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In recent years, the power market and regional distributed energy systems (RDES) in
Chinahaveexperiencedconsiderable growth.However, the critical issueof howmulti-
stakeholder parties within the distributed energy system evaluate risk preferences in
order to develop scientifically sound trading strategies remains unclear. To address this
problem, this study constructs a multi-agent assisted decision-making model that
incorporates the critical features of a regional distributed energy system. By simulating
various calculation scenarios using this model, the study aims to provide a better
understanding of the system’s multi-agent interactions and decision-making
processes. First, different types of stakeholders and risk preferences in RDES are
delineated. Second, supply and demand fluctuations in RDRS are treated and the
impact of wholesale market price volatility risk on distributed energy system
aggregators (DERA) decisions is fully considered. Meanwhile, a multi-stakeholders
DERA transaction decision-making model in the day-ahead market considering risk
preference behaviors is constructed based on information gap decision theory (IGDT)
and solved by the Opposition Learning Grey Wolf Optimizer (OLGWO). The
mathematical analysis conducted in this study indicates that the approach
proposed could provide an effective trading scheme and operational strategy for
multi-interest entities participating in themarket of RDES. Therefore, incorporating the
proposed approach would be beneficial in enhancing the performance and
effectiveness of such systems.
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1 Introduction

With the continuous promotion of China’s “double carbon” goal, China has put forward a
strategy to build a new power system that promotes the consumption of new energy, with RDES
becoming an important component. These systems not only play a key role in the consumption
of new energy, but also offer flexible regulation capacity. As they gradually expand, many
development challenges have emerged. Firstly, China’s market types are diverse and the
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complexity of the market is increasing, which poses a challenge to the
ability of distributed energy systems to participate in the market.
Secondly, the current distributed energy trading system in China
lags behind, with no perfect institutional system in place. As a
result, the trading format of distributed resources is not fixed.
Thirdly, the construction of RDES involves a high investment cost
and is not carried out by a single subject, but by multi-stakeholders,
which poses a greater challenge for developing trading strategies for
distributed energy systems with multiple interest subjects. P2P or P2G
transaction mode design of shared energy storage or shared energy
storage with multiple agents in RDES (Rodrigues et al., 2020; Zheng
et al., 2022), Demand response service mode analysis based on
intelligent contract (Di Silvestre et al., 2020), P2P transaction
research with electric vehicles (Kang et al., 2017), etc. The research
on the trading strategy of distributed resources mainly focuses on the
operation strategy of independent wind and PV generation units,
microgrids (Nguyen and Le, 2014; Mirzaei et al., 2020) or virtual
power plants (Mashhour and Moghaddas-Tafreshi, 2010; Sadeghi
et al., 2021), and so on, which is the basis for the decision-making
of trading declarations. However, this kind of research ignores the risk
preference of decision makers in the complex market environment and
the subjective psychological factors facing risks. Therefore, it is
necessary to study the power transaction assistant decision-making
problem of DERA in depth.

As the world’s electricity market continues to improve and develop,
formulating reasonable trading strategies for market players to better
participate in themarket has become a key focus of research. Traditional
power generation enterprises have been the main focus of research on
market trading strategy, with various bidding strategy formulation
methods being proposed. These methods include transaction strategy
formulation models that consider cost (Yang et al., 2020), transaction
strategy formulation models that consider unit optimal operation (An
et al., 2020; Shamsi and Cuffe, 2021), transaction strategy formulation
models based on game theory (Jin et al., 2020; Wu et al., 2020), and
transaction strategy formulation models based on agent simulation
(Monroe et al., 2020; Shinde et al., 2021).

The trading strategies can be divided into two categories: those
based on financial information and those based on market behavior.
The first model of trading strategy formulation focuses on the
operating characteristics of the entity and the financial information
of the market subject itself. This enables it to identify more accurate
financial cost information, including marginal cost and electricity
gross profit. Based on this information, themodel formulates themost
economically valuable trading strategy to reflect the enterprise’s value
participating in the transaction. This model tends to give more
importance to its financial operations and ignore the impact of
other market subjects decision-making on the trading plan.
Overemphasis of enterprises’ cost structure leads to conservative
decision-making schemes and underutilization of the bidding space
of market players. The second model of trading strategy emphasizes
the game behavior amongst market players, leveraging the interactive
relationship between them to identify the best trading strategy at
market equilibrium. Such schemes can better reflect the market’s
interaction and ensure the trading strategy to be implemented in the
market. However, these schemes generally use their marginal costs as
the game’s boundary condition. This approach may not fully reflect
their financial situation and may result in financial and trading
strategies predicting unequal returns.

However, there have been relatively few studies on the transaction
decision-making of new energy due to the instability of its output. The
new energy participation in the market mainly adopts the form of
volume non-quoting. Therefore, it is more important for new energy
participation in the market to formulate a reasonable output plan and
reduce deviation assessment (Lu et al., 2021; Yu. et al., 2021). Some
experts have proposed using the output of distributed energy systems
as the income function of the game, taking the market transaction
price and social welfare as the basis for formulating a reasonable
trading strategy through market equilibrium theory. This model helps
to improve the income of the distributed energy system (Li et al., 2017;
Wang et al., 2021; Yang et al., 2022). However, this model requires a
comprehensive understanding of the market, a large amount of data,
and higher prediction accuracy of new energy output. It is not possible
to fully trial the distributed energy system, and the composition of
many distributed energy systems is more complex, making multi-
agent collaborative decision-making more important (Fang et al.,
2021; Sun et al., 2022; Wang et al., 2022a; Wang. et al., 2022a; Zhu
et al., 2022). Therefore, this paper focuses on the trading decisions of
multi-stakeholders in distributed energy systems and their behavioral
preferences to achieve multi-stakeholder trading strategies.

Currently, research on distributed energy trading focuses on
centralized dispatch or single-entity internal operation, and
generally verifies the validity of the model through arithmetic
analysis and sensitivity analysis (Golla et al., 2022; Yu et al.,
2022). Some studies model the problem of joint bidding for
multiple resources, but most of them are based on an overall
single decision preference, without considering the impact of
individual risk preference differences within the system on
unified decision-making (Ullah et al., 2022; Yan et al., 2022).
With the development of RDES, the system will present the
characteristics of multi-investors in the future (Lei et al., 2021). It
is very difficult for RDES to determine the trading strategy based on
the single risk preference of aggregators. Therefore, research on the
influence of the risk preference of different trading agents on RDES’s
trading decision is of great significance to promote the sustainable
development of the system.

This paper constructs an auxiliary decision-making model for day-
ahead trading based on the risk preferences of different subjects,
considering the development trends of RDES and the electricity
market, as well as the RDES trading characteristics with multi-
stakeholders. To develop scenarios for wind and solar output and
load, FCM is initially used. Subsequently, a decision optimization
model for day-ahead trading and a day-ahead trading cost function
are constructed to minimize the overall operating cost of RDES. The
IGDT model is then used to quantify the deviation between the day-
ahead clearing price and predicted price. The proposed day-ahead
trading decision model, which considers multi-stakeholders’ risk
preferences, is based on the IGDT model. Finally, computational
examples are used to analyze the range of fluctuations of uncertainty
factors and the decision results of the subject under the given expectation
to verify the validity of the proposed model.

