RNN, the long short-term memory (LSTM)
model improves the RNN by introducing selective memory and unit
gates. LSTM solves the problem of the vanishing gradient that
haunts RNNs and can learn long-term dependence relations in
the sample data. Non-etheless, the LSTM network has complex
structures and lots of parameters.

The GRU model is an improved variant of LSTM, with update
gates and reset gates. Compared with LSTM, the GRU has less
parameters and a more simplistic structure, which allows the
parameters to converge quicklier and reduces the risks of overfitting.

Figure 2 shows the GRU neuron structure model.
The update gate in the GRU is defined as follows:

zt � σ Wz p xt, ht−1[ ]( ), (4)
where xt is the input vector of the t-th time step; Wz is the weight
matrix of the update gate; and ht−1 is the output of the previous time

step. The gated signal of the update gate is within 0 and 1, and a value
closer to 1 indicates more past information being memorized.

The reset gate is defined as follows:

rt � σ Wr p xt, ht−1[ ]( ), (5)
whereWr is the reset weight matrix. The reset gate is used to control
the neglect of information in the previous time point. The obtained
information after resetting is ht−1′ :

ht−1′ � ht−1 ⊗ rt. (6)
Then, the current cell state h̃t is calculated. The current cell state

means selective memorization of the screened information and the
current input, where ⊗ means multiplying the corresponding
positions in two matrices or vectors, tanh is the activation
function, and W is the weight:

h̃t � tanh (W p xt, h′t−1[ ]. (7)
The current output is ht, and the vector will retain the current

cell information and transfer it to the next cell:

ht � 1 − zt( ) ⊗ ht−1 + zt ⊗h̃t. (8)
The final output of the current cell is:

yt � σ(W0 p ht), (9)
where W0 is the weight matrix.

2.3.2 BiGRU model
In a conventional GRU, information in the time sequence is

transferred in a forward direction, the information far away from the
current sequence suffers substantial attenuation, and the time-series
information in the context is not considered. In a BiGRUmodel, two
GRU running in opposite directions are trained (Lu and Duan,
2017). A BiGRU model combines two single-directional GRU, and
the model output is determined by these two GRU. If the output of
the forward GRU is ht

→
, and the output of the backward GRU is ht

←
,

then the output of the BiGRU is as follows:

ht � ht
→
⊕ht
←

(10)
Figure 3 shows the structure of a BiGRU model, in which

h1 → h2 → . . .→ hn{ } represents the hidden state sequence
produced by the forward GRU, whereas hn → . . . h2 →→ h1{ } is
the hidden state sequence generated by the backward GRU.

2.4 Temporal convolutional neural networks

Bai et al. (Bai et al., 2018) proposed the temporal convolutional
network (TCN) adding causal convolution and dilated convolution
and using residual connections between each network layer to
extract sequence features while avoiding gradient disappearance
or explosion. A temporal convolutional network is essentially a
deformation of one-dimensional convolution, which can be used for
prediction of both temporal and textual data, and can achieve better
results than recurrent neural networks for some tasks. Its layered
structure of TCN is shown in Figure 4.

FIGURE 2
GRU neuron structure model.
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In Figure 4, xt indicates the input temporal data, yt indicates the
predicted values, and d indicates the size of the voids for the dilated
convolution of each layer. The temporal convolutional network has two
new operations compared with the ordinary 1-D convolutional network.

2.4.1 Causal convolution
The causal convolution strictly requires that only the

information before the current moment to be predicted can be
used to predict the current value, i.e., the information of the current

moment is calculated based on x1. . . xt−1 and the current moment
input xt, which is calculated as follows.

P x( ) � ∏T

t�1p xt|x1, x2, ...xt−1( ). (11)

This ensures that information after the current moment is not
involved in the calculation, and the historical information is not
missed as in traditional CNN networks. Thus, the prediction of the
temporal data is improved.

FIGURE 3
Structure of a BiGRU model.

