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The accurate prediction of electricity prices has great significance for the power
system and the electricitymarket, regional electricity prices are difficult to predict
due to congestion issues in regional transmission lines. A regional electricity
price prediction framework is proposed based on an adaptive spatial–temporal
convolutional network. The proposed framework is expected to better explore
regional electricity prices’ spatial–temporal dynamic characteristics in the
electricity spotmarket and improve the predictive accuracy of regional electricity
prices. First, different areas of the electricity market are regarded as nodes.
Then, each area’s historical electricity price data are used as the corresponding
node’s characteristic information and constructed into a graph. Finally, a graph
containing the spatial–temporal information on electricity prices is input to
the adaptive spatial–temporal prediction framework to predict the regional
electricity price. Operational data from the Australian electricity market are
adopted, and the prediction results from the proposed adaptive spatial–temporal
prediction framework are compared with those of existing methods. The
numerical example results show that the predictive accuracy of the proposed
framework is better than the existing baseline and similar methods. In the twelve-
step forecast example in this paper, considering the spatial dependence of the
spot electricity price can improve the forecast accuracy by at least 10.3% and up
to 19.8%.

KEYWORDS

electricity market, regional electricity price forecasting, spatial-temporal convolutional
network, adaptive adjacency matrix, spatial-temporal feature extraction

1 Introduction

Against the backdrop of the ongoing global low-carbon transformation, electricity
markets have receivedwidespread attention, playing an essential role in improving electricity
use efficiency and optimizing power resource allocation.More than 30 countries and regions
currently have electricitymarkets, andmany developing countries have begun to explore and
establish electricity market systems (Tan et al., 2018). The accurate prediction of electricity
prices has great significance for the power system and the electricity market, supports
the safe and stable operation of the power system, and provides optimal trading strategy
guidance for market participants. From the existing electricity market’s perspective, the
spot market’s electricity price fluctuates widely and is easily affected by the relationship
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between supply and demand, emergencies, environmental changes,
bidding strategies, and renewables (Yang et al., 2021). Therefore,
the accurate prediction of electricity prices has received significant
attention from researchers (Jin et al., 2021).

Most of the present research on electricity price prediction is
based on the time dimension. More specifically, the electricity price
prediction issue is treated as a time-series prediction problem, and
methods such as statistical models, machine learning, and deep
learning are used to deal with the time-series prediction issue.

Statistical models are applied to electricity price prediction
and have strong generality and interpretability. Chitsaz et al. (2018)
used the autoregressive model with the exogenous variables (ARX)
model to predict the electricity price, while a new Hilbertian
autoregressive moving average with exogenous inputs (ARMAX)
model for electricity price forecasting was proposed by Portela et al.
(2016). Uniejewski et al. (2017) introduced the seasonal component
autoregressive model, and the quantile regression average model
was introduced to forecast the day-ahead electricity price, further
improving the forecasting accuracy. Statistical models perform well
in stable scenarios but have limited ability to predict electricity prices
with large randomness, strong nonlinearity, and non-stationarity.

Rapidly developing machine learning approaches have also
been applied to electricity price prediction. Wan et al. (2017)
proposed an extreme learning machine and a non-dominated
sorting genetic algorithm II (NSGA-II) Pareto optimal-prediction-
interval construction method. Wei et al. (2021) applied the random
forest regression algorithm to spot market clearing price prediction,
obtaining a 25% improvement compared with a baseline algorithm;
Hafeez et al. (2021) proposed an integrating feature engineering
(FE) and modified firefly optimization (mFFO) algorithm with SVR
method to improve computational efficiency and optimal parameter
adjustment in load forecasting. Hafeez et al. (2020a) proposed
a day-ahead gray wolf modified enhanced differential evolution
algorithm (DA-GmEDE) based home energy management
controller (HEMC), the energy management strategy proposed in
this document has improved by 33.3% compared with the baseline
strategy. Hafeez et al. (2020b), a fast and accurate short-term load
forecasting model is proposed. The abstractive features from the
historical data are extracted using modified mutual information
(MMI) technique. The factored conditional restricted Boltzmann
machine (FCRBM) is empowered via learning to predict the electric
load. Eventually, the proposed genetic wind driven optimization
(GWDO) algorithm is used to optimize the performance. The
remarkable advantages of the proposed framework are the improved
forecast accuracy and convergence rate. Because local electricity
price prediction is often affected by dynamic electricity price
changes in neighboring areas, Xiao et al. (2021) considered a new
online sequential extreme learning machine algorithm to improve
electricity price prediction results. Tschora et al. (2022) studied the
effect of differentmachine learningmethods in predicting electricity
prices, considering the historical prices of neighboring countries
to improve the prediction results. Because of the many influencing
factors involved in electricity prices, traditional methods still cannot
fully characterize them, so the predictive accuracy was limited
(Luo et al., 2022).