This paper addresses the need to develop an effective trading
strategy for the distributed energy system in China by considering
the risk preferences of different stakeholders. The research focus is to
construct an auxiliary decision-making model that takes into
account the transaction characteristics of each interest subject in
the distributed system. Several innovative points are presented.
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Firstly, while most research on distributed energy systems
concentrates on optimizing their operation, this paper proposes an
optimizationmethod for developing spot trading decision schemes for
distributed energy systems, which can provide a useful reference.

Secondly, given the complex composition structure of China’s
distributed energy system, with mixed investment as the norm, all
parties’ transaction characteristics need to be considered to ensure
successful trading.

Therefore, the paper adopts the IGDT model, combines the
risk preference characteristics of different stakeholders, and tests
various combination schemes to verify the effectiveness of the
trading strategy. Lastly, since a complete trading rule has not
been formed for the distributed energy system, and the data
involved are complex and uncertain, the paper uses FCM and
OLGWO to improve the accuracy of the model solution when
dealing with output prediction and trading decision-making,
respectively.

2 Distributed energy system trading
model and system information
uncertainty handling

2.1 Distributed energy system trading model

With the accelerated process of China’s electricity market, it
is possible to allow various types of DERA to participate in

power trading in the regional wholesale market in the future. In
this paper, we focus on the auxiliary decision-making problem
of RDES participation in the day-ahead spot market. Based on
the experience of domestic and foreign power market
construction and the current situation of related research,
this section proposes a trading model in which RDES
follows the principle of “self-generation and surplus power
online” in the power market, and the grid underwrites the
deviated power for point-to-point trading. In other words, the
system’s internal renewable energy output is prioritized for
consumption, and the under/over-generated portion is
purchased/sold from the main grid. Distributed energy
sources (DES) participate in the main grid wholesale
electricity market through DERA, where system internal
entities are free to trade directly (Guerrero et al., 2020).
Taking the RDES containing multiple interest subjects as an
example, its transaction model is shown in Figure 1. Where
①-③ represent the interest subjects that trade through DERA.

DERA is responsible for organizing the internal power
transactions of RDES and has certain management control
authority over internal resources. In addition, DERA is
responsible for developing the system’s external trading strategy
and for the rational allocation of system revenues and costs. The role
of DERA in RDES is shown in Figure 2.

Berkeley Laboratory’s article “Location Value of Distributed
Energy” highlights that the initial investment required for a
distributed energy system is relatively high, making it more

FIGURE 1
Electricity trading mode of RDES with multi-stakeholders.
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suitable for economically developed regions. Based on the
experience from the construction of Zhucheng in Shandong
and Jiangshan in Zhejiang, the installation of distributed
energy systems in China entails collaborative investments and
construction among multiple stakeholders. This not only
reduces the risk of installation but also enhances its
feasibility. Distributed energy systems are characterized by
decentralization, which means that they do not operate as the
centralized management of a few experienced technicians but as
a decentralized strategy. This leads to various systems during the
operation and transaction processes. Considering the
characteristics of the decentralized operation and the
behavior of the different stakeholders within the system,
implementing market transactions based on a single subject is
not suitable for the current construction of distributed energy
systems. It cannot provide feedback on the behavioral
characteristics of internal system stakeholders, nor does it
completely reflect the decentralized management
requirements of distributed energy systems. A risk preference
analysis of the various stakeholders in distributed energy
systems can refine the risks involved and increase system
operational efficiency.

2.2 Uncertainty treatment of system supply
and demand and market price fluctuation

The main risk concerns for RDES to engage in power trading are
the market price ambiguities and system supply and demand.
Forecasting unit output, electricity load, and market price, as well
as addressing unknown elements such as forecasting deviation, are
critical components of DERA’s day-ahead trading decision.
Therefore, first, the scenarios of RDES supply and demand
fluctuation are reduced using FCM, and a typical wind power
and PV output scene are proposed. Second, under limited
information, the uncertainty of market price fluctuations is
handled using IGDT to provide a decision basis for DERA
participation in day-ahead trading.

2.2.1 Uncertainty treatment of system supply and
demand fluctuation

In a regional distributed energy system, the fluctuation in
supply and demand mainly arises from the variations in the
output of distributed wind power and photovoltaic units, as well
as the changes in energy consumption behavior of users in the
system. Presently, the commonly used methods to address the
variability in output scenarios are largely based on probability
density functions. Thus, this section employs the Fuzzy C-Means
Clustering (FCM) algorithm to cluster historical data of output
and load, in order to obtain typical scenarios of supply and
demand in the regional distributed energy system, along with
their probabilities of occurrence. This transformation of
uncertain scenarios into strategic problems under
deterministic scenarios is intended to provide a more reliable
and efficient approach for managing the system’s energy
fluctuations. The FCM algorithm was first proposed by E.
Ruspini and then further developed into a fuzzy clustering
algorithm by J. C. Dunn and J. C. Bezdek from a hard
clustering algorithm. Unlike the traditional K-means
clustering method, the FCM algorithm employs fuzzy
mathematics and utilizes a membership function to represent
the degree of membership of data points and clustering centers.
For a given sample, i � 1, 2,/n, the general process of FCM
algorithm consists of the following steps:

1) Initialization of the membership matrix. The initial
membership matrix is generated using random numbers in the
range of [0, 1], and it satisfies Eq. 1.

∑m
j�1
uij � 1,∀i ∈ 1, 2, . . . , n[ ] (1)

Where uij denotes the degree to which sample xi belongs to
cluster j.

2)The FCM algorithm involves calculating the clustering center
using the following Eq. 2:

cj �
∑n

i�1u
β
ijxi∑n

i�1u
β
ij

(2)

The parameter β in represents the degree of fuzziness, where
β> 1 corresponds to the traditional FCM algorithm.

3)Calculating the objective function value, which is defined
by Eq. 3.

J � ∑n
i�1
∑m
j�1
uβ
ijd

2
ij (3)

Where, dij � ‖xi − cj‖.

4)Update the membership matrix by applying Eq. 4.

uij � 1/∑m
k�1

dij

2
/β−1

dik
(4)

5)Repeat the iteration steps (2)–(4), so that the objective
function value is continuously reduced until convergence.

FIGURE 2
The role of DERA in RDES.
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The FCM algorithm is an unsupervised fuzzy clustering method,
which means it does not require human intervention during the
algorithm implementation process. However, the algorithm does
have some limitations, such as the requirement to set parameters in
advance, and the initial selection of parameters can have an impact
on the clustering results.