FIGURE 4
TCN network structure.
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2.4.2 Dilated convolution
Dilated convolution is also called null convolution. In order to

increase the perceptual field of convolution, it is necessary to
increase the number of layers or the size of a very large filter,
which is also a problem of causal convolution. Dilated convolution,
on the other hand, expands the field of perception by skipping some
of the inputs, which is equivalent to adding d zeros (d is the number
of holes) between the elements of the convolution kernel, disguisedly
expanding the size of the convolution kernel. The size of the
convolution kernel after adding the dilation convolution is:

fk d � d − l( ) p fk − l( ) + fk, (12)
where fk denotes the convolutional kernel size of the current
layer. Since it can be computed in parallel, the computational

efficiency of the model is lower than that of an ordinary
convolutional network.

In addition, in order to make the sensory field increase and learn
text features of larger lengths, the number of network layers is
increased by expanding the convolution. However, an excessive
increase in the number of network layers may incur the problem of
gradient disappearance, and to solve this problem, residual links are
introduced in the network structure.

2.5 WT-BiGRU-Attention-TCN model

Figure 5 shows the workflow of theWT-BiGRU-Attention-TCN
model proposed in the present work.

FIGURE 5
Workflow of our WT-BiGRU-Attention-TCN model.

Frontiers in Energy Research frontiersin.org06

Chi and Yang 10.3389/fenrg.2023.1156007

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1156007


The proposed model is applied to wind power forecasting. The
four methods (WT, BiGRU, Attention, TCN) in the model are used
to solve problems at different stages of prediction: the wavelet
transform is mainly used for data denoising at the data cleaning
stage, while the other three methods are related to temporal feature
extraction, including contextual feature extraction, feature weight
calculation, and higher-level feature capturing. The methods are
related by the data flow to form the framework of our model. The
specific working process of the model is described below. First, the
WT method is employed to denoise the dataset, and all sample
features are normalized. Second, the BiGRUmodel is used to extract
forward and backward features of the time-sequence data. Third, the
weight of output information at each historical time sequence node
is calculated by the time-sequence attention layer. Then, the hidden
state output of the current state after adjustment is calculated based
on the weight. Then, the TCN is used to obtain higher-level temporal
features through causal and dilation convolution. Finally, the hidden
state outputs by the TCN layer are input to the fully connected layer
to obtain the forecasting result. The hierarchical structure and
parameters of the model are shown in Table 1.

The input layer of the proposed model has a data dimension of
(8,3) for each batch, i.e., the time step is 8 and the number of sample
features is 3. The input data are combined by the GRU in both
forward and backward propagation directions of the bidirectional
layer, and the features learned by the two one-way GRU are stitched
together to generate the set of vectors as the input of the attention
layer. The attention layer calculates the generated weight vector for
each time step and obtains the output of the attention layer by

multiplying the weight vector with the output vector of the BiGRU
layer. The vector generated by the attention layer is input to the TCN
layer, and the field-of-perception size of the convolution is expanded
to extract higher-level features by setting multiple expansion and
causal convolution layers. The TCN output vector is subjected to the
flatten operation to obtain the vector C. The vector C is then passed
through the fully connected layer to obtain the value of the predicted
wind power.

3 Experiment and analysis

3.1 Sample data

The wind power data used here are from the Galicia Wind
Power Plant in northwestern Spain. A total of 52,123 pieces of valid
data (from 1 January 2016 to 31 December 2016) were collected,
with a sampling interval of 10 min. The features include
meteorological indicators like wind speed and wind direction.
Table 2 shows the specifics of the collected data, where WS
represents the wind speed, DIR represents the wind direction,
POWER represents the wind power, which is the target
forecasting feature (the same applies to other tables and figures
throughout this article).

As Table 2 shows, the sample data consists of three features. As
these features have different dimensions and are substantially
different from each other, normalization is required in the data
preprocessing stage. The coefficient of variation of the feature
“POWER” reaches 128.26%, which means large fluctuations of
the wind power with time.

3.2 Data preprocessing

Data preprocessing mainly includes normalization of sample
data and data denoising based on wavelet transform.

