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Financial loss in power systems is an emerging problem that needs to be resolved.
To tackle the mentioned problem, energy generated from various generation
sources in the power network needs proper scheduling. In order to determine
the best settings for the control variables, this study formulates and solves
an optimal power flow (OPF) problem. In the proposed work, the bird swarm
algorithm (BSA), JAYA, and a hybrid of both algorithms, termed as HJBSA, are
used for obtaining the settings of optimum variables. We perform simulations by
considering the constraints of voltage stability and line capacity, and generated
reactive and active power. In addition, the used algorithms solve the problem
of OPF and minimize carbon emission generated from thermal systems, fuel
cost, voltage deviations, and losses in generation of active power. The suggested
approach is evaluated by putting it into use on two separate IEEE testing systems,
one with 30 buses and the other with 57 buses. The simulation results show
that for the 30-bus system, the minimization in cost by HJBSA, JAYA, and BSA is
860.54 $/h, 862.31, $/h and 900.01 $/h, respectively, while for the 57-bus system,
it is 5506.9 $/h, 6237.4, $/h and 7245.6 $/h for HJBSA, JAYA, and BSA, respectively.
Similarly, for the 30-bus system, the power loss by HJBSA, JAYA, and BSA is
9.542 MW, 10.102 MW, and 11.427 MW, respectively, while for the 57-bus system,
the value of power loss is 13.473 MW, 20.552, MW and 18.638 MW for HJBSA,
JAYA, and BSA, respectively. Moreover, HJBSA, JAYA, and BSA cause reduction
in carbon emissions by 4.394 ton/h, 4.524, ton/h and 4.401 ton/h, respectively,
with the 30-bus system. With the 57-bus system, HJBSA, JAYA, and BSA cause
reduction in carbon emissions by 26.429 ton/h, 27.014, ton/h and 28.568 ton/h,
respectively. The results show the outperformance of HJBSA.
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bird swarm optimization, carbon emission, IEEE bus systems, JAYA, optimal power flow

1 Introduction

Satisfying load demand in an economical and efficient manner and carrying out optimal
system’s operations are the basic functions of power systems (Warid et al., 2018) along with
optimal power flow (OPF). Divisioning of the power systems is carried out in two parts:
the demand side and supply side. The demand side consists of the demand load from
industrial, commercial, and residential areas, while the supply side comprises distribution,
transmission, and generation systems. The supply side faces sustainability, reliability,
and maintenance issues due to the increase in electricity demand (Khalid et al., 2018;
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Safaie et al., 2022). At the moment, the power system domain’s
OPF challenges are receiving a lot of attention. It is because the
power systems are highly constrained, large-scale, complex, and
face non-linear and concave optimization problems (Shehab et al.,
2020). The best operating levels for the power systems are
determined by OPF in order to satisfy the energy demand of
users (Optimal Power Flow—NEOS, 2022; Pandya, 2022; Wang
and Abdalla, 2022). In transmission networks, the OPF problems
are solved and formulated to efficiently provide energy at a low
operational cost. In general, the performance objectives used for
solving the OPF problems include voltage profile improvement,
carbon emission and fuel cost minimization, and power loss
reduction. However, the system’s generation capacity, bus voltage,
and line capacity constraints are not considered (Biswas et al., 2019;
Liu et al., 2022).

The OPF problem has been solved using a variety of methods
over many years. In Skolfield and Escobedo (2021), the first and
the simplest algorithm for solving OPF problems is presented. Later
on, solutions proposed using different conventional optimization
techniques, i.e., linear programming, semi-definite programming,
interior point method, Lagrangian relaxation, and reduced gradient
method in Chen et al. (2020); El-Fergany and Hasanien (2020);
Li et al. (2020); Abd El-sattar et al. (2021); Castro et al. (2022);
Chen et al. (2022), are used for solving OPF problems. However,
the methods do not obtain optimal solutions as a result of
the non-linear features of their objective functions. Furthermore,
high computational and execution times increase the conventional
methods’ complexity. Thus, resolving the problems becomes
imperative using optimization methods, which are scalable and can
solve the complex OPF problems.

There exist various optimization problems that differ in their
nature. Among the problems, some are discrete or continuous
in nature, while others are convex, non-convex, linear, or non-
linear. It is easy to find a solution for continuous optimization
problems using the conventional or traditional methods like
gradient-based methods. On the contrary, if a problem is complex
or non-convex, it is hard to determine its optimal solution
when using the traditional methods. For this purpose, nature-
based heuristic and meta-heuristic techniques are proposed as
solutions for solving the complex optimization problems in
minimum execution time. Population-based heuristic algorithms
are used for various optimization purposes. These algorithms are
categorized as evolutionary algorithms and swarm intelligence
algorithms. All of these algorithms need some control parameters
like the number of generations and size of population to be
executed. These general purpose algorithms, such as the gray
wolf optimizer (GWO), binary particle swarm optimization (PSO),
wind-driven optimization (WDO), and genetic algorithm (GA),
are efficiently used in Iqbal et al. (2018) for optimization of an
energy management system. In Khalid et al. (2018), GA and
bacteria foraging optimization (BFO) are applied for efficient energy
optimization in smart buildings. For intelligent load management
in smart homes, binary PSO, GA, and the cuckoo search algorithm
(CSA) are used by Javaid et al. (2017a). However, GA,WDO, and the
harmony search algorithm (HSA) are implemented for optimizing
an energy management controller in Hussain et al. (2018).

Various evolutionary and population-based heuristic methods
are utilized for determining optimized solutions to OPF problems.

For the purpose of resolving OPF issues in large-scale energy
systems, the authors in El-Fergany and Hasanien (2018) suggest
a novel approach based on a tree-seed algorithm (TSA). In
the study, the offered power system experiences less actual
power loss, overall voltage variation, and overall fuel cost. The
authors in Biswas et al. (2019) addressed the OPF problems
where the intermittent renewable power sources are modeled
via probability density function (PDF). Reductions in electricity
cost and carbon emission are the objective functions along
with reserve and penalty costs because of under- and over-
estimations of the renewable energy resources (RERs). To solve
the optimization problems, a successful history-based adaptation
technique for differential evolution (SHADE) technique is utilized.
In Banerjee et al. (2022), an optimization model is proposed using
a backtracking search optimization (BSO) technique. The model
considers six different study cases to overcome the issues of voltage
instability, carbon emission, and high fuel cost. The results obtained
from simulations show that there exists a trade-off between voltage
profile improvement, carbon emission, and electricity cost. Table 1
shows nomenclature.

The authors in Mohagheghi et al. (2018) perform real-time
and day-ahead OPF by considering operational intervals between
5 min and 15 min. RERs are incorporated in the electricity
generation systems. In addition, the scheduling of generation
resources is performed. However, the valve point loading effect
and carbon emission factor are ignored. The proposed work’s major
contributions are enlisted.

• The OPF problem is solved to obtain the settings of optimum
control variables.
• The bird swarm algorithm (BSA), JAYA, and a hybrid of both
algorithms, termed as the hybrid JAYA bird swarm algorithm
(HJBSA), are used for obtaining the settings of the optimum
variables.
• The proposed algorithm, HJBSA, minimizes carbon emissions
generated from thermal systems, fuel cost, voltage deviations,
and losses in the generation of active power.
• The proposed solution is assessed on two different IEEE testing
systems: one comprising 30 buses and the other comprising 57
buses.
• The suggested algorithm is superior to the existing algorithms
in terms of lowering carbon emissions, fuel costs, voltage
variations, and power losses, according to the performed
simulations.

The remaining manuscript is structured in the following
manner. In Section 2, related work is presented, while OPF
problems’ formulation along with their constraints are given in
Section 3. Section 4 provides the algorithms’ specifics.The results of
the simulations are reported in Section 5, while the conclusions and
plans for further research are offered in Section 6.