Deep learning has received increasing research attention
recently and has been widely used in electricity price forecasting
(Niet et al., 2021). Lago et al. (2018) proposed four deep learning

models to predict electricity prices while comparing and analyzing
the accuracy of 27 common electricity price prediction methods.
The results showed that deep learningmethods generally have better
accuracy than statistical models. Afrasiabi et al. (2019) applied
wind speed and residential load forecasts as auxiliary inputs
for electricity price prediction and proposed a deep learning
algorithm to estimate the probability density of electricity prices.
Zhang et al. (2020) proposed an adaptive hybrid model based
on variational mode decomposition (VMD), self-adaptive particle
swarm optimization (SAPSO), seasonal autoregressive integrated
moving average (SARIMA) network, and deep belief network
(DBN) to predict electricity market prices.

Qiao et al. (2020) proposed a hybrid electricity price prediction
model based on wavelet transform-stacked autoencoder-LSTM
(long short-termmemory). Deng et al. (2021) used a deep learning-
based man-hour cycle and multi-step price forecasting model
to improve forecasting performance by capturing steep price
changes. Jahangir et al. (2021) proposed the micro-clustering and
bidirectional LSTM predictionmethod to forecast wind speed, load,
and electricity prices in different periods. Toubeau et al. (2021)
employed a deep bidirectional LSTM for probabilistic prediction
of distributed node marginal prices to capture complex temporal
dynamics. Lu et al. (2022) designed a conditional time series
generative adversarial network (TSGAN) to predict electricity prices
after data preprocessing and conditional selection.

In the studies described above, the essence of electricity price
forecasting is a single time series prediction without considering
the potential spatial influence of electricity prices in other regions.
In the past few years, some investigators have proposed exploring
the spatial dependence of electricity prices in different regions
to improve predictive accuracy. Abate et al. (2017) derived a
price–space model with temporal and spatial lags. Statistical tests
showed that the electricity price across regions has a significant
spatial dependence, that is as important as the time dependence.
Han et al. (2022) proposed a network LSTM algorithm based on
graph convolution. A graph convolutional neural network was used
to mine spatial information, and LSTM was used to mine temporal
information to predict marginal electricity prices. Yang et al. (2022)
developed a prediction model based on the attention-based
spatial–temporal graph convolutional network anddesigned a three-
branch network structure to match the compositional structure of
the node marginal electricity price.

Existing spatial–temporal prediction methods for electricity
prices do not explain how to solve the problem of prior edge
knowledge, that is, how to define the adjacency matrix of the input
model. The adjacency matrix A can be set to a corresponding
static value. For example, it can be predefined by physical
adjacency information, functional similarity information, and
connectivity information (Geng et al., 2019). However, it is difficult
to quantitatively predefine the adjacency information of different
regional electricity prices in practice. Solving this problem is the
key to graph neural network (GNN) exploration of the spatial
dependence of electricity prices in different regions.

This paper proposes a regional electricity price prediction
framework based on an adaptive spatial–temporal convolutional
network to solve the above problems. First, different regions in
the electricity market are regarded as nodes. Then each region’s
historical electricity price data are considered the node features and
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constructed into a graph. Finally, the graph containing electricity
price spatial–temporal information is input into the adaptive
spatial–temporal prediction framework to predict the regional
electricity price. The adaptive adjacency matrix is adopted within
the spatial–temporal prediction framework to solve the problem of
absent prior edge knowledge.