2.2.2 Uncertainty treatment of market price
fluctuation

China’s electricity spot market is still in its early stages of
development. The price mechanism of China’s distributed energy
trading market requires improvement, and the trading data are
insufficient to accurately describe the impact of market price
fluctuations on trading decisions. Therefore, considering that the
IGDT model does not need to rely on large-scale data for
probabilistic statistical analysis, this paper employs the IGDT
model to deal with the uncertainty of market price fluctuations in
the case of limited market information to provide a scientific
foundation for RDES to participate in power trading-assisted
decision-making.

Typically, the IGDT model consists of three parts, which are the
system model, the uncertainty model (Ben-Haim, 2004), and the
performance requirement (Zhao, 2020) or implementation
requirement.

The uncertainty of the spot wholesale market price is modeled
using the IGDT’s uncertainty processing model, as shown in Eq. 5.

τ ∈ [ α, τ̂( )

[ α, τ̂( ) � τ:
τ − τ̂| |
τ̂

≤ α{ } ∀α≥ 0

⎧⎪⎪⎨⎪⎪⎩ (5)

where τ̂ is the forecast electricity spot market price, and α is the
deviation between the predicted and the actual value of the price.

To reflect the decision effects under different risk preferences,
IGDT is used to develop a robust optimization model and an
opportunity optimization model. The robust optimization model
seeks the greatest possible range of market price fluctuations while
ensuring that the decision outcome is not less than expected, as
expressed in Eq. 6.

α̂ Q, cR( ) � max α: maxτ∈[ α,τ̂( ) C Q, τ( )≤ cR, cR � c0 1 + βR( ){ } (6)
where Q is the purchasing power of the DERA, cR is the robustness
transaction cost threshold, c0 is the transaction cost of the system under a
deterministic scenario, and γR is the robustness factor: that is, the robust
model cost deviation factor. When the market price fluctuates within the
information gap interval, the larger the robustness factor γR is, the more
robust the decision scheme is and the higher the transaction cost is.

Corresponding to the robust function, the IGDT chance model
can be expressed as Eq. 7.

α̂ Q, cO( ) � min α: minτ∈[ α,τ̂( ) C Q, τ( )≤ cO, cO � c0 1 − βO( ){ } (7)
where cO is the opportunity transaction cost threshold of the
regional system. γO is the opportunity factor, which can also be
interpreted as the opportunity model cost deviation factor. When
the market price is outside the information gap interval, the
transaction cost of the DERA will be lower than the threshold γO
of opportunity cost. The smaller the opportunity factor is, the
greater the chance the decision maker may achieve the desired goal.

3 Multi-stakeholders DERA transaction
decision-making model in the day-
ahead market based on IGDT

3.1 Day-ahead transaction cost function
with market price fluctuations

To minimize the operating cost of RDES, DERA determines the
unit operating state by optimizing the reporting strategy. Therefore,
the operating cost function for DERA’s participation in day-ahead
trading is shown in Eq. 8.

CDER,t � CM,t + CG,t + CVM,t (8)
Where, CDER,t is the operating cost of DERA’s participation in

day-ahead market transactions at time t. CM,t is the net cost of the
system’s purchase and sale transactions from the main grid at time t;
CG,t is the fuel cost. CVM,t is the operation and maintenance cost of
the system’s various units at time t.

1) The cost of power purchased by the system from the main
grid at time t, as shown in Eq. 9.

CM,t � τDA,t · PM,t (9)
τDA,t ∈ {τDA,t: τDA,t − τDA,pre,t

∣∣∣∣ ∣∣∣∣≤ ατ · τDA,pre,t (10)

where τDA,t is the day-ahead market clearing price at time t, as
shown in Eq. 10. Where τDA,pre,t is the predicted value of the day-
ahead market clearing price at time t. ατ is the fluctuation range of
the price uncertainty parameter, satisfied by ατ ≥ 0. PM,t is the
bidding power purchased or sold by DERA in the main grid at
time t. When PM,t is positive, it means that power needs to be
purchased from the main grid, and when PM,t is negative, it means
that power can be sold to the main grid.

2) Fuel cost, as shown in Eqs. 11–13.

CG,t � ρ · FGT,t + Fb,t( ) (11)
FGT,t � Pg,t

Lhvng · ηg
(12)

Fb,t � Hb,t

Lhvng · ηb
(13)

where ρ represents the unit fuel price. FGT,t and Fb,t represent the
fuel consumption of the gas turbine and gas boiler in time t,
respectively. Pg,t is the power generation of the gas unit at time
t. ηg is the power generation of the gas turbine. Hb,t is the thermal
power of the gas boiler at time t. ηb is the efficiency of the gas boiler.
Lhvng is the low-level heat value of natural gas.

3) Operation and maintenance costs, as shown in Eq. 14.

CVM,t � Pg,t · Cg,vm,t +Hwhb,t · Cwhb,vm,t +Hb,t · Cb,vm,t +Hac,t · Cac,vm,t

+ PCH,t · CCH,vm,t + Pchr,t + Pdis,t( ) · Cbt,vm,t

(14)
where Cg,vm,t indicates the operation and maintenance cost of the
gas turbine, andHwhb,t is the thermal power of the waste heat boiler,
which is calculated as shown in Eqs 15, 16. Cwhb,vm,t and Cb,vm,t are
the operation andmaintenance costs of preheating the boiler and gas
boiler respectively. Hac,t is the suction chiller power, and Cac,vm,t is

Frontiers in Energy Research frontiersin.org05

Dong et al. 10.3389/fenrg.2023.1173981

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1173981


the suction chiller operation and maintenance cost. PCH,t is the
electric chiller power, and CCH,vm,t is the electric chiller operation
and maintenance cost. Pchr,t, Pdis,t, and Cbt,vm,t are the charging
power, discharging power, and cost of stored energy, respectively.

Hwhb,t � Hg,t · ηwhb (15)

Hg,t �
Pg,t · 1 − ηg − ηL( )

ηg
(16)

3.2 The optimal model of day-ahead trading
decisions of DERAs.

The objective function of a DERA’s day-ahead trading strategy is
shown in Eq. 17.

min ∑T
t�1
CDER,t (17)

The constraints for each type of resource in the system are
shown in Eqs 18–40.

1) PV

0≤PPV,t ≤PPV,max (18)

2) Wind power

0≤PWind,t ≤PWind,max (19)

3) Micro gas turbines (MT)
1) Equipment output constraint

ug,tPg
min ≤Pg,t ≤ ug,tPg

max (20)
where Pg

max and Pg
min are the maximum and minimum output of

equipment g, respectively, and ug,t is a binary variable indicating the
operating state of MT g. The operating state is taken as 1, otherwise,
it is taken as 0.

2) Equipment start-stop constraints

u( off
g,t − uon

g,t) × ug,t−1 − ug,t

∣∣∣∣ ∣∣∣∣ � ug,t−1 − ug,t (21)
uoff
g,t + uon

g,t ≤ 1 (22)

where uong,t and uoffg,t , respectively, represent the startup and
shutdown state variables of MT g at time t. In the startup state,
uong,t takes 1 and uoffg,t takes 0. In the shutdown state, uong,t takes 0 and
uoffg,t takes 1.