2 Related work

In recent years, extensive work has been carried out for
controlling the power flow in a power generation system. In
addition, numerous optimization algorithms and other traditional
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TABLE 1 Nomenclature.

Abbreviation/symbol Description

 Fi Selected objective function

 Nobj Total no. of objective functions

 E(s, c)&I(s, c) Equality and inequality constraints’ sets

 S Dependent or state variables

 C Independent or control variables

 Pslack Slack buses’ active power output

 V l Load buses’ voltage magnitude

 Qg Reactive power generation

 Sl Transmission line flow

 PG Generated active power

 QC Shunt VAR compensation

 F(s, c) Set of objective functions

 NTG Number of generating units

 VG Generator buses’ voltage

 f c Fuel cost for the ith thermal generator

 ai, bi, ci ith thermal generator’s cost coefficient

 di, ei Cost coefficient of the ith thermal generator for the
valve point loading effect

 α, β, γ, and μ Coefficients for emission

 Ctax Carbon tax

 Nl Total no. of transmission lines

 Gij Transfer conductance at buses i and j

 Ploss Active power loss

 δij Voltage angles’ difference between buses i and j

 VD Voltage deviation

 T Transformer’s tap settings

 NB Total no. of buses

 PGi&QGi Active and reactive power generation at the ith bus

 PDi&QDi Active and reactive load demand at the ith bus

 V i and V j Voltage magnitude at ith and jth buses

 Bij Susceptance between buses i and j

 Pmin
TGi ,P

max
TGi Minimum and maximum active thermal generation

at the ith thermal generator

 Qmin
TGi ,Q

max
TGi Minimum and maximum reactive thermal

generation at the ith thermal generator

 Vmin
Gi ,V

max
Gi Minimum and maximum voltage limits

 NG Total no. of generator buses

 NL Total no. of load buses

 pij Previous best of the ith bird

 g ij Previous best of swarm

 meanj jth element at average position

 Fiti Best fitness value for the ith bird

 sumFit Sum of the best fitness value

techniques are utilized for obtaining the optimal solutions. Different
algorithms, like PSO, WDO, GWO, and BFO, have been used in
the literature to deal with the OPF issue. These all are state-of-the-
art methods. However, they have various issues like algorithmic
complexity and convergence sensitivity. Moreover, OPF is a highly
non-linear and multimodal optimization problem. Thus, it is not
handled efficiently via local optimization techniques.

Moving ahead, constrained OPF problems are solved using a
simplex-based chaotic PSO (SCPSO) scheme for preventing PSO
from early convergence (Chopra et al., 2021). The minimization of
operational cost, enhancement of bus voltage profiles, and reduction
of energy loss by focusing on the effects of the valve point load
are the major objectives of the proposed scheme. The proposed
scheme is evaluated upon IEEE 26-bus and 57-bus systems. After
comparison of the proposed scheme with the existing schemes, it
is found better than the existing schemes in terms of convergence
rate. For solving OPF problems, a gravitational search algorithm
(GSA) is implemented in Shilaja and Arunprasath (2019), which
is modeled as concave optimization problems with inequality and
equality constraints. The stated objectives of this study are similar
to the general OPF problems. The GSA technique is used upon
IEEE systems having 30 and 57 buses for obtaining the best control
variables’ settings with both reduced energy cost and minimized
power loss.

Other than heuristic and meta-heuristic approaches, the fuzzy
logic approach is also used with the combination of different
techniques to get the optimized settings for the OPF problem.
The problem is formulated and solved by integrating the fuzzy
technique with GA and PSO (Khan et al., 2020). Control variables
are shifted to achieve the minimized cost and reduced energy loss
with an improved voltage profile. The outcomes of the simulations
demonstrate the reliability and efficacy of the proposed solution. In
Ebeed et al. (2018), adaptive fuzzy logic controllers are implemented
for the optimal dispatch of generated reactive power.This solution is
implemented using the IEEE training system comprising 30 buses.
Theproposed solution’s results are comparedwith the results of static
fuzzy logic controllers. The system is proved to be a useful operator
for optimizing the control variables’ values. Mathematical modeling
is proposed for solving multi-objective OPF problems using GA
integrated with fuzzy decisions (Chen et al., 2019). The proposed
model is tested upon a 59-bus system from the Algerian electrical
network to attain the objectives of generation cost minimization,
emission reduction, and improvement in the voltage profile index.
This optimization problem is solved for three different scenarios,
and the evaluated results depict a trade-off between environmental
dispatch and voltage constraints.

Akbari et al. (2021) used a teacher–learner-based optimization
(TLBO) method for finding the best solution in solving multi-
objective OPF problems after satisfying the constraints of the
system. To improve the rate of convergence, the basic TLBO
algorithm is combined with quasi-opposition-based learning
(QOBL) technique. The methodology is applied on an Indian
utility that has 62 buses and also on IEEE systems having 30
and 118 buses. To show the robustness of the combined quasi-
oppositional teaching–learning-based optimization (QOTLBO)
scheme, different objectives are formulated and solved.Their results
verify that QOTLBO is better than benchmark schemes in terms
of finding the best solutions. Pravina et al. (2021) proposed an
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adaptive real-coded biogeography-based optimization (ARCBBO).
The proposed technique outperforms the existing techniques in
terms of fulfilling the physical and operational constraints. Similarly,
an improved ABC (IABC) technique is utilized for solving the fuzzy
multi-objective OPF problems (He et al., 2015). The objectives to
be attained are the same as the basic objectives for OPF, which
are cost and emission reductions, power loss minimization, and
voltage deviation enhancement. IABC is implemented and tested
upon IEEE systems having 30, 57, and 300 buses. Single and multi-
objective OPF problems are solved using differential evolution (DE)
and GWO techniques by keeping in view the system constraints (El-
Fergany and Hasanien, 2015). To solve multi-objective problems,
a fuzzy-based Pareto front technique is integrated into the system.
IEEE testing systems comprising 30 buses and 118 buses are utilized.
The adjustment of the control variables depicts that the proposed
technique is better than the existing methods.

The probabilistic multi-objective OPF problems are solved in
Shargh et al. (2016) while considering the load demand uncertainty
and the correlated wind power. BBO is used for energy optimization
and is tested upon the IEEE system having 30 buses. Additionally,
two thermal generators are replaced with the wind farms. For
solving the correlated input parameters, a point estimate method
(PEM) using Nataf transformation is applied. To perform a
similar study on OPF in Warid et al. (2016), a novel and effective
optimization method named as the JAYA algorithm is applied.
In addition to the basic OPF problems, distributed generation
is also incorporated while solving the system under-mentioned
constraints. The proposed meta-heuristic technique is utilized upon
the modified IEEE testing systems comprising 30 buses and 118
buses. In Bouchekara et al. (2016), an improved colliding bodies
optimization (ICBO) method is proposed for providing better OPF
solutions. Many constraints and objectives are utilized for modeling
the problem. In the proposed work, standard IEEE bus systems
are utilized for performing simulations. The outcomes gained are
contrasted with those of the current approaches. In terms of a
number of performance criteria, it is discovered that the suggested
approach is superior to the benchmark techniques. Abaci and
Yamacli (2016) provided a paradigm for employing a differential
search algorithm (DSA) to tackle OPF issues. Numerous objective
functions are used to optimize the power system. The model is
evaluated using three IEEE standard bus systems. The findings of
the suggested model demonstrate the approach’s efficacy in concave
and non-linear problem solving.

The authors in Daryani et al. (2016) use adaptive group search
optimization (AGSO) and an enhanced form for standard group
search optimization to resolve the OPF problems. The IEEE testing
systems comprising 30 buses and 57 buses are employed for
evaluating the proposed solution’s accuracy and effectiveness.