The main contributions of this paper are:

(1) Unlike existing work, the proposed regional electricity price
prediction framework applies a temporal convolutional network
tomine the time-dimensional information of regional electricity
prices. It considers the potential spatial influence of electricity
prices in other regions while using a graph convolutional
network to mine its potential. Based on the spatial dynamics of
the temporal characteristics, the spatial characteristics are used
to improve the predictive accuracy of regional electricity prices.

(2) The adaptive adjacency matrix enables the GNN to mine the
spatial characteristic information of regional electricity prices
without prior knowledge of edges, reducing the complexity of
the required data.

(3) The predictive accuracy is significantly improved compared
with existing baseline and similarity-working methods.

2 Graph neural networks and
temporal convolution network

2.1 Graph neural networks

2.1.1 Graph neural networks
In recent years, graph neural networks (GNNs) have achieved

good results in tasks related to graph-structured data. They have
been widely used inmany fields, such as social networks, knowledge
graphs, molecular chemistry, and life sciences (Wang et al., 2021a).
The advantages of GNNs have been demonstrated in detecting
and locating faults in distribution networks, power system stability,
and other issues, and they have been widely used in other power
field areas (Sun et al., 2022). Graph structural data is divided into
Euclidean and non-Euclidean structural data. Figure 1A shows
Euclidean structure data with a fixed arrangement order, and
Figure 1B shows non-Euclidean structure data with no fixed
arrangement order. A convolutional neural network (CNN) has
difficulty defining convolution kernels for non-Euclidean structural
data, while a GNN can handle non-Euclidean structural data well
(Xu et al., 2020).

Graph G = (V,E) is composed of groups of nodes V and edges
E, where vi ∈ V represents the ith node in graph G, and eij ∈ E is an
edge from node vi to node vj in graph G. The adjacency matrix A
describes the adjacent relationship between nodes in graph G. A is
an N×N matrix, and N is the total number of nodes. If eij ∈ E then
Aij = 1, and if eij ∉ E, then Aij = 0. Node V in graph G can also have
the feature X ∈ ℝN×D, where X is the characteristic matrix of the
node, Xij ∈ R1×D is the feature vector of node vi, and D is the total
number of node features.

Graph convolutional networks (GCNs) can extract features
from graph-structured data and be combined with other neural
networks. GCNs can be divided into networks based on spectral
and spatial domain methods. The method based on the spectral

domain converts the data for processing from the spatial domain
to the spectral domain according to spectral theory and the
convolution theorem. The method based on the spatial domain
defines convolution operations directly in space, updating by
convolving the representations of the center and neighbor nodes.
The method based on the spatial domain is more efficient and
flexible and has received extensive attention in recent years.
The graph convolutional network structure diagram is shown in
Figure 2.

Graph convolution from a diffusion convolutional neural
network is based on the spatial graph convolution method
(Atwood et al., 2016). It is regarded as a diffusion process in
which information is transferred between adjacent nodes with a
particular transition probability. Assuming that the equilibrium of
the information distribution is reached aftermultiple diffusion steps,
it is defined as (Atwood et al., 2016):

Hk =WkeZkX (1)

where Zk =
A

rowsum(A)
∈ ℝN×N is the probability transferring matrix,

k is the kth diffusion step, e represents the product of the elements
of two matrices, Hk indicates the hidden output of the kth diffusion
step, Wk ∈ ℝ

D×M represents the learnable weight corresponding to
the kth diffusion step, and M is the number of matrix columns.
The hidden outputs Hk of the diffusion steps are independent of
each other, and the final graph convolution output is obtained by
accumulating all hidden outputs from a finite number of diffusion
steps (Li et al., 2018):

U =
Ka

∑
k=0

ZkXWk (2)

where U ∈ ℝN×M is the final graph convolution output, and Ka
denotes the total number of diffusion steps.