3) Climbing power constraint

−DRg ≤Pg,t − Pg,t−1 ≤URg (23)
where URg and DRg are the up-climbing rate and down-climbing
rate of equipment g, respectively.

4) Rotate alternate constraint

RU,g,t � min URg, Pg,t
max − Pg,t( ){ } (24)

RD,g,t � min DRg, Pg,t − Pg,t
min( ){ } (25)

(4) Gas fired boiler

Hb,t ≤Hb,max (26)
whereHb,t andHb,max are the thermal power and maximum power
of the gas boiler, respectively.
5) Electrochemical energy storage

Wi
min ≤Wi,t ≤Wi

max (27)
0≤Pi,chr

t ≤ Pi, max
i *Ui,chr

t (28)
0≤Pi,dis

t ≤ Pi, max
i *Ui,dis

t (29)
Ui,chr

t + Ui,dis
t ≤ 1 (30)

where Wi
min and Wi

max are the minimum and maximum energy
storage capacity of energy storage equipment i, respectively. Ui,chr

t

and Ui,dis
t are the binary state variables indicating the charging and

discharging of energy storage equipment i. In the charging state,
Ui,chr

t takes 1 and Ui,dis
t takes 0, which is the opposite when

discharging.

6) Suction chiller

Qac,t � Hac · COPac (31)
where Qac,t is the cooling power of the suction chiller, Hac is the
input thermal power, and COPac is the efficiency of the electric
refrigerator.

(7) Electric chiller

QCH � PCH · COPCH (32)
0≤PCH ≤PCH,Max (33)

where QCH and PCH are the electric chiller output and input power,
respectively. COPCH is the electric chiller performance coefficient.
PCH,Max is the maximum input power of the electric chiller.

8) Transaction constraints with the main network

0≤PM,t ≤PM,max (34)
where PM,max is the maximum value of the system’s interactive
power with the external grid, taking into account the transmission
network capacity constraints.

9) Power balance constraints of system operation

Ppv,t + Pwt,t + PG,t + Pdis,t + PM,t � PCH,t + Pchr,t + PL,t (35)
Hb,t +Hwhb,t � Hac,t +HH,t/ηhe (36)

Hac,t · COPac + COPCH*PCH,t � QC,t (37)
0≤PL,t ≤PM,max (38)
HH,t ≤Hmax (39)

0≤QCH,t ≤Qmax (40)

where PL,t,HH,t, andQC,t are the load of electricity, heat, and cold at
time t, respectively. Pdis,t and Pchr,t are energy storage discharge
power and charging power, respectively. PCH,t is the electric chiller
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input power. ηhe is the heat exchange coefficient. COPCH is the
cooling efficiency of the electric chiller. PM,max,Hmax and Qmax are
the maximum electrical, thermal and cooling demands of RDES,
respectively.

3.3 IGDT model of DERA participation day
trading considering multi-stakeholder risk
preferences

When RDES containing multiple stakeholders participate in
day-ahead market electricity trading, there are 2N combinations of
risk preferences of different stakeholders in the system, where N is
the number of subjects providing risk preferences. According to
IGDT theory, the robust decision model of DERA day-ahead trading
considering multiple risk preferences is constructed as shown in
Eq. 41.

max PM,tατ s.t.

max PM,tατ ∑T
t�1
CDER,t

⎛⎝ ⎞⎠≤∑m
r�1

1 + βR( )Cr,0 +∑n
0�1

1 − βO( )Co,0

Formulas 24( ) − 46( )
τDA,t ≥max τDA,min, 1 − ατ( )τDA,pre,t( )
τDA,t ≤min τDA,max, 1 + ατ( )τDA,pre,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(41)

The day-ahead trading opportunity decision model is shown in
Eq. 42.

min PM,tατ s.t.

min PM,tατ ∑T
t�1
CDER,t

⎛⎝ ⎞⎠≤∑m
r�1

1 + βR( )Cr,0 +∑n
0�1

1 − βO( )Co,0

Formulas 24( ) − 46( )
τDA,t ≥max τDA,min, 1 − ατ( )τDA,pre,t( )
τDA,t ≤min τDA,max, 1 + ατ( )τDA,pre,t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(42)

where βR and βO are the cost deviation coefficients of the robust
model and opportunity model, respectively. r and o denote the
subjects choosing robust and opportunistic strategies in DERAs,
respectively, and m and n denote the number of subjects choosing
robust and opportunistic strategies, respectively,m+ n = N. Cr,0 and
Co,0 denote the electricity transaction costs of robust and
opportunistic subjects in deterministic scenarios, respectively. T is
the total number of periods. τDA,min and τDA,max are the highest and
lowest clearing prices in the day-ahead market, respectively.

4 Equivalence and solution of the
decision support model for day-ahead
market transactions

4.1 Equivalence of the decision support
model for day-ahead market transactions

Robust bidding subjects are risk-averse in their bidding
decisions and prefer to obtain more robust decisions by
increasing their costs (Dong et al., 2023). Therefore, the physical
meaning of the IGDT robust bidding model is to find the worst-case
scenario of market price fluctuation by using optimization methods
under the given cost expectation. At the same time, none of the costs

obtained may be higher than their expected costs. On the contrary,
the opportunistic bidding subjects are risky and speculative in their
bidding decisions, and they are more willing to chase the minimum
possible cost under high risk and the decision is more aggressive.
Therefore, the physical meaning of the IGDT opportunity bidding
model is that, under the given cost expectation, the optimization
method is used to find the scenario with the minimum market price
fluctuation, and the minimum cost that the decision subjects can
achieve is their expected cost when themarket price varies within the
range of opportunity fluctuation.

Both the robust model and the opportunity model are essentially
two-layer optimization models. The outer and inner layers of the
robust model are the maximum cost and maximum deviation that
DERAs can pay when the market price fluctuates, respectively. The
outer and inner layers of the opportunity model are the minimum
cost and the minimum deviation that DERAs may pay when the
market price fluctuates. From the cost function shown in Eq. 42, it is
clear that DERAs’ electricity trading costs are affected by market
price fluctuations. The DERA transaction cost is maximum when
the market price is taken to be maximum within the uncertainty
range. Conversely, the cost is minimized when the market price is
taken to be the smallest within the uncertainty range. As a result, the
equivalent forms of the IGDT robust model and the opportunity
model for the day-ahead trading decision can be represented by Eqs
43, 44, respectively.

max PM,t α s.t.
max PM,t α∑T

t�1
CDER,t, max ≤∑m

r�1
1 + βR( )Cr,0 +∑n

0�1
1 − βO( )Co,0

Formulas 17( ) − 40( )

⎧⎪⎪⎨⎪⎪⎩
(43)

min PM,t α s.t.
min PM,t α∑T

t�1
CDER,t,min ≤∑m

r�1
1 + βR( )Cr,0 +∑n

0�1
1 − βO( )Co,0

Formulas 17( ) − 40( )

⎧⎪⎪⎨⎪⎪⎩
(44)

where CDER,t, min and CDER,t,max are the minimum and maximum
costs paid by DERA when the deviation of the day-ahead market
clearing price is ατ respectively, as shown in Eqs 45, 46.