3.2.1 Data normalization
As the features of the data, including wind speed, wind direction

and power, have different dimensions and show considerable

TABLE 1 The hierarchical structure and parameter information of our proposed model.

Layer (type) Output shape Param Connected to

input_1 (InputLayer) [(None, 8, 3)] 0

bidirectional(Bidirectional) (None, 8, 128) 26,496 input_1[0][0]

Attention Layer permute (Permute) (None, 128, 8) 0 bidirectional[0][0]

dense (Dense) (None, 128, 8) 72 permute[0][0]

permute_1 (Permute) (None, 8, 128) 0 dense[0][0]

multiply (Multiply) (None, 8, 128) 0 bidirectional[0][0],permute_1[0][0]

tcn (TCN) (None, 8, 32) 35,232 multiply[0][0]

flatten (Flatten) (None, 256) 0 tcn[0][0]

dense_1 (Dense) (None, 1) 257 flatten[0][0]

TABLE 2 Descriptive indicators for sample data.

DIR (degree) WS (m/s) POWER (MW)

Mean 169.13 7.02 0.46

Maximum 360.00 31.88 17.23

Minimum 0.00 0.35 0.00

Standard deviation 99.87 3.12 0.59

Coefficient of variation 44.51% 59.05% 128.26%
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differences in their range of value, normalization was performed to
preclude the impact of the differences on the forecast result.
Specifically, the values of the features were adjusted to a given
range by min-max normalization, and the feature values were
converted into a range of [0, 1]. The equation for min-max
normalization is as follows:

x′
t �

xt − x min( )
x max − x min( ), (13)

where xmax and xmin represent the maximum and the minimum of
the same feature; xt represents the sample input data and x′

t

represents the data after normalization.

3.2.2 Data denoising
There are inevitably noises in the sample data of wind power

because of system error, random error, or human error, making it is
imperative to perform data denoising. In the present work, the
wavelet soft-thresholding method was employed. Specifically, with

TABLE 3 Denoising effects of the three feature variables by different wavelet functions.

Feature variables Evaluation indicators coif5 sym10 db8

WS SNR/db 27.085 27.304 25.126

RMSE 0.15 0.146 0.187

DIR SNR/db 24.852 23.573 23.344

RMSE 4.466 5.162 5.285

POWER SNR/db 27.215 29.263 26.976

RMSE 28.345 22.419 28.982

FIGURE 6
Comparison of the three feature variables before and after denoising.
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the valid information in the sample maintained, the wavelet
decomposition was performed on the sample dataset, and
thresholding was used to process the decomposed wavelet
coefficient; then, wavelet reconstruction of the signals was
performed to reduce the noise. The layers of the wavelet
decomposition were set at 3, the global soft-thresholding was
adopted, with a threshold set at 0.004. Three wavelet functions
were employed to denoise the sample data. Table 3 shows denoising
effects of the three feature variables by different wavelet functions.

By the two evaluation indicators—SNR and RMSE, the most
suitable denoising wavelet function for each feature variable was
identified. Specifically, the function that reaches a higher SNR and a
smaller RMSE would be selected. Finally, the appropriate wavelet
function was selected for each feature: the sym10 function for WS
and POWER, and the coif5 function for DIR.

Each feature variable was denoised by the selected wavelet
functions. Figure 6 compares the curves of the three features
before and after denoising.

As Figure 6 shows, the curves of denoised features have a high
fitting precision with the curves of the original signals, which
manifests the good smoothing effect of WT-based denoising. The
denoising worked particularly well on the two features, “wind speed”
and “power, which showed substantial fluctuations before denoising.
Denoising has improved the SNR and reduced the noises of these
two features, achieving a good smoothing effect on their curves,
which alleviated the impact of abnormal values on the forecasting
accuracy.

3.3 Model evaluation indicators

The sample data after data processing were transferred to the
attention-based BiGRU network for model training. The GRU
model was optimized based on the Adam algorithm (Kingma
and Ba, 2014) by using an adaptive learning rate to effectively
update the network weights. The Adam algorithm combines the
advantages of Adagrad in dealing with sparse gradients and
RMSProp in dealing with non-stationary targets, and calculates
different adaptive learning rates for different parameters.