2.1.2 Graph adjacency matrix
There are many ways to construct the GNN adjacency matrix

A (Geng et al., 2019). When the information between nodes in the
graph is known a priori, the adjacency matrix A can be set to a
corresponding static value through physical adjacency information,
functional similarity information, and connectivity information
to predetermine the adjacency matrix (Geng et al., 2019). Other
approaches involve building a dynamic adjacency matrix in the
graph training process, such as learning and updating the weights
of adjacent nodes using an attention mechanism, Gaussian kernel,
or adaptive path layer method, but these still require a predefined
graph structure.

In regional electricity price prediction, it is difficult to
quantitatively predetermine the adjacency information relationship
between different regions and obtain the adjacency information
relationship data. This paper solves this problem by adopting an
adaptive adjacency matrix with learnable ability. This electricity
price spatial–temporal prediction framework for learning and
mining potential dynamic spatial dependencies is expected to
improve the accuracy of the prediction model. The adaptive
adjacency matrix Ãadp is

Ãadp = Softmax(ReLU(E1ET2)) (3)
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FIGURE 1
Two kinds of graph structure data. (A) Euclid structural data. (B) Non euclid structural data.

FIGURE 2
Graph convolutional network structure diagram.

In Eq. 3, Softmax and ReLU are activation functions. E1 and
E2 denote the source and the target node embedding, respectively
(Goyal et al., 2017), where the node embedding can be learned
and randomly initialized. The adaptive adjacency matrix Ãadp is
considered a transfer matrix in the hidden diffusion process. An
alternative to the probability transition matrix is given by Eq. 2.
Therefore, this method can perform graph convolution when prior
knowledge cannot determine the spatial dependencies between
nodes.

2.2 Temporal convolution networks

2.2.1 Temporal convolution network
This paper uses a dilated causal convolution as a temporal

convolution network (TCN) to mine the nodal temporal dimension
information. Dilated causal convolution enables an exponential
increase in the receptive field by increasing the hidden layer depth.
Unlike recurrent neural network (RNN) methods, dilated causal
convolution can process long sequences in a non-recursive manner,
facilitating parallel computation and alleviating the problem of
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FIGURE 3
Dilated causal convolution.

exploding gradients. Dilated causal convolution preserves causal
order in time by padding the input with zeros, so predictions
for the current time step involve only historical data. Dilated
causal convolution, a special case of standard one-dimensional
convolution, slides the input by skipping values at a particular step,
as shown in Figure 3.

Given a one-dimensional sequence of inputs B ∈ ℝT and a filter
f ∈ ℝK, dilated causal convolution between B and f at time t is
expressed as:

B* f(t) =
K−1

∑
s=0

f(s)B(t− d× s) (4)

In Eq. 4, K is the kernel size, d is the dilated factor controlling
the jump distance, s is the kernel number, and T is the step
size. By incrementally stacking the dilated causal convolution layer
with a dilated factor, the receptive field of the model increases
exponentially so that the dilated causal convolution network can
mine longer sequences with fewer layers.

2.2.1 Gated temporal convolutional network
Thesimplest gated temporal convolutional network (gatedTCN)

contains only one output gate h. Then, given input P ∈ ℝN×D×T, its
operation is expressed as:

h = g(Θ1*P+ b) ⊙ σ(Θ2*P+ c) (5)

where Θ1, Θ2, b and c are the model parameters, g is the output
activation function, and σ represents an S-type function. The model
in this paper uses a gated TCN to mine complex time series and sets
the activation function as a hyperbolic tangent function based on
experience.

3 Regional electricity price forecasting
framework based on an adaptive
spatial–temporal convolution network

3.1 Constructing a spatial–temporal
infographic with regional electricity prices

The increasing frequency of cross-regional power market
transactions and long-distance power transmission affects electricity

price fluctuations in different regions. There is a potential spatial
dependence of power flow between different regions in the
power market that previous prediction algorithms based on time
series have difficulty describing accurately. Unlike traditional
electricity price forecasting, the regional electricity price forecasting
proposed in this paper trains a model containing regional electricity
price information. In addition to mining the time dimension of
regional electricity price information, it also mines the potential
spatial dependencies between regions to improve predictive
accuracy.