CDER,t, min � τDA,t,min · PM,t + CG,t + CVM,t (45)
CDER,t, max � τDA,t,max · PM,t + CG,t + CVM,t (46)

where τDA,t, min and τDA,t, max are the minimum and maximum
market prices within the deviation range, respectively, as shown
in Eqs 47, 48.

τDA,t, min � max τDA,min, 1 − ατ( )τDA,pre,t( ) (47)
τDA,t, max � min τDA,max, 1 + ατ( )τDA,pre,t( ) (48)

4.2 Solution to the day-ahead transaction
decision-making model of a DERA based on
OLGWO

This paper employs the IGDT model to address subject risk
preferences. The IGDT model is composed of a two-layer
optimization problem, where the participation in the day-ahead
trading strategy is continuously iterated based on the upper market
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volatility and the minimization of the day-ahead trading cost in the
lower layer. To solve this constitutive model, the Opposition
Learning Grey Wolf Optimizer (OLGWO) is utilized due to the
significant number of constraints involved (Zhang et al., 2021a).

The OLGWO is a variant of the Grey Wolf Optimizer (GWO)
that simulates the social hierarchy of a group of grey wolves using
four distinct layers, namely, α, β, δ, and ω. In this hierarchy, the α
wolves are the top leaders who guide the entire pack, while the β
wolves assist them in decision-making. The δ wolves are responsible
for scouting and sentry duties, while the ω wolves are at the bottom
of the hierarchy and follow the commands of the higher-ranked
wolves. The OLGWO is a modified version of the GWO that models
the social hierarchy of grey wolves using four layers, and
incorporates opposition-based learning to improve its global
search capabilities. The GWO algorithm is inspired by the
hunting behavior and social structure of grey wolves, and uses
mathematical simulation to optimize complex problems.

As the number of iterations increases, individual grey
wolves in the Grey Wolf Optimizer algorithm tend to move
towards the same region, which can lead to convergence and
increase the risk of falling into local optima. However, the use of
a reverse learning strategy can help to mitigate the risk of local
optima and enhance the speed of the algorithm in finding the
best solution. Additionally, to identify the most promising ω

wolves, it is necessary to measure the correlation between each ω
wolf and the α wolves. This paper introduces the Spearman
correlation coefficient as a means of measuring the correlation
between variables. The Spearman coefficient is a non-
parametric statistical method that uses the rank sizes of two
variables, without requiring the distribution of the original
variables. This method has the advantage of being less
sensitive to outliers and not requiring normally distributed
data. The formula for the Spearman correlation coefficient is
shown in Eq. 49, where the α wolf is represented as
(xα

1 , x
α
2 ,/xαN), and the ω wolf is represented as (xω

1 , x
ω
2 ,/xω

N).

rs � ∑N
i�1 ri − �r( ) si − �s( )����������������������∑N

i�1 ri − �r( )2
����������∑N

i�1 si − �s( )2
√√ (49)

In the formula, the variables ri and si represent the ranks of α
and ω wolves, respectively. If the values of ri and si are equal, then
the rank corresponding to that value is the average value
corresponding to both ranks (Fan et al., 2014). To simplify the
calculation, the Spearman correlation coefficient can be calculated
by determining the rank difference between the α wolves and the ω
wolves. The formula for calculating the rank difference is shown in
Eq. 50.

rs � 1 −
6*∑

i
di( )2

N N2 − 1( ) (50)

where rs is the rank correlation coefficient.N is the dimension of the
wolf population. Here, di represents the rank difference between the
corresponding values of the α wolves and each ω wolf. The rank of
the α and ωwolves is denoted as (dα1 , dα2 ,/dαN) and (dω1 , dω2 ,/dωN) ,
respectively. The values of rs range from −1 to 1, with larger absolute
values indicating stronger correlation. The sign of the value indicates
the direction of the correlation.

In the process of searching for an optimal solution to a given
function, initial solutions are often chosen randomly. If a solution is
close to the optimal solution, it can converge quickly. However, if it
is far from the optimal solution, convergence may be slow or even in
the opposite direction. To address this issue, this paper introduces a
backward learning strategy in the classical gray wolf search iteration
process. In this strategy, α wolves are considered as the optimal
solutions in each search process. Based on Spearman correlation
coefficients, ω wolves deviating from the optimal solutions are
identified, and potentially better solutions are found from their
corresponding backward points for updating the wolf population.
The backward points are defined as follows: for a given iteration, the
position of the α wolf is the target position, and the fitness of the ω
wolf is expressed by the linear distance between two points.
Specifically, (a, b) belongs to ω wolf, and (a′, b′) and (a, b′) are
the reverse points of ω wolf. As shown in Figure 3, d2 <d3 <d1,
indicating that (a, b′) and (a′, b′) can be used to generate a better
solution for the next iteration. It is important to note that the
dimension of the solution is assumed to be 2 in this example for
illustrative purposes.

The traditional gray wolf optimization algorithm determines
the optimal solution through the best position selected by the
head wolf after multiple iterations. Nevertheless, the head wolf’s
movement trend during the hunting process tends to increase in
the same area, resulting in reaching a local optimal solution. To
address this, this paper proposes the OLGWO. Essentially, this
algorithm adds head wolves that move in the opposite direction
based on the head wolf’s hunting trend. Additionally, the
correlation coefficient carries out correlation traction between
the head wolf and the bottom wolf to ensure that they are not
under control during the hunting process. Hunting is carried out
in reverse and multi-angles using the bottom wolf’s initial
position to discover more potential bottom wolves. Since
reverse learning doubles the hunting direction, the likelihood
of comprehensively selecting the better one can be increased by
nearly half. As a result, it is possible to closely approach the global
optimal solution and improve the optimization speed of the
OLGWO. This algorithm was compared with PSO, GWO, and
others in terms of optimization results’ mean and standard
deviation in the article (Xing-hui et al., 2021b), where it

FIGURE 3
Reverse learning strategy displayed in a two-dimensional
coordinate system.
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effectively avoided local optimal solutions and consequently
increased the optimization speed. To achieve a global optimal
solution, this paper conducts multiple optimization solutions
using different risk preference schemes.

The paper presents a comprehensive model for power
transaction auxiliary decision-making in distributed energy
systems. This model takes into account the risk preferences of
multiple stakeholders, as shown in Figure 4.

5 Case analysis

In this section, RDES containing gas-fired power plants,
wind farms, and low-carbon communities are used as
examples. It is assumed that all three types of resource
subjects show risk preferences in trading decisions. DERA
determines the final trading strategy of RDES by considering
the risk preferences of different stakeholders. The population
size in this section of the model is set to 100 and the maximum
number of iterations is 8000. The simulation model is
implemented through Python 3.7.