To measure the deviation between the predicted value and the
actual value, we used root mean square error (RMSE) as the
performance evaluation index of wind power forecasting. The
root mean square error is the arithmetic square root of the mean
square error (MSE). The calculation formula of the RMSE is shown
in Eq. 14, where yi is the true value, and pi is the predicted value.

RMSE �
��������������
1
N

∑N

i�1 yi − pi( )2√
. (14)

Two evaluation indicators, the mean absolute percentage error
(MAPE) and R2, were employed to assess the model’s forecast
precision and fitting effect. MAPE indicates the absolute
percentage errors of forecasts, and the closer the MAPE is to 0,
the more accurate the model is. MAPE can be obtained by Eq. 15:

MAPE � 1
N

∑N

i�1
yi − ŷi

∣∣∣∣ ∣∣∣∣
yi

∣∣∣∣ ∣∣∣∣ , (15)

where ŷi is the predicted value, and yi is the actual value.

R2, which is known as the goodness of fit, indicates the
percentage of variations in the dependent variables caused by the
changes in the independent variable. It describes the fitting effect of
the model, and is within a range of [0, 1]. A larger R2 indicates a
better fitting effect. The coefficient of determination can be
calculated by Eq. 16:

R2 � 1 − ∑N
i�1 yi − ŷi( )2∑N
i�1 yi − �yi( )2, (16)

where ŷi is the predicted value, and yi is the actual value.

3.4 Comparative experiments and
discussions

Our proposed model was compared with LSTM, GRU, WT-
GRU, WT-BiGRU-Attention models to verify its superiority. The
settings of the experiment are as follows: the time step of GRU and
LSTM was set to 8 and the number of hidden units was 64. The
convolutional kernel size of the TCN network was 3, the number of
convolutional layers was 6, the list of expansion coefficients was (Liu
et al., 2015a; Liu et al., 2015b;Wang et al., 2018; Han et al., 2019a; Ma
et al., 2019a; Liu et al., 2022b), the number of filters used in the
convolutional layers was 32, and relu was used as the activation
function. The batch size of the prediction model was set to 100 and
the epoch time was set to 50. Eighty percent of the total sample data
was used as the training set and the remaining 20% was used as the
test set. Table 3 shows the experiment result.

As Table 4 shows, the difference between the GRU model and
the LSTM model in the two evaluation metrics of RMSE and R2 is
very small, which indicates that the prediction accuracy and the
fitting effect of both are comparable. The prediction time used for
the two models in the test set in the experiments is 1.37 s and 1.57 s,
respectively, which means that the GRU operation efficiency is
improved by 12.74% compared to LSTM. The reason is that the
GRU model is more simplified and has fewer parameters than the
LSTM model, and the model runs more efficiently. Therefore, the
GRU model is considered as the base model in the combined model
of our work, which can be applied to larger-scale data prediction.

The comparison between WT-GRU and the conventional GRU
model clearly shows that the model with a denoising module (WT-
GRU) achieves a higher precision and accuracy than the one
without. Specifically, WT-GRU reduces the RMSE by 0.019,
which means it improves the forecasting precision by 16.52%; it
achieves a significantly lower MAPE (29.49% lower than that

TABLE 4 Comparative experimental results of each model.

Models RMSE MAPE (%) R2 Time (s)

LSTM 0.111 41.299 0.938 1.57

GRU 0.115 40.374 0.935 1.37

WT-GRU 0.096 28.469 0.949 1.33

WT-BiGRU-Attention 0.069 20.838 0.973 2.38

WT-BiGRU-Attention-TCN 0.066 18.876 0.976 2.56
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achieved by the conventional GRU), which suggests the WT-GRU
model has substantially improved the forecasting accuracy. The
WT-GRU model has also increased the R2 from 0.935 to 0.949,
suggesting that it has improved the fitting effect by 1.5%. Figure 7
displays the fitting effect of the two models.