The data-driven regional electricity price forecast in the time
and space dimensions can be regarded as a multivariate time series
prediction problem with related spatial dependencies. As shown in
Figure 4, different areas in the electricity market are first regarded as
nodes to construct a spatial–temporal information map of regional
electricity prices. Then, each area’s historical electricity price data is
used as the node’s characteristic information. Finally, each node is
constructed into a picture.

Let Xt = [x1,t,⋯,xN,t] be the historical characteristic values,
where xi,t = [xi,1,t,⋯,xi,t,D] denotes theD characteristic values of the
ith node at time t.Thus, the dataset ofN nodes with T time steps can
be represented as a three-dimensional array [x1,⋯,xT] ∈ ℝN×T×D.

The regional price is combined into a graph structure by
regarding each power market region as a node, and the grid
connectivity information between regions is described as edges.
Graph GL = (VL,EL) is used to represent the graph structure of
regional electricity prices, where VL is the set of all regional nodes
and EL is the set of edges between regions.

According to the above definition, a graph GL is composed of
N regional nodes. The regional electricity price prediction with H
steps (prediction based on the last H steps of historical data) can be
expressed as a learning function f:ℝN×H×D⟶ℝN×1×D that maps
the historical data {Xt−H+1,⋯,Xt} to the regional electricity price of
N nodes in the next time step t+1, namely,

{Xt−H+1,⋯,Xt,GL}
f(∙)
→Xt+1 (6)

where {Xt−H+1,⋯,Xt} ∈ ℝN×H×D, Xt+1 ∈ ℝN×1×D, and Xt+1 are the
data of D characteristics of the N area nodes at time t+1.

3.2 Graph convolutional layers with
adaptive adjacency matrix

As discussed earlier, it is challenging to quantitatively
predetermine and obtain the adjacency information relationship of
electricity prices in different regions. This paper adopts an adaptive
adjacency matrix Ãadp with a learnable ability to solve this problem
of describing regional nodes connectivity. This approach reduces
the complexity of data requirements while ensuring prediction
accuracy.

For the adaptive adjacency matrix, the random gradient descent
method is used for point-to-point learning without prior knowledge
of edges (see Eq. 3 for the definition of the adaptive adjacency
matrix). The two learnable parameters E1,E2 ∈ ℝN×C are initialized
randomly, where C is the super parameter of the node embedding
size. The spatial dependency weight between the source node and
the target node is obtained bymultiplyingE1 andE2. By replacing the
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FIGURE 4
Spatial-temporal infographic of regional electricity prices.

transitionmatrix Z in Eq. 2with the adaptive adjacencymatrix Ãadp,
the graph convolution output with the adaptive adjacency matrix is
obtained:

U =
Ka

∑
k=0

ÃadpXWk (7)

3.3 Adaptive spatial–temporal prediction
framework

The adaptive spatial–temporal prediction framework mines the
latent spatial dependencies between different nodes without prior
knowledge of edges through an adaptive adjacencymatrix (Wu et al.,
2019). This paper proposes an adaptive spatial–temporal prediction
framework to predict regional electricity prices in the electricity
market. The overall framework is shown in Figure 5. It consists of
three main modules: a graph convolutional layer (GCL) with an
adaptive adjacency matrix, gated temporal convolutional networks
(gated TCNs), and a spatial–temporal prediction framework.

Figure 5 shows that multiple spatial–temporal layers are
superimposed after the spatial–temporal information is extracted
through the GCL–TCN layer (Wu et al., 2019). The framework uses
a skip connection mechanism to handle spatial dependencies at
different temporal levels (Wu et al., 2019). For a spatial–temporal
layer, historical data is processed and input into the gated TCN and
then into the GCL.The adjacencymatrix in the GCL is the proposed
adaptive adjacency matrix.