Mohamed et al. (2017) proposed a novel model for resolving the
OPF problems by applying a moth swarm algorithm (MSA). The
model uses standard IEEE testing systems having 30 buses, 57 buses,
and 118 buses. The proposed model outperforms the benchmark
models based on quick convergence and speed. The complex and
non-linear OPF problem is solved by Chen et al. (2017) through the
application of CSA with the combination of the feedback control
strategy and constraint domination rule (FCGCS). The validation
of CSA and FCGCS is carried out using standard IEEE testing
systems comprising 30 buses and 57 buses. The results prove that

a feasible solution and optimal settings for control variables are
provided by FCGCS. Pulluri et al. (2017) proposed a new approach
for resolving the multi-objective OPF problems. Three methods
are used to cut down on energy costs, power loss, and carbon
emissions. To verify the suggested approach’s resilience in terms
of resolving both multiple and single objective issues, the Algerian
59-bus system is employed. Enhanced self-adaptive DE with a
mixed crossover (ESDE-MC) is proved to outperform other two
techniques: enhanced self-adaptive DE (ESDE) and enhanced self-
adaptive DE with an eigenvector crossover (ESDE-EC). Another
approach used for solving multi-objective OPF problems is a
strength Pareto evolutionary algorithm (SPEA) (Yuan et al., 2017).
In the approach, the objectives are both carbon emission and energy
cost reductions. An enhanced SPEA method is also proposed for
solving multi-objective OPF problems. Reddy (2017) used two PEM
(2-PEM) and GA to schedule the flow of energy in solar, wind,
and thermal systems. OPF problems are modeled and resolved
for the intermittency of load demand, solar and wind with PDF.
Additional cost of adjusting energy consumption incurred due to
the RERs’ uncertainty is computed. However, the carbon emission
generated from non-RERs is tackled in the model. OPF problems
are resolved using a BSA technique with the modified IEEE system
having 30 buses (Shafiq et al., 2018).Three renewable generators are
added into the system instead of six thermal generators. Simulations
are performed to achieve the basic goals of the OPF problem,
i.e., power loss, carbon emission, and energy cost reductions.
The results prove that both cost and emissions are reduced
considerably.

InMallala andDwivedi (2022), for evaluation, a 30-bus standard
system is used. The suggested model includes a series capacitor
with a thyristor control. The technique that has been suggested
is used to identify the ideal control parameter settings. Next, the
single and multi-objective OPF issue is solved in Kaur and Narang
(2023) using the space transformational invasive weed optimization
(ST-IWO) method. Three typical IEEE bus systems are used to
assess the concept. Deng et al. (2023) proposed an ideal energy flow
model for multi-energy systems that takes N-1 component failure
into account. Particle swarm intelligent optimization uses a non-
convex and non-linear optimizationmodel to solve it.The improved
mayfly algorithm (IMA) is used in Ramesh et al. (2023) to get
the explored objective functions’ ultimate optimal resultants under
various load situations in a deregulated electrical power market.
The IEEE-30 bus system is utilized for the assessment. Furthermore,
included objective functions in the suggested study are the financial
value of generators, active power dissipation in transmission lines,
and voltage magnitude fluctuation. Additionally, a recently created
cuckoo search algorithm (CSA), being applied in Shaheen et al.
(2022), is used to locate the best solution for the probabilistic
OPF. The effects of intermittent solar and wind energy sources
are examined. In Premkumar et al. (2023) and Premkumar et al.
(2021), similar effort is made to address the OPF issue. To get more
optimized results with some different combinations of optimization
algorithms, this work presents various methods for solving the OPF
problems using JAYA, BSA, and HJBSA. The proposed work deals
with the following aspects:

• The constraints of the voltage bus are considered vital when
solving the OPF problems.
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FIGURE 1
Proposed system model.

• More power was lost in the existing works, so power loss is
minimized by the proposed model.
• Huge amounts of carbon were released by the existing systems,
so reduction in carbon emission is ensured.
• The cost of power generation in the existing systems was high,
so power generation cost is reduced.
• Improvement in the voltage profile is performed to minimize
the voltage deviation.

3 System architecture and formulation
of the OPF problem

The power flow system’s basic design is illustrated in Figure 1.
The power system is divided into two parts: the demand side
and supply side. The demand side comprises electricity demand
coming from industrial, commercial, and residential areas,
while the supply side comprises distribution, transmission,
and generation systems. The supply side faces sustainability,

reliability, and maintenance issues due to the increase in electricity
demand.

The OPF issue is assumed to be both concave and complicated
for the sake of solving the established objective functions.
Meanwhile, the system restrictions for equality and inequality are
also met. The objectives that are being taken into consideration in
the proposed work are discussed. The general formulation of an
OPF problem is given in Eq. 1.

Objective function

Minimize Fi (s,c) , i = 1,2,…,Nobj.
(1)

The previous equation is subjected to the following constraints:

E (s,c) = 0,

I (s,c) ≤ 0.
(2)

Here, Fi and Nobj are the selected objective functions and the
quantity of the optimized objective functions, respectively. E(s,c) is
the equality constraints’ set, I(s,c) is inequality constraints’ set, while
s and c represent the set of state variables and the set of control
variables, respectively (He et al., 2015).

3.1 State variables

The set of state variables, also known as the dependent variable,
denoted by s, is the set of variables, which gives the state of the
systems (Javaid et al., 2017a). In the proposed work, we consider
the state variables as the transmission line flow Sl, reactive power
generation Qg, voltage magnitude for load buses Vl, and a slack bus
that generates active energy Pslack.Therefore, the set of state variables
s is expressed using Eq. 3 (Mohamed et al., 2017).

s = [Sl Qg Vl Pslack] . (3)

3.2 Control variables

The set of non-dependent variables, known as control variables,
denoted by c, comprises adjustable variables that satisfy load
flow equations. The variables are shunt VAR compensation QC,
transformer tap settings T, generator bus voltage VG, and generator
active power output PG (Banerjee et al., 2022). So, the set of control
variables c is expressed using Eq. 4.

c = [T QC VG PG] . (4)

3.3 Objective functions

The objective functions of the proposed work are given as
follows.

3.3.1 Quadratic fuel cost function
The raise in fuel prices and load demand leads to the raise in

generation cost. Therefore, the objective for the base case of the
presented study is to minimize the generation fuel cost, which is
the most widely used objective function for an OPF problem where

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1170570
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Aurangzeb et al. 10.3389/fenrg.2023.1170570

each generator has its own cost curve. The cost functions for energy
generation via a thermal source are quadratic in nature and are given
using Eqs 5, 6 (He et al., 2015):

F1 (s,c) = Fuel Cost =
NTG

∑
i=1

fc, (5)

fc = ai + biPTGi + ciP
2
TGi. (6)

Here, F1(s,c), NTG, and fc are the cost function for energy
generated via a thermal source, the sum of thermal generating
units, and the cost of fuel for the ith thermal generator, respectively,
which are computed using Eq. 6. The sum of the output power is
represented as PTG, while ith thermal producer’s cost coefficients are
given by ai, bi, and ci.

3.3.2 Function of quadratic fuel cost with the
effect of the valve point load

The proposed objective functions aim to attain effective and
realistic computations of the basic fuel cost function by adding
the effect of the valve point load. Multiple valve steam turbines
via thermal producers establish a ripple-like effect, which leads
to variation in the fuel cost. The effect of valve point load is
computed using a recurring sinusoidal function. Hence, it can be
calculated by adding the sinusoidal function in the fuel cost function
using Eq. 7.