5.1 Basic data

The MT and wind power are rated at 4MW and 10 MW
respectively. 2 MW of rooftop PV, commercial and residential
customers are included in this low carbon community. The
maximum electrical, thermal, and cooling load requirements are
10 MW, 4 MW, and 2.5 MW, respectively, and the technical and
economic parameters of each type of unit are shown in Tables
1, 2, 3.

In addition, the gas price is 3.24 CNY/m3, the low calorific value
of natural gas is 9.7 MJ/m3, and the conversion efficiency of the
waste heat boiler is 75%.

The decision time for DERA to participate in day-ahead trading
is set to 24 h, with each hour being a decision unit.

First, this section selects the 87-day historical output curves of
distributed wind power and PV in the summer of a province in
China, and uses the FCM algorithm to screen the typical scenarios of
wind power and PV unit outputs. Table 4 shows the probability of
each scenario.

Therefore, the expected output scenarios of distributed wind
power and PV are obtained as inputs to the IGDT model based on

FIGURE 4
The diagram of the model architecture.

Frontiers in Energy Research frontiersin.org09

Dong et al. 10.3389/fenrg.2023.1173981

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1173981


the occurrence probability of each type of scenario, as shown in
Figure 5A.

Similarly, the FCM algorithm was used to obtain typical data of
various RDES loads from the historical data of power, heat, and
cooling loads of an industrial park in central China, as shown in
Figure 5B.

In this section, a spot pilot historical clearing price in China is
selected as the forecast data of electricity price for the trading
decision model, as shown in Figure 5C.

5.2 Portfolio scenarios of stakeholders’ risk
preferences

Based on the risk preferences of the multi-stakeholders in RDES,
there are eight risk preference scenarios for DERA in bidding
decisions, as shown in Table 5. The risk preferences of the
stakeholders in the other models differ from each other, while
the risk preferences of the market players in models 1 and 8 are
consistent.

TABLE 1 Technical and economic parameters of micro gas generating unit.

Equipment Maximum output
power (MW)

Minimum output
power (MW)

Efficiency
(%)

Energy loss
rate (%)

Climbing
speed (MW/h)

Operation and
maintenance cost

(CNY/MWh)

MT 4 0.4 0.8 0.1 0.6 168.5

Gas boiler 4 0 0.73 0.1 - 20

TABLE 2 Technical and economic parameters of wind power units.

Equipment Maximum output
power (MW)

Minimum output
power (MW)

Efficiency
(%)

Climbing speed
(MW/h)

Operation and maintenance
cost (CNY/MWh)

Wind power 10 0 6 120 10

TABLE 3 Technical and economic parameters of equipment in low-carbon community.

Equipment Maximum output
power (MW)

Minimum output
power (MW)

Efficiency
(%)

Climbing speed
(MW/h)

Operation and maintenance
cost (CNY/MWh)

PV 2 0 - 1.5 80

Energy storage 0.4 0.04 95 0.15 20

Electric chillers 2 0 95 - 30

Suction chiller 2 0 95 - 20

TABLE 4 Probabilities of ten sets of wind and PV power scenarios.

Wind power scenarios Probability PV power scenarios Probability

1 0.0115 1 0.1379

2 0.0115 2 0.4597

3 0.0230 3 0.0804

4 0.0919 4 0.0459

5 0.5862 5 0.0114

6 0.0344 6 0.0459

7 0.0574 7 0.0574

8 0.0230 8 0.0114

9 0.1264 9 0.0689

10 0.0344 10 0.0805
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5.3 Strategies for stakeholders trading with
the same risk preference

When the risk preferences of the stakeholders are not
considered, the trading decision is determined according to the
risk preferences of DERA, that is, the system is a single robust
decision or an opportunistic decision. By solving the day-ahead
trading strategy optimization model, the minimum operating cost of
RDES can be obtained as 57872.7 CNY when market price
fluctuations are not considered. For the robust DERA, when the
subjects in the system show the same preference and the robustness
factors are all 0.3, the expected operating cost of the system is
51363.06 CNY and the robustness deviation is 0.254. This result
indicates that the expected operating cost of the system is not higher
than 51363.06 CNY when the market price fluctuation does not
exceed 25.4%. The day-ahead trading bid strategy for the DERA is
shown in Figure 6A.

As can be seen from Figure 6A, during the hours of 3:00 and 10:
00–15:00, the overall supply of RDES is greater than the demand,
and DERA carries out surplus power to the grid, with the maximum
power sold being 0.6862 MW. The system’s supply is less than the
demand during the other hours, and it needs to purchase power
from the main grid, with the maximum power purchased
being 1 MW.

In the robust decision scenario, DERA’s power purchase cost for
participating in the day-ahead power trading is 46035 CNY and the
revenue from power sales is 7603 CNY. It is worth noting that
DERA’s power sales to the main grid mainly occur when the
combined PV and wind power output is high, and the system is
closest to the supply and demand balance at 11:00. In addition, the
robustness factor reflects the decision maker’s tolerance for risk, and
DERA’s day-ahead trading bid strategy changes when the robustness
factor varies between 0.1 and 1. As the robust factor increases, the
system supply-demand deviation generally increases. The situation
is because DERA’s strategy becomes more conservative as the robust
factor increases, and the range of tolerable external market price
fluctuations increases, exhibiting risk-averse characteristics. The
output of each generating unit in the system under the robust
decision scheme is shown in Figure 6B.

Similarly, when all stakeholders in RDES show the same risk-
chasing preference and the opportunity factor is 0.2, the expected
cost level of the system is 23469.47 CNY and the opportunity
deviation factor is 0.24. This result indicates that the minimum
operating cost of RDES can be 23469.47 CNY when the market price
fluctuation exceeds 24%. The day-ahead trading bid of the DERA
strategy is shown in Figure 7A.

As can be seen in Figure 7A, at 3:00 and 9:00–16:00, the overall
supply of RDES is greater than the demand, and DERA carries out
surplus power to the grid with the maximum power sold of
2.176 MW. The system has less supply than demand at other
times and needs to purchase power from the main grid with the
maximum power purchase of 2.929 MW. The cost of power
purchase for DERA to participate in the day-ahead power
trading in the opportunity decision scenario is 6,361 and the
revenue from electricity sales is 1189 CNY. It is worth noting
that DERA’s power sales to the main grid mainly occur during
periods of high wind power output. In addition, as the opportunity
factor increases, the aggregator’s strategy tends to chase risk more,

FIGURE 5
Basic scenarios of RDES.

TABLE 5 Multi-stakeholder risk preference combination scenarios in RDES.

Scenario MT Wind power Low carbon
community

1 Robust Robust Robust

2 Opportunistic Robust Robust

3 Robust Opportunistic Robust

4 Robust Robust Opportunistic

5 Robust Opportunistic Opportunistic

6 Opportunistic Robust Opportunistic

7 Opportunistic Opportunistic Robust

8 Opportunistic Opportunistic Opportunistic
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the range of deviations from market price fluctuations to chase
decreases, and the probability of achieving the optimal strategy while
meeting cost expectations decreases, and DERA exhibits risk-
chasing characteristics. The output of each generating unit in the
system under the opportunity-based decision scheme is shown in
Figure 7B.