As Figure 7 shows, after denoising, the curve of predicted power
has a better fitting effect with the measured power curve, indicating
that denoising can significantly improve the model’s forecasting
performance. Experiments show that there is a certain amount of
noise data in the wind power generation data samples, which will
affect the effect of the prediction model. It is necessary to de-noise
the data through wavelet transform.

Compared with WT-GRU, the WT-BiGRU-Attention model
achieves an RMSE that is 0.027 lower, which means a 28.13%
increase in the precision of prediction. Moreover, it achieves an
MAPE that is 7.63% smaller and reaches an R2 of 0.973, which
means it has also improved the fitting effect. Although the WT-
BiGRU-Attention model takes 1.01 s more prediction time than the

GRUmodel on the full test set, its overall performance and efficiency
is better. Figure 8 shows the fitting effect of the curve of predicted
power achieved by WT-GRU and WT-BiGRU-Attention with the
curve of the measured power.

As shown in Figure 8, the WT-BiGRU-Attention achieves a
better fitting effect than the WT-GRU. And according to the
indicators in Table 4, we can find that the use of bi-directional
GRU combined with temporal attention can improve the
prediction accuracy of the traditional GRU model because bi-
directional GRU is able to extract the forward and backward
features of the sample data, and the attention mechanism
enables the model to capture the features of key nodes in the
time series and assign higher weights to these nodes, thus
improving the prediction accuracy and the fitting effect of the
model.

Figure 9 shows the fitting effect of forecasting power curves
achieved by WT-BiGRU-Attention and our model with the
measured power curve.

FIGURE 7
Fitting curves of true and predicted values of WT-GRU model and conventional GRU model.

FIGURE 8
Fitting curves of measured and predicted power by WT-GRU model and WT-BiGRU-Attention model.
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Figure 9 shows our model has further improved the fitting effect
of the WT-BiGRU-Attention model. According to Table 4, though
our model shares similar time for prediction to the WT-BiGRU-
Attention model, it has reduced the RMSE by 4.35% and the MAPE
by 9.42%, and improves the R2 from 0.973 to 0.976. These statistics
indicate that the TCN layer has further improved the accuracy of
prediction. The TCN can make fullest of causal convolution and
dilation convolution to obtain more higher-level temporal features,
thus improving the model’s performance. As Table 4 shows, our
model has the best performance overall.

4 Conclusion

Wind power is characterized by random fluctuations and is
susceptible to impacts from various factors. Based on these
characteristics, a new method termed WT-BiGRU-Attention-
TCN model is proposed in the present work for wind power
prediction. Experiments were made to compare its performance
with other models, and the following conclusions were reached.

(1) The GRUmodel shows little difference from the LSTMmodel in
terms of the fitting effect and forecasting precision, and the
prediction performance of LSTM is slightly higher. However,
they are considerably different in the model training and
forecasting efficiency: the GRU model reduces the running
time by 15.45%, suggesting that the GRU model is more
suitable to forecasting tasks with large quantities of data.
Thus, the GRU model is used as the fundamental model in
the combination of models in our proposed method.

(2) The model that incorporates the wavelet transform-based
denoising technique (WT-GRU) achieves higher forecasting
accuracy than the traditional GRU model. WT-GRU also
reaches a higher coefficient of determination (R2), indicating
that introduction of the denoising module can significantly
improve the model’s forecasting performance.

(3) The bidirectional GRU can extract both forward and backward
features in the time sequence, thus outperforming the

conventional GRU model. Moreover, by incorporating the
attention mechanism, the model can capture the information
of key nodes in the historical time steps and hence achieve
higher precision.

(4) The temporal convolutional network (TCN) is used to obtainmore
higher-level temporal features through causal and dilation
convolution. At the same time, its residual link structure is used
to avoid the problem of gradient disappearance that may be caused
by the excessive increase in the number of network layers. Thus, the
TCN network can further improve the accuracy of the model.

In conclusion, with all evaluation indicators considered, our
WT-BiGRU-Attention-TCNmodel performs best among all models
compared in the present work. Themodel provides a new solution to
high-precision forecasting of wind power generation.
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