F2 (s,c) = Valve fuel cost

=
NTG

∑
i=1

ai + biPTGi + ciP2TGi

+ |di × sin(ei × (P
min
TGi − PTGi)) |. (7)

Here, di and ei are the used coefficients for calculating the effect
of the valve point load. Pmin

TGi is the least power value.

3.3.3 Carbon emission reduction
The emission of pollutant gases, such as sulfur oxides SOx,

nitrogen oxides NOx, and carbon dioxide CO2, happens as a result
of the burning of fossil fuels by thermal generators. The fuels are
burnt in order to produce electricity for consumers. According
to Javaid et al. (2017b), the second highest energy consumption
domain is the residential area that is both responsible for the
emission of pollutant gases and consumption of energy. Emissions of
these harmful gases increase with the increase in power generation.
With the emerging concern about controlling these emissions, the
objective function is formulated as given in Eq. 8.

F3 (s,c) = Emission =
NTG

∑
i=1
[(αi + βiPTGi + γiP

2
TGi) *0.01

+ωie(
μiPTGi). (8)

Here, the coefficients for the emissions are α, β, γ, and μ.
Because of the growth in pollutant gases’ emission and changes
in environmental weather such as global warming, many cities
are taking proactive measures to tackle the global warming issue.
Additionally, for motivating the users to use RERs, carbon tax is
applied for each emission per unit. The carbon tax values, Ctax, in
the proposed model, are assumed to be $20/ton. The emission cost
depending upon the carbon tax is computed using Eq. 9.

CE = Ctax.F3 (s,c) . (9)

3.3.4 Power loss reduction
There exists an inverse relation between the global demand for

electricity and its generation (Hafeez et al., 2018). Therefore, for
OPF problems, controlling the energy loss is imperative. The active
power loss mostly occurs during the operation of the power system.
The loss cannot be avoided as the transmission lines have some
permanent resistance (Biswas et al., 2019). In addition, the power
loss is proportional to the cost of energy generation. The network
power loss reduction is further referred to as one of the proposed
objective functions. The power losses are calculated using Eq. 10

F4 (s,c) = Ploss =
nl

∑
i=1

nl

∑
j≠1

GijV
2
i +V

2
j − 2ViVj cos(δij) . (10)

In the equation, the total number of network transmission lines is
nl, while the transfer conductance at buses i and j is given as Gij.
Vj and Vi represent the magnitudes of voltage at jth and ith buses,
respectively, while δij depicts the subtraction of voltage angles i and
j where δij = δi − δj.

3.3.5 Enhancement in the voltage profile
The bus voltage should stay within a safe range when there

is an OPF issue, according to the literature. Voltage deviation is
the term for the network’s method of measuring voltage quality. A
gasoline cost that is optimum is produced by the objective function
described in the base case. The accompanying voltage profile,
however, deviates from the desired level. So the enhancement in the
voltage profile is required to beminimized from 1.0 p.u. (Chen et al.,
2017). Eq. represents the objective function for minimizing the total
voltage deviation values. NL represents the total number of load
buses.

F5 (s,c) = VD =
NL

∑
i=1
|Vi − 1.0|. (11)

3.4 System constraints

When solving the OPF problems, the objective functions
depend on the aforementioned system constraints, i.e., equality and
inequality constraints.

3.4.1 Equality constraints
In the proposed system, the equations of energy balancing are

basically the equality constraints. The sum of the total reactive
and active power being generated is the same as the sum of
the total line loss and the total load demand. The equality
constraints for the reactive and active power are given in Eqs 12, 13,
respectively.

PGi − PDi −Vi

NB

∑
j=1

Vj [Gij cos(δij) +Bij sin(δij)] = 0, (12)

QGi −QDi −Vi

NB

∑
j=1

Vj [Gij sin(δij) +Bij cos(δij)] = 0. (13)

Here, the total number of the buses in the network is NB, while
the reactive and active power generations at i bus are QGi and PGi,
respectively. The reactive and active load demands at i bus are QDi
and PDi, respectively. The magnitudes of voltage at jth and ith buses
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are Vj and Vi, respectively.The bus susceptance between j and i, and
transfer conductance are Bij and Gij, respectively.

3.4.2 Inequality constraints
It is the collection of the constraints that define the operating

boundaries for the components of the power systems. The
constraints of the transmission lines and the load buses are security,
transformer, reactive and active outputs, voltage, and generator.They
are given using Eqs 14–18, respectively.

Pmin
TGi ⩽ PTGi ⩽ P

max
TGi , i = 1,…,NTG, (14)

Qmin
TGi ⩽ QTGi ⩽ Q

max
TGi , i = 1,…,NTG, (15)

Vmin
Gi ⩽ VGi ⩽ V

max
Gi , i = 1,…,NG, (16)

Vmin
Lp
⩽ VLp ⩽ V

max
Lp
, p = 1,…,NL, (17)

SLq ⩽ S
max
Lq
, q = 1,…,nl. (18)

Here, NG and NTG denote the number of generator buses
and thermal generators. Eqs 14, 15 represent the limits
on reactive and active power generated from the network,
respectively. Eq. 16 and Eq. 17 define the voltage constraint
of the generator bus and voltage limit of the load bus,
respectively. The constraint for line capacity is mentioned in
Eq. 18

4 Optimization algorithms

Population-basedmeta-heuristic algorithms are used for various
optimization purposes. These algorithms are categorized as swarm
intelligence and evolutionary algorithms (Rao, 2016). In this
proposed work, two meta-heuristic techniques, namely, BSA and
JAYA, along with a hybrid HJBSA are applied. Details of the
algorithms are mentioned in the following subsections.

4.1 BSA

BSA is basically a swarm intelligence algorithm used for
scheduling optimal energy generation units to minimize the cost of
operations.The algorithm is a bio-inspired technique, which is based
on behaviors and social interactions of bird swarms. BSA is proposed
based on swarm intelligence extracted from the social behaviors
and social interactions in bird swarms for continuous optimization
problems. Unlike other meta-heuristic algorithms such as PSO,
BSA exhibits fast convergence and high convergence precision.
The algorithm shows that birds have three types of behavior:
flight, vigilance, and forage behavior. To design the behavior and
interaction with swarm intelligence, four models with five rules are
developed (Meng et al., 2016). The models and rules are given as
follows.

4.1.1 BSA rules
The social behavior of bird swarm is divided into five basic rules.

1. Rule 1: The states of birds are easily switched between foraging
and vigilance behaviors. The behavior adopted by the birds is
taken as a static decision.

 1: Input:N: Number of individuals in a population

         M: Number of iterations

         FQ: Frequency of bird’s flight behavior

         P: Probability for food foraging

         C,S,a1,a2,FL: Constant parameters

 2: Initialize t = 0, population and all other

parameters

 3: Evaluate the fitness value of N individuals

 4: Find the best solution

 5: while t < M do

 6:  if mod FQ ≠ 0 then

 7:   for i = 1:N do

 8:    if rand(0,1) < P then

 9:     Birds will adopt the foraging behavior

using Eq. 19

 10:   else

 11:    Birds will adopt the vigilance behavior

using Eq. 21

 12:   end if

 13:  end for

 14: else

 15:  Divide the swarm into producers and

scroungers

 16:  for i = 1:N do

 17:    if i == producer then

 18:     Update the position of the producer using

Eq. 23

 19:    else

 20:     Update the position of the scrounger

using Eq. 24

 21:    end if

 22:   end for

 23:  end if

 24:  Evaluate the fitness

 25:  The solution is updated; if such a solution

is found that is better than the previous

solution

 26:  Find the current best

 27:  t = t+1

 28: end while

 29: Output: Individual from the population with

the best objective function value

Algorithm 1. BSA.