Figure 6 shows a schematic diagram of the GCL–TCN layer
in which the principle of graph convolution is illustrated to help
readers to understand it more intuitively. In this figure, r1,(l+1), r2,(l+1)

r3,(l+1), and r4,(l+1) are the characteristic values of the first, second,
third, and fourth node (l+ 1) layers, respectively, and r1,(l), r2,(l), r3,(l)
and r4,(l) are the characteristic values of the first, second, third, and
fourth node (l) layers, respectively. In addition, a residual network
is used to accelerate convergence and facilitate model training.
The output of each spatial–temporal layer is input to an external
module through skip connections, and the final output is integrated
through the ReLU activation function and linear layer (Wu et al.,
2019). The skip connection mechanism integrates the mined
spatial dependencies at different temporal levels. For example, the
outputs of the first layer represent short-term spatial dependencies,
while the outputs of the last layer represent long-term spatial
dependencies.

3.4 Loss function of the adaptive
spatial–temporal prediction model

This paper uses only historical regional electricity price data to
predict regional electricity prices in the electricity spot market. The
output (predictive value) of the model is expressed as X̃ ∈ ℝN×Tout×D,
where Tout represents the output step. The parameters are set as
output step Tout = 12, feature number D = 1, and N as the total
number of area nodes.The average absolute error IMAE is selected as
the training objective of themodel, and the loss function is expressed
as

L(X̃t+1;Θ) =
1
N

N

∑
i=1
|X̃t+1,i −Xt+1,i| (8)

where Θ is a model parameter, X̃t+1,i is the prediction data of D
characteristics of the ith area node at time t+1, and Xt+1,i is the data
of D characteristics of the ith area node at time t+1.
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FIGURE 5
Regional electricity price forecasting framework based on adaptive spatial-temporal convolutional network.

4 Example numerical analysis

4.1 Dataset analysis and processing

This article takes operating data from the Australian electricity
market as an example, using the 4-month historical data from 1
January 2022 to 30 April 2022 as the data set, including New South
Wales, Victoria (VIC), Queensland (QLD), South Australia (SA),
and Tasmania as the five regions. Electricity prices every 5 min in
various regions over 2,880 h were used, for a total of 34,559 data
points.

TheNational ElectricityMarket of Australia covers thousands of
kilometers across several states in the east and south. Transmission
power constraints exist in the tie lines between the state power grids.
The electricity price in the same area at different times reflects its
time dimension information, and the electricity prices in different
areas at the same time provide spatial dimension information.

Figure 7 shows the electricity prices for 288 sampling points
in the SA and VIC regions in the Australian electricity market
for 1 day. The SA regional electricity price fluctuates considerably
compared with the VIC regional electricity price, reflecting the
spatial variation in electricity prices. The influence of regional
electricity price differences is apparent. Therefore, considering the
spatial characteristics of regional electricity prices can better mine
regional electricity price information.

All the data selected from the data set were divided into training,
validation, and test sets according to a 7:1:2 ratio (Wang et al.,
2021b). The three data sets are normalized by the mean value and

standard deviation of the training set:

x̂ =
x−mean(Xtrain)

std(Xtrain)
(9)

where x is the initial regional electricity price, x̂ is normalized x,
mean(Xtrain) is the average of the training set, and std(Xtrain) is the
standard deviation of the training set. This paper sets H = 12 and
uses the historical data of the last 12 steps to forecast the regional
electricity price of the next 12 steps, Tout = 12.

4.2 Model parameters and evaluation
indicators

The adaptive spatiotemporal prediction framework stacks eight
spatiotemporal layers through the jump connectionmechanism.The
void factor d is sequentially set to (1,2,1,2,2,1,2,2). The size of nodes
embedding E1 and E2 are set to 10, and E1 and E2 are initialized
randomly. The diffusion step k of Eq. 7 is set to 2, the dropout is set
to 0.3, the learning rate is 0.001, the batch size is 64, and the number
of iterations is 100.

The average absolute error IMAE and root mean square error
IRMSE are used to compare the predictions of differentmethods. IMAE
and IRMSE are calculated as follows:

IMAE =
1
Hb

Hb

∑
m=1
|ŷm − ym| (10)

IRMSE = √
1
Hb

Hb

∑
m=1
(ŷm − ym)

2 (11)

where ym is the actual value of themth time step, ŷm is the predicted
value of the mth time step, and Hb is the total number of data
sampling points in the test set.
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FIGURE 6
Schematic diagram of GCL-TCN layer.

FIGURE 7
Electricity price curve in different regions.