5.4 Trading strategies for different risk
preferences portfolios

When all stakeholders in RDES show robust strategy preferences
(scenario 1) or all opportunistic strategy preferences (scenario 8), the
DERA final decision is the same as the stakeholders’ trading

strategies. In which, the robustness and opportunity factors are
assumed to be the same for each stakeholder under the same risk
preferences. When MT, wind power farm, and low carbon
community in RDES are opportunistic, robust and robust
respectively (scenario 2), the expected cost levels and robust and
opportunity factors of each stakeholder are shown in Table 6.

From the perspective of the overall operational efficiency of
RDES, the expected cost of each stakeholder is its actual operational
production cost when the power trading situation between the
subjects within RDES is not considered. The costs of gas-fired
power plants mainly include fuel costs and operation and
maintenance costs. The wind power plant and low carbon
community costs are mainly equipment operation and
maintenance costs. When the gas power plant is opportunity

FIGURE 6
Robust trading decision scheme and electrical unit output.
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preference and the opportunity factor is 0.2, if the wind power
station and low carbon community are robust preference and the
robust factor is 0.4, then the day-ahead trading strategy of DERA is
shown in Figure 8A.

As seen in Figure 8A, in Scenario 2, DERA sells the surplus of
the system to the main grid with a maximum sale of 2.576 MW
during 3:00–5:00 and 9:00–16:00, and purchases power from the
main grid during the other periods. The cost of power purchase for
DERA is 21462.616 CNY and the revenue from power sales is
4597.589 CNY. In addition, although the results show that wind

farms and low-carbon communities show robust preferences in
trading, the overall system opportunity preference is stronger due
to the expected cost level of gas-fired power plants. The minimum
deviation from the average market price fluctuation at this time is
0.13. The operating states of each unit in RDES are shown in
Figure 8B.

In Figure 8B, the horizontal axis indicates period t, and the
vertical axis shows DERA’s participation in the day-ahead market
power purchase and unit operation at time t. There is a close
relationship between gas-fired unit output and new energy

FIGURE 7
Opportunity trading decision scheme and electrical unit output.

TABLE 6 Risk preferences of participants in RDES.

Equipment Expected net cost (CNY) Robust factor βr Opportunity factor βo

MT 26957 - 0.2

Wind Power 15642 0.4 -

Low Carbon Community 1796 0.4 -
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output. At noon, the gas-fired unit output decreases in the figure
because the wholesale market spot price becomes lower at noon due
to the abundance of centralized PV resources in the wholesale
market, and DERA’s power purchase cost is smaller than the
gas-fired unit generation cost at this time. Therefore, it is
economical for DERA to choose gas-fired units to maintain a
minimum output.

Similarly, the risk appetite factors and expected cost levels for
gas-fired power plants, wind farms, and low-carbon communities in
other scenarios are shown in Table 7.

By solving the day-ahead trading decision model considering
multi-stakeholder risk preferences, the obtained day-ahead trading
strategies for DERA in each scenario are shown in Figure 9.

In Figure 9, the horizontal coordinates indicate the time, and the
vertical coordinates indicate the purchased and sold power traded by
DERA with the main grid at time t. When the traded power is
positive, it means that the supply of RDES is less than the demand,
and it needs to purchase power from the main grid. When the traded
power is positive, it means that the RDES supply is less than the
demand, and power needs to purchase from the main grid. When

FIGURE 8
Trading strategies and operation scheduling of electrical units of DERA in scenario 2.

TABLE 7 Analyses result in the other scenarios.

Scenario Robust factor βr Opportunity factor βo Expected net cost (CNY)

3 [0.3,-,0.3] [-,0.3,-] 55489

4 [0.4,0.4,-] [-,-,0.4] 59831

5 [0.2,-,-] [-,0.2,0.2] 52736

6 [-,0.2,-] [0.2,-,0.2] 50348

7 [-,-,0.2] [0.2,0.2,-] 43625
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the traded power is negative, it means that the RDES supply is
greater than the demand and sells the power to the main grid. The
simulation results show that DERA shows an overall robust
preference under scenarios 3, 4 and 5, while it shows an overall
opportunistic preference in scenarios 6 and 7. By comparing
scenarios 3 and 4, it is found that the choice of gas-fired power
plants for risk preference has a greater impact on the decision
outcome of DERA compared to wind farms and low-carbon
communities. Therefore, it can be concluded that stakeholders
with high expectation costs in RDES dominate the decision-making.

The operating cost of a distributed energy system is impacted by
the level of risk involved in conducting market transactions. This
paper examines the relationship between risk and operating cost by
analyzing the risk coefficient of a market situation involving the
same risk appetite. A sensitivity analysis of cost is then performed
using the equation cost factor = (optimized cost—expected cost)/
risk coefficient. The result is shown in Figure 10.

It can be seen from the table that the curve is steeper when the
risk aversion is lower than 0.5, indicating a strong correlation
between cost and risk coefficient. However, the cost coefficient is

FIGURE 9
Trading strategies for RDES in scenario 3-7.

FIGURE 10
Risk factor and cost factor interaction trends.
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negative due to the system’s increased wind power generation and
consequent increase in power purchase cost when the risk coefficient
is too low, i.e., aggressive. When the risk coefficient is higher than
0.9, the system tends to be more conservative, reducing the level of
new energy generation to ensure stability. This, in turn, leads to
increased operating costs for traditional energy sources. In the range
of 0.5–0.8, the cost coefficient is positive, indicating that moderate
risk levels facilitate optimization of the system’s cost structure.

This paper utilizes Python 3.7 as the programming platform and the
widely used commercial software CPLEX for solving the problem. This
model is a MINLP model. Table 8 presents the variables and constraints
solved in this paper, as well as the solution’s performance.

This paper includes 432 variables and 903 constraints, and the
OLGWO algorithm proposed herein takes approximately 12 s to
complete. As the energy trading period in the day-ahead market is in
15-min intervals, the proposed algorithm can also be used for actual
trading decisions. After the improvements made, a comparison of the
solution results between the proposed OLGWO algorithm and the
conventional GWO algorithm shows that the solution’s efficiency
significantly improved. Compared to the conventional GWO
algorithm, using the OLGWO algorithm saves 113 s in solution time.
Additionally, using the OLGWO algorithm to solve the problem can
further reduce the operating cost of the distributed energy aggregator,
indicating that the improved algorithm avoids falling into a local optimal
solution to a certain extent.

Through the above case study, the transaction-assisted
decision model proposed in this paper can help multi-interest
entities within the distributed energy system to develop
reasonable transaction strategies and clarify the operating
costs of system operation under the scenarios of robust and
opportunity strategy combinations of different entities.
Distributed energy aggregators can use the cost situation of
different market operation scenarios as one of the indicators
for future system planning, and in addition, the cost of different
subjects obtained from the transaction-assisted decision model
can be used as a criterion for benefit allocation.