2. Rule 2: In forage, the prior best positions for every bird swarmand
the historical best experience of the food obtained are updated
and recorded. The recorded information is utilized for searching
of food. The recorded social information is distributed in the
swarms.

3. Rule 3: During the vigilance behavior, each bird moves to the
middle of the swarm and a competition takes place among the
birds. The birds that have a small reserve stay far away from the
middle of the swarm than those that have a huge reserve.
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TABLE 2 Standard IEEE system having 30 buses.

Characteristic system Value Details

Branches 41 -

Buses 30 -

Connected active load 283.4 MW -

Connected reactive load 126.2 MVAR -

Thermal generators 6 1st, 2nd, 5th, 8th, 11th, and 13th buses

Shunts 9 10th, 12th, 15th, 17th, 20th, 21st, 23rd, 24th, and 29th buses

Transformers 4 11th, 12th, 15th, and 36th branches

Bus voltage range - [0.94-1.06] p.u.

FIGURE 2
IEEE 30-bus single line diagram.

4. Rule 4: The states of the birds might change from the producers
to scroungers while they are flying to various locations. The
birds with high reserves are the producers, while those that have
low reserves are the scroungers. The birds with reserve values
within the defined low and high values are randomly selected as
scroungers or producers.

5. Rule 5: The birds that search for food are producers, while those
that follow the producers are called scroungers.

4.1.2 Implementation steps for BSA
The implementation steps of BSA are given as follows.

1. The system input data for lines, branches, generators, loads, and
system constraints are obtained.

2. The specific input parameters for the algorithm, like the number
of individuals in a population, number of iterations, and
population size, are used.

3. The individuals (birds) from the solution set are randomly
distributed throughout the solution space. Moreover, it is
randomly decided that what behavior should be adopted by the
birds, forage (search for the solution), vigilant (keep the solution
within the constraints), or flight behavior (search for a new and
better solution).

4. The algorithm is run using the initial objective function value,
and the aforementioned constraint limits are checked.

5. The best value for each individual from the solution set is
recorded and assigned as the producer. The producer looks for
a better solution in the neighborhood as compared to its current
position.

6. The new power flow solution is generated according to the
updated position. If the previous solution is not good as
compared to the new solution, the position of the producers and
the scroungers is updated. Otherwise, the previous position is
regarded as the best position.

7. As soon as the termination requirements are met, the number of
iterations is increased. Step 5 is followed when the termination
requirements have been satisfied.

Details of foraging, vigilance, and flight behavior of birds are given
in the following subsections.

4.1.3 Forage
N birds at time t in xti (where i ∈ [1,…,N]) in D dimensionality

space forage for food. As per the experience of each bird, it searches
for food. For this, Rule 2 can be formulated using Eq. 19

xt+1ij = x
t
ij + (pij − x

t
ij)*C*rand (0,1) + (gj − x

t
ij)*S*rand (0,1) . (19)

Here, rand(0,1) is a uniform distribution number between 0 and
1. S and C are integers that are used as coefficient values, pij is
the oldest best bird, gij is the oldest best swarm, and j ∈ [1,…,D].
However, Rule 1 is modeled as static decisions. If a random number
chosenwithin [0, 1] is less than a specific constant value, the birdwill
go for the foraging behavior; otherwise, it will adopt the vigilance
behavior.
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TABLE 3 Thermal generators’ cost and emission coefficients for the IEEE testing system having 30 buses.

Type & coefficient TG1 TG2 TG3 TG4 TG5 TG6

- & Bus 1 2 5 8 11 13

Cost & a 0 0 0 0 0 0

Cost & b 2 1.75 1 3.25 3 3

Cost & c 0.0375 0.0175 0.0625 0.00834 0.025 0.025

Valve point & d 18 16 14 12 13 13.5

Valve point & e 0.037 0.038 0.04 0.045 0.042 0.041

Emission & α 4.091 2.543 4.258 5.326 4.258 6.131

Emission & β −5.554 −6.047 −5.094 −3.55 −5.094 −5.555

Emission & γ 6.49 5.638 4.586 3.38 4.586 5.151

Emission & ω 2.00E-04 5.00E-04 1.00E-06 2.00E-03 1.00E-06 1.00E-05

Emission & μ 2.857 3.333 8 2 8 6.667

4.1.4 Vigilance
As stated in Rule 3, the birds compete with one another for

moving toward the middle of the swarm. However, the birds’
movement is not directed to the middle of the swarm. Therefore,

TABLE 4 Simulation results for Case 1.

Parameter Minimum Maximum JAYA BSA HJBSA

PTG1 0 360 260 260.2 260.2

PTG2 0 140 15.621 9.2488 9.4219

PTG5 0 100 5.994 1.0796 14.029

PTG8 0 100 2.178 5.1903 6.6291

PTG11 0 100 9.600 18.652 0.6924

PTG13 0 100 8.422 7.9557 4.6776

VTG1 0.94 1.06 1.06 1.06 1.06

VTG2 0.94 1.06 1.043 1.033 1.043

VTG5 0.94 1.06 1.01 1.01 1.01

VTG8 0.94 1.06 1.01 1.01 1.01

VTG11 0.94 1.06 0.94 0.99 1.0374

VTG13 0.94 1.06 1.01 0.96 1.0111

QTG1 0 10 7.6917 9.6649 0.39967

QTG2 −40 50 26.617 17.728 26.617

QTG5 −40 40 32.06 17.025 32.06

QTG8 −10 40 31.266 20.632 31.266

QTG11 −6 24 16.126 3.608 16.126

QTG13 −6 24 10.71 11.518 10.71

Cost ($/h) - - 862.31 900.01 860.54

Ploss (MW) - - 10.102 13.038 9.942

VD (p.u.) - - 0.9948 1.0987 0.9975

Emission (ton/h) - - 4.523 4.401 4.394

The bold value means important to be observed.

the value of the average fitness for the swarm is taken as the
indirect effect of the swarm’s surroundings, especially when any bird
moves toward the middle of the swarm. The scenario’s equation is
formulated using Eq. 20:

xt+1ij = x
t
ij +A1(meanj − x

t
ij)*rand (0,1)

+A2(pkj − x
t
ij)*rand (−1,1) . (20)

Here k(k ≠ i) is an integer that is randomly selected within the range
1 and N. The jth member for the average position is given bymeanj.
A1 andA2 values are computed using Eq. 21 and Eq. 22, respectively.

A1 = a1*exp(−(pFiti/(sumFit+ ε))*N) , (21)

A2 = a2*exp(((pFiti − pFitk)/(|pFitk − pFiti| + ε)

* (N*pFitk)/(sumFit+ ε))) . (22)

The two constant values, which are within the range of [0, 2], are a1
and a2.The best fitness value for the ith bird is Fiti, while the sum of
the best fitness values is sumFit. In the equation, to avoid zero error,
ɛ is utilized.

4.1.5 Flight
In case of an attack, the birds can fly to a different location.When

the birds reach the new location, they forage again. Some birds serve
as producers that find food, while the remaining serve as scroungers.
Afterward, the birds are separated from the swarm by applying Rule
4. The behavior of the birds is given using Eqs 23, 24.

xt+1ij = x
t
ij + randn (0,1)*x

t
ij, (23)

xt+1ij = x
t
ij + (x

t
kj − x

t
ij)*FL*randn (0,1) . (24)

From the equation, the Gaussian distribution with 1 as the
standard deviation and 0 as the mean is randn(0,1). The scrounger
follows the producer to search for the food. It is depicted as
k ∈ [1,2,3,…,N],k ≠ i,FL(FL ∈ [0,2]). The algorithm for BSA is
given in Algorithm 1. The proposed technique is evaluated in
MATLAB. The simulation results and evaluations are given in
Section 5.
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TABLE 5 Simulation results for Case 2, Case 4, and Case 5.