4.3 Example results

This paper compares three different spatial–temporal
convolutional networks: the spatial–temporal convolutional
network (STGCN), the adaptive spatial–temporal convolutional
network (Ada-STGCN), and the non-adaptive spatial–temporal
convolutional network (TCN). The spatial–temporal convolutional
network contains an adjacency matrix and a learnable adjacency
matrix for the geographic information of the five Australian

FIGURE 8
MAE comparison of predictive models.

electricity market regions. The adaptive spatial–temporal
convolutional network has only one learnable adjacency matrix,
the static non-adjacency matrix of the adaptive spatial–temporal
convolutional network, which is an identity matrix., Although
non-adaptive spatial-temporal convolutional networks have the
same framework as spatial–temporal convolutional networks
and adaptive spatial–temporal convolutional networks, they only
explore temporal features and do not use graph convolutional
layers to explore spatial dependencies. In addition, this paper
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FIGURE 9
RMSE comparison of predictive models.

FIGURE 10
Influence of k value of different diffusion steps on prediction results.

also compares results with the autoregressive model (AR), long
short–term memory (LSTM), diffusion convolutional recurrent
neural network (DCRNN), and attention based spatial–temporal
graph convolutional network (ASTGCN) algorithms.

The indicators of the seven models are compared using the
algorithm shown in Figure 8 to predict the electricity prices in the
five Australian regions. The STGCN is significantly better than the
Ada-STGCN and ASTGCN, and the twelve-step STGCN prediction
is always better. Compared with the ASTGCN, the STGCN first-
step predictions are slightly lower than the Ada-STGCN and are
better in the other eleven-step predictions. The Ada-STGCN is
better than the ASTGCN in the prediction before nine steps, while
the ASTGCN is better than the Ada-STGCN starting from the
10th step, and the ASTGCN is better for longer-step predictions.
Thenon-adaptive spatial–temporal convolutional network is slightly

FIGURE 11
Adaptive adjacency matrix for spatial-temporal convolutional
networks.

FIGURE 12
Spatial-temporal forecasting of regional electricity prices.

better than the LSTM because the LSTM only mines the temporal
dimension information by TCN. Among the seven models, the
spatial–temporal convolutional network has the best predictions,
and its IMAE is the lowest, with a maximum 22% improvement
compared with the ASTGCN, but with the same disadvantages as
the ASTGCN. It must provide a connected adjacency matrix, and
the input data is complex and difficult to obtain.

Figure 9 compares the indicators of the sevenmodels.The trends
of the IRMSE indicators are the same as for the IMAE, and the
prediction results of the STGCNare better than those of the other six
model algorithms.The indicators of the Ada-STGCN and ASTGCN
models are similar. Each model has certain advantages.

In Figures 8, 9, the prediction results of the adaptive
spatial–temporal convolutional network are always better than
those of the non-adaptive spatial–temporal convolutional network.
This result shows that the adaptive adjacency matrix can learn the
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FIGURE 13
Prediction and actual value of regional electricity prices.

spatial dimension of the regional electricity price. If the adjacency
matrix in the spatial–temporal convolutional network is simply a
static identity, the spatial dimension features of regional electricity
prices cannot be effectively mined. The adaptive spatial–temporal
convolutional network prediction framework proposed in this paper
has no prior knowledge of the edges between regions. Compared
with the STGCN, a certain amount of predictive accuracy is
sacrificed, but it has the advantage that the required data is only
electricity price historical data, which does not increase the data
requirements.The adaptive spatial–temporal convolutional network
is a compromise after weighing the predictive accuracy and the
difficulty of data acquisition and improves the predictive accuracy to
a certain extent without increasing the data requirements. From the
evaluation indicators, the Ada-STGCN is better than the ASTGCN
and does not require prior edge knowledge.

This paper also analyzes the influence on the prediction
results when the model parameters are changed. The number
of spatial–temporal layers of the adaptive spatial–temporal
convolutional network and the k value of the diffusion step
noticeably influence the prediction results. The void factor d, node
embedding size, dropout value, learning rate, and batch size values
used are based on general experience.