6 Conclusion

In this paper, we propose an assisted decision model for day-
ahead RDES trading that considers the preferences of multiple risk
subjects. The model addresses the problem of different risk
preferences of multi-interest subjects. It is based on the
operational characteristics and trading process of such systems.

First, we use FCM and information gap to mitigate the
uncertainty of spot market price fluctuations and scenic power
output.

Second, we analyze the risk preference combination scenario of
RDES subjects, and construct a trading decision model for the
system based on the IGDT model that considers the risk
preferences of multi-interest subjects. We solve the IGDT
problem using OLGWO.

Lastly, we analyze the arithmetic results to demonstrate that the
system’s trading strategies change during periods of increased or
decreased robustness or chance factors for the subjects within the
RDES. Moreover, in systems with multiple interested parties,
different cost estimation levels can greatly affect their risk
preferences and alter the overall operation scheme of the system.

The proposed assisted decision-makingmodel that considers the
risk preferences of multiple subjects can help different stakeholders
in a RDES make more reasonable trading decisions to some extent.
This can benefit the builders of RDES in better planning system
structure.

The current study focuses on the behavior of market players.
However, the Chinese electricity market differs from foreign complete
markets. Therefore, we need to explore the decision characteristics of
players in both complete and incomplete markets based on the actual
nature of China’s dual-track electricity market. Moreover, the cost
analysis system incorporates an internal multi-subject benefit
distribution mechanism based on the behavioral preferences of
diverse market participants.
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This paper compares two models, OLGWO and GWO. There are 432 variables and 903 constraints. The solution time of OLGWO is 12 seconds and the solution time of GWO is 143 seconds.

The optimal result of OLGWO is 51363.06 CNY and the optimal result of GWO is 60633.14 CNY.
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Nomenclature

RDES Regional distributed energy systems

DERA Distributed energy system aggregators

IGDT Information gap decision theory

OLGWO Opposition Learning Grey Wolf Optimizer

PV Photovoltaic array

P2P Peer-to-peer

P2G Power-to-gas device

FCM Fuzzy C-Means Clustering

DES Distributed energy sources

GWO Grey Wolf Optimizer

i/j/g Index of devices and elements

t Index of time

r/o Subjects choosing robust/opportunistic strategies in DERAs

α/ω Index of wolves

τ̂ Forecast electricity spot market price

α Deviation between predicted and actual value of the price

Q Purchasing power of the DERA

cR Robustness transaction cost threshold

c0 Transaction cost of the system under a deterministic
scenario

γR/γO Robustness/opportunity factor

cO Opportunity transaction cost threshold of the regional
system

CDER,t Operating cost of DERA’s participation in day-ahead
market transactions

CM,t Net cost of the system’s purchase and sale transactions from
the main grid

CG,t Fuel cost

CVM,t Operation and maintenance cost of the system’s various
units

τDA,t The day-ahead market clearing price

τDA,pre,t Predicted value of the day-ahead market clearing price

PM,t Boolean variable of bidding power purchased or sold by
DERA in the main grid

FGT,t/Fb,t Fuel consumption of the gas turbine/gas boiler

Pg,t Power generation of the gas unit

Hb,t Thermal power of the gas boiler

Cg,vm,t Operation and maintenance cost of the gas turbine

Hwhb,t Thermal power of the waste heat boiler

Cwhb,vm,t/Cb,vm,t Operation and maintenance costs of preheating the boiler/
gas boiler

Hac,t Suction chiller power

Cac,vm,t Suction chiller operation and maintenance cost

PCH,t Electric chiller power

CCH,vm,t The electric chiller operation and maintenance cost

Pchr,t/Pdis,t , Charging power/discharging power

Cbt,vm,t Cost of stored energy

ug,t Binary variable indicating the operating state of MT

uong,t/u
off
g,t

The startup and shutdown state variables of MT

URg and DRg The up-climbing rate and down-climbing rate

Hb,t Thermal power of the gas boiler

Ui,chr
t /Ui,dis

t
The charging/discharging of energy storage

Qac,t Cooling power of the suction chiller

Hac Input thermal power

QCH/PCH Electric chiller output/input power

PL,t/HH,t/QC,t Load of electricity/heat/cold

PCH,t Electric chiller input power

Pdis,t/Pchr,t Energy storage discharge power/charging power

PCH,t Electric chiller input power

CDER,t, min/CDER,t,max The minimum/maximum costs paid by DERA when the
deviation of the day-ahead market clearing price is ατ

τDA,t, min/τDA,t, max The minimum/maximum market prices within the
deviation rang

ατ The fluctuation range of the price uncertainty parameter

ρ Unit fuel price

ηg Power generation of the gas turbine

ηb Efficiency of the gas boiler

Lhvng Low-level heat value of natural gas

PPV,max/PWind,max The upper limit of PV/wind power output

Pg max/Pg
min The maximum and minimum output

Hb,max The maximum power of the gas boiler

Wi
min/Wi

max The minimum/maximum energy storage capacity of energy
storage equipment i

COPac Efficiency of the electric refrigerator

COPCH Electric chiller performance coefficient

PCH,Max The maximum input power of the electric chiller

PM,max/Hmax/Qmax The maximum electrical/thermal/cooling demands of RDES

ηhe Heat exchange coefficient

βR/βO The cost deviation coefficients of the robust model/
opportunity model

m/n Number of subjects choosing robust/opportunistic
strategies

N Number of subjects

Cr,0/Co,0 Electricity transaction costs of robust/opportunistic subjects
in deterministic scenarios

T Total number of periods

τDA,min/τDA,max The highest and lowest clearing prices in the day-ahead
market

Frontiers in Energy Research frontiersin.org18

Dong et al. 10.3389/fenrg.2023.1173981

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1173981

	Energy trading support decision model of distributed energy resources aggregator in day-ahead market considering multi-stak ...
	1 Introduction
	2 Distributed energy system trading model and system information uncertainty handling
	2.1 Distributed energy system trading model
	2.2 Uncertainty treatment of system supply and demand and market price fluctuation
	2.2.1 Uncertainty treatment of system supply and demand fluctuation
	2.2.2 Uncertainty treatment of market price fluctuation


	3 Multi-stakeholders DERA transaction decision-making model in the day-ahead market based on IGDT
	3.1 Day-ahead transaction cost function with market price fluctuations
	3.2 The optimal model of day-ahead trading decisions of DERAs.
	3.3 IGDT model of DERA participation day trading considering multi-stakeholder risk preferences

	4 Equivalence and solution of the decision support model for day-ahead market transactions
	4.1 Equivalence of the decision support model for day-ahead market transactions
	4.2 Solution to the day-ahead transaction decision-making model of a DERA based on OLGWO

	5 Case analysis
	5.1 Basic data
	5.2 Portfolio scenarios of stakeholders’ risk preferences
	5.3 Strategies for stakeholders trading with the same risk preference
	5.4 Trading strategies for different risk preferences portfolios

	6 Conclusion
	Data availability statement
	Author contributions
	Conflict of interest
	Publisher’s note
	References
	Nomenclature