Parameter Case 2 Case 4 Case 5

JAYA BSA HJBSA JAYA BSA HJBSA JAYA BSA HJBSA

Cost ($/h) 890.24 929.21 883.72 912.36 896.54 882.85 910.52 898.45 890.45

Ploss (MW) 10.957 13.427 10.102 11.427 10.102 9.542 10.199 12.035 9.991

VD (p.u.) 0.9931 0.9037 0.9051 1.1009 0.8889 1.8560 0.9840 0.9846 0.9056

Emission (ton/h) 5.347 4.348 4.947 4.401 4.402 4.494 5.458 4.978 4.967

The bold value means important to be observed.

TABLE 6 Simulation results for Case 3.

JAYA BSA HJBSA

Total fuel cost without emission ($/h) 862.31 900.01 860.54

Total emission (ton/h) 4.401 4.524 4.394

Carbon tax imposed (ton/h) 88.019 90.498 87.893

Total fuel cost with carbon tax ($/h) 950.32 990.51 948.43

The bold value means important to be observed.

4.2 JAYA

In order to have a solution for unconstrained optimization
and complex constrained problems, a new algorithm based on
population is proposed in Shaheen et al. (2022); Deng et al. (2023).
The majority of the heuristic algorithms that are based on
populations utilize control parameters like the elite size and
population size. However, some algorithms need algorithm-specific
control variables such as the number of scout bees, employed bees,
and onlooker bees in ABC; pitch adjustment rate and harmony
memory adjustment rate in HAS;; cognitive, social, and inertia
weight in PSO; and crossover probability and mutation in GA. In all
these cases, proper adjustment of these parameters is essential for the
efficient performance of an algorithm. Keeping this factor in view,
JAYA is proposed. JAYA is a parameter-less algorithm that requires
no algorithm-specific parameters. However, only a few common
parameters like the number of generations and population size are
required. This is a simple and single-phase optimization technique
that uses the idea of moving toward the optimum solution while
ignoring the inferior solution.The pseudocode of JAYA is presented
in Algorithm 2.

4.2.1 Implementation steps for JAYA
1. The systems’ data like line data, bus data, branch data, load

data, system’s constraints, and coefficients are initialized. In
addition, the population sizeP, control variables k, minimumand
maximum boundariesmin andmax, the number of iterationsm,
and termination criteria are initialized.

2. The specific objective function is defined, given as Fi(s,c), which
is to be optimized.

3. The initial random population for the power flow systems is
generated between the defined limit of the variables using Eq. 25.
The corresponding values of cost, emissions, voltage deviations,
and power losses are recorded as the initial status.

 1: Initialize:P: Population size

             k: Number of design variables

             m: Number of iterations

             min ,max: Minimum and maximum values

of the design variables 

             Termination criteria

 2:    (Xj,best,i), (Xj,worst,i)=0

 3: f = ObjFun(x)

 4: Generate random population using Eq. 25

 5: Identify (Xj,best,i) and (Xj,worst,i)

 6: while gen < maxGen do

 7:  for i = 1:P do

 8:   for j = 1:d do

 9:    Set r1,j,i, r2,j,i

 10:    Update the initial candidate’s solution

using Eq. 26

 11:   end for

 12:   if X′
j,k,i < Xj,k,i then

 13:    Xk,i+1 = X
′
j,k,i

 14:   else

 15:    Xk,i+1 = Xj,k,i
 16:   end if

 17:  end for

 18:  gen = gen+1

 19:  Update (Xj,best,i) and (Xj,worst,i)

 20: end while

 21: Check the termination criteria for the best

value of the ObjFun(x)

 22: Output: Individual with the minimum value of

objective function

Algorithm 2. JAYA.

Xi,j = X
min
j + rand (.) [X

max
j −X

min
j ] . (25)

Here, rand(.) is the random population between 0 and 1.

4. From the candidate solutions, the worst and the best solutions are
identified on the basis of the selected objective functions.

5. The solutions of the initial candidate are updated on the basis of
the worst and the best solutions using Eq. 26.

X′j,k,i = Xj,k,i + r1,j,i [(Xj,best,i) − (|Xj,k,i|)]

− r2,j,i [(Xj,worst,i) − (|Xj,k,i|)] . (26)
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FIGURE 3
IEEE 30-bus voltage profile.

FIGURE 4
IEEE 57-bus single line diagram.
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TABLE 7 Standard IEEE system having 57 buses.

Characteristic of the system Value Details

Branches 80 -

Buses 57 -

Connected active load 1250.8 MW -

Connected reactive load 336.4 MVAR -

Thermal generators 7 1st, 2nd, 3rd, 6th, 8th, 9th, and 12th buses

Shunts 3 18th, 25th, and 53rd buses

Transformers 17 19th, 20th, 31st, 35th, 36th, 37th, 41st, 46th, 54th, 58th, 59th, 65th, 66th, 71st, 73rd, 76th, and 80th buses

Load bus voltage range allowed - [0.94–1.06] p.u.

 1: Input: Take the output values from BSA

    (Algorithm 1)

 2: Identify (Bbest) and (Bworst) from the solution

 3: for i = 1:P do

 4:  Update the existing solutions using Eq. 27

 5:  if Xi(new) < Xi(prev) then

 6:   Xi+1 = Xi(new)

 7:  else

 8:   Xi+1 = Xi(prev)

 9:  end if

10: end for

11: i = i+1

12: Update (Bbest) and (Bworst)

13: Verify the stopping criteria if the minimum

    value is achieved

14: Output: An individual that has the minimum

    objective function value

Algorithm 3. HJBSA.

Here, the value of the updated jth variable is X′j,k,i. r1,j,i and r2,j,i lie
between (0,1) and regarded as the two numbers being generated
randomly. However,Xj,worst,i andXj,best,i are the worst and the best
values for the jth design variable, respectively.

6. The power flow is executed using the updated population, and the
objective function values are calculated.

7. Better solutions of the objective functions are checked for each
candidate solution. If new solutions are better, prior solutions are
replaced by them; otherwise, prior solutions are used.

8. The steps are repeated until the termination criteria for finding
the minimum value are satisfied. Once, the criteria are satisfied,
Step 4 is followed.

4.3 HJBSA

To further increase the robustness of the proposed techniques,
HJBSA (a hybrid of JAYA and BSA) is formulated.The output of BSA
algorithm is used as an input to the HJBSA algorithm. Some steps
of JAYA are applied to get a more optimized value for the objective

function. The steps for HJBSA are mentioned in Algorithm 3. The
basic steps that are involved in the hybrid approach are as follows.

1. The output solution from BSA is obtained as an input population
for HJBSA.

2. The worst (Bworst) and the best (Bbest) candidates from the set of
solutions are identified.

3. Based on the worst and best values, as provided in Eq. 27, the
current answers are updated.

Xi (new) = Xi (prev) +w1[(Bbest) − (|Xi (prev) |)]

−w2[(Bworst) − (|Xi (prev) |)] . (27)

4. For each Xi(new), whether the new solutions are better than the
old solutions or not is checked.

5. If the previous solutions are not better than the new solutions,
then the best solutions will change to the new solutions;
otherwise, the prior solutions will remain the best.

6. The best and worst solutions are updated.
7. The stopping criteria will be checked if it is satisfied; otherwise,

the process will continue from Step 4.

5 Discussion of simulation results

In the proposed work, the scheduling approaches are applied
on both IEEE systems having 30 buses and 57 buses and their
performance is evaluated. Several case studies are performed
to achieve the stated objectives, i.e., cost reduction, voltage
profile improvement, power loss reduction, and carbon emission
minimization. Case 1 indicates the result of the basic fuel cost
function, as given in Eq. 5. However, Case 2 shows the effect of
adding the valve point load in the function of the basic fuel cost,
as mentioned in Eq. 7. Reductions of carbon emission and power
loss are discussed in Case 3 and Case 4, respectively. The result for
the improvement of voltage profile is mentioned in Case 5. After
applying the aforementioned optimization techniques for different
objective functions, the obtained simulation findings are compared
and the results are discussed in the following subsections.