From Figure 10, given the influence of different diffusion step k
values on the prediction results, the prediction result is best when the
diffusion step k is set to 2.The predictive accuracy increases initially
and then decreases with increasing diffusion step k. The k value of
the diffusion step refers to the influence range between nodes, where
k = 1 represents the influence between a node and the adjacent node,
k = 2 represents the influence between the node, the adjacent node,
and the next adjacent node, and so onwhen k takes other values.The
results in Figure 10 show that the prediction results are best when
considering the second-order adjacent regions. Considering only the
first-order adjacent regions leads to insufficient exploration. When
considering the third and higher orders, uncorrelated regional
features become mixed, leading to a decline in predictive accuracy.

The adaptive adjacency matrix of the spatial–temporal
convolutional network is randomly initialized and trained using
stochastic gradient descent. The adaptive adjacency matrix changes
every spatial–temporal convolutional network cycle and is closely
related to its random initialization parameters. Figure 11 is an
adaptive adjacency matrix for electricity price prediction of the five
Australian regions, reflecting the spatial connectivity relationship
between electricity prices in different regions learned for each
cycle. The numbers 0–4 in Figure 11 represent the five regions, and
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each matrix element represents the spatial connectivity relationship
between the two regions (ranging from 0 to 1).

Figure 12 shows the spatial–temporal forecast of electricity
prices for the five regions for 288 sampling points over 1 day,
indicating spatial differences between regions. The price fluctuation
in the QLD region is the largest because the power grid in
this region is not connected to the main network. Over many
periods, the regional power grid cannot operate at the price of the
national electricity market. Power flows between the power grids in
different regions may be blocked, leading to regional power price
fluctuations, meaning that the power output area market price is
low, and the power input area market price is high. These factors
impact the spatial distribution of electricity prices. The adaptive
spatial–temporal prediction framework proposed in this paper
can effectively learn and mine its spatial–temporal dependencies
without prior knowledge. Figure 13 shows the predicted and actual
values of electricity prices in the five regions for 288 sampling
points over the day in Figure 12. The electricity price prediction
results for the five regions are very good, indicating that the adaptive
spatiotemporal forecasting framework proposed in this paper can
effectively excavate the potential spatial dependence of electricity
prices in different regions.

5 Conclusion

This paper proposes an electricity price prediction framework
based on an adaptive spatial–temporal convolutional network. The
study is aimed at large fluctuations in the regional electricity price
spot market, forecasting challenges, and difficulty obtaining spatial
adjacency information, taking the operational data of the Australian
electricity market as an example. The following conclusions are
drawn from the analysis of calculations examples:

(1) Theprediction framework proposed in this paper, on the basis of
mining the time dependence of spot electricity prices, considers
the spatial influence of other spot electricity prices, and adopts
GCN to mine the spatial dependence of spot electricity prices.
In the 12-step forecast of this example, considering the spatial
dependence of the spot electricity price can improve the
prediction accuracy by at least 10.3% and at most 19.8%. The
example results show that mining the spatial dependence of the
spot electricity price can help Improve forecast accuracy.

(2) The adaptive adjacency matrix proposed in this paper can solve
the problem that GCN cannot be used to mine the spatial
dependence of spot electricity prices when the edge prior
knowledge is unknown or lacking.

(3) The prediction framework proposed in this paper has further
improved prediction accuracy compared with baseline models
(AR, LSTM, and TCN) and other similar models (DCRNN,
ASTGCN). In the twelve-step prediction, the prediction
accuracy of STGCN is up to 32.8% higher than AR, up to 27.2%
higher than LSTM, up to 19.8% higher than TCN, up to 20.2%
higher than DCRNN, and up to 22.1% higher than ASTGCN.

The adaptive spatial–temporal convolutional network
prediction framework in this paper requires the same lengths for

the electricity price historical data in all regions. This means that
the step size is the same for all nodes, representing a shortcoming
of the proposed adaptive spatial–temporal convolutional network
prediction framework. Future research will combine this paper’s
method with time series decomposition to improve forecast
accuracy. We will also study other GNN prediction issues related
to applications in the power field.
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