Simulations are performed on a PC having AMD A8-4500M
1.90 GHz processor, 12.0 GB RAM, and a 64-bit operating system.
Implementation is carried out using a MATLAB environment.
Running each case for at least five times ensures the validation of
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TABLE 8 Thermal generators’ cost and emission coefficients for the IEEE testing system having 57 buses.

Type and coefficient TG1 TG2 TG3 TG4 TG5 TG6 TG7

- & Bus 1 2 3 6 8 9 12

Cost & a 0 0 0 0 0 0 0

Cost & b 2 1.75 3 2 1 1.75 3.25

Cost & c 0.0375 0.0175 0.025 0.0037 0.0625 0.0195 0.0083

Valve point & d 18 16 13.5 18 14 15 12

Valve point & e 0.037 0.038 0.041 0.037 0.04 0.039 0.045

Emission & α 4.091 2.543 6.131 3.491 4.258 2.754 5.326

Emission & β −5.554 −6.047 −5.555 −5.754 −5.094 −5.847 −3.555

Emission & γ 6.49 5.638 5.151 6.39 4.586 5.238 3.38

Emission & ω 2.00E-04 5.00E-04 1.00E-05 3.00E-04 1.00E-06 4.00E-04 2.00E-03

Emission & μ 2.86E-01 3.33E-01 6.67E-01 2.66E-01 8.00E-01 2.88E-04 2.00E-01

the proposed solution. In the proposed work, it is observed from the
simulations that JAYA converges after 10 iterationswith a population
size of 5. Similarly, for the population size of 30, the convergence
speed of BSA is 100, and for HJBSA, with a population size of 30,
the convergence speed is 30.

5.1 IEEE test case comprising 30 buses

It essentially depicts a section of the American electric
power infrastructure as of December 1961 (Electrical Engineering,
2023). The IEEE 30-bus testing system comprises 41 branches, 4
transformers, 21 load buses, and 6 generator buses (Banerjee et al.,
2022), as depicted in Table 2, the key features for the IEEE testing
systems with 30 buses.

The proposed work considers six generators that are located
at different buses, i.e., 1, 2, 5, 8, 11, and 13. These generators run
on fossil fuels. The total system load demand for active power
is 286.4 MW, and for reactive power, is 126.2 MVAR. For both
generator buses and load buses, themaximumand the lowest voltage
thresholds are thought to be 0.94 p.u. and 1.06 p.u., respectively.
Figure 2 (Mohamed et al., 2017) depicts the IEEE 30-bus single
line system architecture. Table 3 lists the cost and carbon emission
factors that were used in the simulation procedure. To optimize
a power generation system, the aforementioned three algorithms
are applied on the standard IEEE test system that uses 30 buses.
The results achieved for various objective functions are tabulated in
Tables 4–6.

5.1.1 Case 1: generation cost minimization
In the proposed work, we solve the OPF problems using the

basic quadratic cost minimization function, as presented in Eq. 5.
Simulations are performed for JAYA, BSA, and HJBSA algorithms.
The resulted values of the total generation cost and optimal
adjustment of control variables alongwith the remaining parameters
are presented in Table 4. The algorithms’ results are obtained and
compared based on the computational time and cost. HJBSA’s fuel
cost is 860.54 $/h, JAYA’s fuel cost is 862.31 $/h, and BSA’s fuel
cost is 900.01 $/h. The average computational time calculated in

the proposed scenario for HJBSA is 6.783 s, for JAYA is 9.995, s
and for BSA is 7.825 s. JAYA is the algorithm that only requires
control parameters and no algorithm-specific parameters.This thing
enhances JAYA’s effectiveness as compared to BSA. On the other
hand, BSA might get trapped into the local minima and provide
premature convergence. To overcome this risk, HJBSA is proposed.
The obtained results prove the supremacy of the hybrid algorithm
over JAYA and BSA due to less computational time and reduced
generation cost.

5.1.2 Case 2: fuel cost minimization while the
effect of the valve point load is considered

In Case 2, the sinusoidal term is added to the basic cost
function. The effect of valve point load on the generation sources
is considered for better reflection of the actual cost curve to have
more realistic results (Chen et al., 2017). The objective function
for Case 2 is considered to be non-linear, as given in Eq. 7.
Simulations are performed for HJBSA, JAYA, and BSA algorithms
while incorporating the effect of valve point load. Table 5 comprises
the obtained results. The cost coefficients used to calculate the effect
of valve point load are mentioned in Table 3. The fuel cost for all
the three algorithms is increased up to a certain level as compared
to the base case. However, HJBSA outperforms JAYA and BSA in
terms of generation cost. The fuel cost for HJBSA with the addition
of the valve point loading effect is increased up to 883.72 $/h,
while the fuel cost of JAYA and BSA is 890.24 $/h and 929.21 $/h,
respectively.

5.1.3 Case 3: reduction in carbon emission
Due to the emerging concerns related to the environment, this

case focuses on the reduction of carbon emissions by imposing a
carbon tax on the amount of gases emitted from thermal generators.
The total fuel cost including the carbon tax is calculated using Eq. 8.
The carbon tax rate used in the study presented is estimated to
be $20 per ton. Table 6 shows the outcomes that were attained.
The HJBSA algorithm outperforms JAYA and BSA in terms of
emission reduction while still meeting the aforementioned system
restrictions, as can be deduced from the table.
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TABLE 9 Simulation results for Case 6.

Parameter Minimum Maximum JAYA BSA HJBSA

PTG1 0 575.88 575.88 555.88 575.88

PTG2 0 100 69.88 100 59.457

PTG3 0 140 17.049 138 97.693

PTG6 0 100 74.408 61.897 72.434

PTG8 0 550 124.44 78.623 13.525

PTG9 0 100 77.863 100 7.8046

PTG12 0 410 338.93 400 332.89

VTG1 0.98 1.04 1.04 1.04 1.04

VTG2 0.98 1.04 1.01 1 1.01

VTG3 0.98 1.04 0.985 0.975 0.985

VTG6 0.98 1.04 0.98 0.97 0.98

VTG8 0.98 1.04 1.005 0.995 1.005

VTG9 0.98 1.04 0.98 0.97 0.98

VTG12 0.98 1.04 1.015 1.005 1.015

Tap19 0.98 1.04 0.94945 0.98498 0.98177

Tap31 0.98 1.04 0.99121 1.0219 0.97879

Tap35 0.98 1.04 1.0233 0.95563 0.94362

Tap36 0.98 1.04 1.0118 0.97001 0.94261

Tap37 0.98 1.04 0.94935 0.97064 1.0048

Tap41 0.98 1.04 0.97882 1.0143 0.9497

Tap46 0.98 1.04 0.9612 0.96599 0.95135

Tap54 0.98 1.04 0.99535 1.0153 0.98132

Tap58 0.98 1.04 1.0373 1.033 1.0346

Tap59 0.98 1.04 0.96995 0.97951 1.0117

Tap65 0.98 1.04 0.9612 0.96103 0.98856

Tap66 0.98 1.04 0.96328 1.0153 0.98132

Tap71 0.98 1.04 0.941 1.0052 0.95048

Tap73 0.98 1.04 1.0398 1.0318 1.0047

Tap76 0.98 1.04 1.0297 1.0025 1.0271

Tap80 0.98 1.04 1.0297 1.0025 1.0045

Cost ($/h) - - 6237.4 7245.6 5506.9

Ploss (MW) - - 16.856 17.612 15.256

VD (p.u.) - - 0.9936 1.3568 0.9997

Emission (ton/h) - - 28.065 29.915 26.249

The bold value means important to be observed.

5.1.4 Case 4: reduction in power losses
In any transmission network, power loss is one of the major

issues. To control the active power loss, an objective function
is used, given in Eq. 10. The optimal values obtained while
incorporating the power loss objective function are tabulated
in Table 5. The total power loss is reduced up to 9.542 MW
when the OPF problem is solved for HJBSA, 10.102 MW for

TABLE 10 Simulation results for Case 8.

JAYA BSA HJBSA

Total fuel cost without emission ($/h) 6237.4 7245.6 5506.9

Total emission (ton/h) 27.014 29.568 26.249

Carbon tax imposed (ton/h) 540.27 591.36 524.97

Total fuel cost with carbon tax ($/h) 6777.6 7836.9 6031.9

The bold value means important to be observed.

JAYA, and 11.427 MW for BSA. From the simulation results’
comparison, it is observed that HJBSA has the minimum power
loss. On the contrary, the JAYA algorithm has the maximum power
loss.

5.1.5 Case 5: improvement of the voltage profile
The increase in bus voltage is one of the key factors in OPF. The

voltage profile values may go over the specified thresholds when
solely cost- or emission-based objectives are taken into account.
Using Eq. (11), the techniques are applied to the IEEE 30-bus test
case. Bus voltage operating levels are “kept in between” 0.94 p.u.
and 1.06 p.u. Additionally, the suggested aim function for the cost of
gasoline is minimized. Figure 3 shows the profile of voltage utilizing
HJBSA, JAYA, and BSA. The total voltage deviation for HJBSA is
observed to be 0.9056 p.u., for JAYA to be 0.9840 p.u., and for BSA
to be 0.9846 p.u. Hence, all of the applied algorithms significantly
improve the voltage profile.

5.2 IEEE 57-bus test case

A simple American power network was represented by
the standard 57-bus IEEE testing system in the early 1960s
(Illinois Center for a Smarter Electric Grid ICSEG, 2023). A huge
power system that consists of 57 buses is used to verify the
algorithms’ scalabilities. There are more number of control
parameters for the testing system having 57 buses as compared
to the system having 30 buses. The standard IEEE system having
57 buses comprises seven generators and 80 transmission lines at
different bus locations, i.e., 1, 2, 3, 6, 8, 9, and 12. In the proposed
work, we consider shunt reactive power sources at buses 53, 25,
and 18. Moreover, 336.4 MVAR and 1250.8 MW are the total load
demands for the energy system.Themaximumandminimum limits,
cost coefficients, line data, and bus data on actual energy generated
are given in Banerjee et al. (2022). The single line structure for
IEEE 57-bus is shown in Figure 4 (Power, 2023). The bus voltages
are constrained between 0.98 p.u. and 1.04 p.u. for generator and
load buses, respectively. System characteristics for the IEEE testing
system having 57 buses are mentioned in Table 7. In order to get the
optimized results for the 57-bus test system, three of the mentioned
algorithms are applied and the corresponding values are observed.

5.2.1 Case 6: generation cost minimization
The OPF problems are solved using the standard IEEE system

having 57 buses for Eq. 5. Cost coefficients utilized for the
implementation of the proposed model are presented in Table 8.
The simulation results for HJBSA, JAYA, and BSA are mentioned in
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TABLE 11 Simulation results for Case 7, Case 9, and Case 10.

Parameter Case 7 Case 9 Case 10

JAYA BSA HJBSA JAYA BSA HJBSA JAYA BSA HJBSA

Cost ($/h) 8187.2 7682.2 5668.6 9587.1 9156.2 8965.6 6436.7 6652.8 6418.5

Ploss (MW) 15.856 22.895 20.184 20.552 18.638 13.473 17.185 14.125 16.895

VD (p.u.) 1.1005 0.8702 0.9875 1.4589 1.2487 1.2265 0.9904 0.9837 0.5250

Emission (ton/h) 27.895 30.715 29.256 27.864 27.756 31.897 29.258 30.789 26.978

The bold value means important to be observed.

FIGURE 5
IEEE 57-bus voltage profile.

Table 9, representing the optimized values for cost, emission, and
control variables.The results for the algorithms are compared, and it
is found that the total fuel cost obtained for HJBSA is 5506.9 $/h, for
JAYA is 6237.4 $/h, and for BSA is 7245.6 $/h. By the obtained results,
it is shown that the implemented algorithms providemore variations
in the obtained cost. This depicts that in large power systems, these
algorithms provide more realistic results with considerable amount
of cost savings.

5.2.2 Case 7: fuel cost minimization while the
effect of valve point load is considered

The effect of adding the sine function in the basic fuel cost
objective function for the valve point load is observed in Case
7. The cost coefficients used for calculating the effect of valve
point load are mentioned in Table 8. Simulations are performed
while incorporating the effect of valve point load, and the
minimum fuel cost is obtained by HJBSA, i.e., 5568.6 $/h, while
for JAYA and BSA, the fuel cost is 8187.2 $/h and 7682.2 $/h,
respectively.

5.2.3 Case 8: reduction in carbon emission
To control the carbon emissions, a carbon tax is imposed upon

emitted harmful gases. The amount of tax is included in the basic
cost function, as mentioned in Eq. 8. The carbon tax rate in this

scenario is considered to be $20/ton. The obtained results are
displayed in Table 10. The HJBSA algorithm shows better results in
terms of emission reduction as compared to BSA while fulfilling the
mentioned system constraints. The total cost along with carbon tax
forHJBSA is 6031.9 $/h, for JAYA is 6777.6 $/h, and for BSA is 7836.9
$/h.

5.2.4 Case 9: reduction in power losses
Power loss is minimized using Eq. 10, as discussed in Case 4.

The values obtained while incorporating the power loss objective
function are tabulated in Table 11. The power loss value obtained
for HJBSA is 13.473 MW, for JAYA is 20.552 MW, and for BSA is
18.638 MW.

5.2.5 Case 10: voltage profile improvement
The constraints of the voltage bus are considered vital when

solving the OPF problems. It is because the operating voltage values
are sometimes found to be very close to the given thresholds.
Therefore, the voltage bus-operating values are kept within the range
of 0.98 p.u. and 1.04 p.u.. Figure 5 shows the individual voltage
profiles for three different schemes, JAYA, BSA, and HJBSA, with
respect to the IEEE 57-bus testing system. All schemes exhibit
similar behavior with a slight voltage deviation, which depicts the
performance of each scheme. It is observed that the voltage deviation
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for HJBSA is 0.5250 p.u., for JAYA is 0.9904 p.u., and for BSA is
0.9837 p.u..

6 Conclusion and future work

The applications of the innovative population-based algorithms
BSA, JAYA, and the suggested hybrid HJBSA for addressing OPF
issues are shown in the paper under consideration. The resilience
assessment is performed in the proposed work. Optimization and
evaluation of five diversified objective functions are carried out
for both IEEE 30- and 57-bus systems while keeping in view the
mentioned system constraints. From the comparison results, HJBSA
proves to bemore efficient and robust as compared to JAYA and BSA
in terms of minimization of fuel cost and power loss, and reduction
in carbon emissions. Moreover, it is observed and concluded that
these implemented methods provide more realistic and effective
results when dealing with large-scale power systems. In the future,
the standard bus test systems can be modified with the integration
of RERs to further minimize both the fuel cost and the carbon
emissions. In addition, hybridization of the proposed algorithms to
enhance optimization capability, controlling the fast convergence of
JAYA, and the use of fuzzy techniques can be studied.
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