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The pathways toward net-zero greenhouse gas emissions by 2050 should be
designed based on solid scientific evidence. Ex ante system analysis tools, such as
techno-economic assessments (TEAs), are key instruments to guide decision-
makers. As ex ante TEAs of CO2 mitigation technologies embody a high level of
uncertainty, the informed use of uncertainty analysis becomes crucial for
meaningful interpretation and communication of TEA outputs. To foster
enhanced appreciation and the use of uncertainty analysis, we compare
multiple uncertainty analysis methods for ex ante TEAs, using a case study on
CO2 mineralization in the cement industry. We show that local sensitivity analysis
tools such as one-way analysis, which are most often used by TEA practitioners,
may not suffice for deriving reliable conclusions and provide guidance on how to
apply global sensitivity analysis methods, such as variance-based indicators for
TEAs in this field.
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1 Introduction

Data-driven decision-making on the research and development (R&D) and investment
in CO2 mitigation technologies, such as carbon capture and utilization (CCU) technologies,
is key to achieving the goal of reaching net-zero greenhouse gas emissions by 2050. However,
i) many technologies and systems are still at a low level of maturity, ii) underlying physio-
chemical mechanisms have often not yet been fully investigated, iii) the level of process or
system design is still preliminary, and iv) future environmental conditions (financial, policy,
technology development, societal, etc.) cannot yet be fully anticipated. All the approaches
and technologies needed to meet our climate goals do not exist at the scale and/or maturity
needed. Ex ante system analysis tools that embody a high level of uncertainty (Van der Spek
et al., 2021; Mendoza et al., 2022), among which techno-economic assessments (TEAs) for
the evaluation of economic performance and life-cycle assessments (LCAs) for the
evaluation of environmental impacts are needed to guide decision-makers in this process
(Cremonese et al., 2020; Strunge et al., 2022a; Langhorst et al., 2022).

The rigorous use of uncertainty analysis methods has been advocated to increase the
transparency of techno-economic studies and improve their utility (Van der Spek et al.,
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2017a; Van der Spek et al., 2017b; Van der Spek et al., 2020; Rubin
et al., 2021; Van der Spek et al., 2021). TEA studies take different
forms thorough the development process of the technology, from
simplified studies using mass and energy balances to very detailed
ones based on high-fidelity technology modeling (and/or measured
plant data) and bottom-up costing methods (i.e., by starting with the
design and costing of each major equipment) (Van der Spek et al.,
2020). In principle, the uncertainty analysis methods used must fit
the complexity of the TEA model and its purpose. For instance, an
effective design for tax relief programs for CO2 storage requires TEA
models of incumbent technologies, which can appropriately
incorporate potential tax reliefs (Fan et al., 2018). Additionally,
some uncertainty analysis methods come with high computational
costs and data requirements, whereas others are much more
straightforward to undertake, both considerations requiring TEA
modelers to rationally weigh which method(s) to select for a given
case. This is not trivial, andmost frequently, the simplest uncertainty
analysis methods are selected (i.e., local sensitivity analysis
methods). For example, a non-exhaustive review of 21 studies
presenting TEAs of CO2 mineralization processes showed that
11 publications (50%) used simple local sensitivity analysis
methods (either one-at-a-time sensitivity analysis (Pedraza et al.,
2021) or one-way sensitivity analysis (Huijgen, 2007; Huijgen et al.,
2007; Hitch and Dipple, 2012; Pasquier et al., 2016; Naraharisetti
et al., 2019; McQueen et al., 2020), and ten publications (45%) did
not include any uncertainty analysis (Kakizawa et al., 2001; Iizuka
et al., 2004; Katsuyama et al., 2005; O’Connor, 2005; Gerdemann
et al., 2007; Eloneva, 2010; Sanna et al., 2012; Pérez-Fortes et al.,
2014; Sanna et al., 2014; Mehleri et al., 2015). Only one publication
(5%) applied a global sensitivity analysis method (Strunge et al.,
2022b). We must acknowledge that more recent studies appeared to
be more likely to incorporate some form of uncertainty analysis,
highlighting the evolvements of this research field in recent years.
Seemingly, when uncertainty analysis is incorporated, methods
other than local sensitivity analysis are usually neglected and/or
methods are selected without a clear rationale, possibly leading to
errors in their use and especially the interpretation of model outputs.
A result may be that conclusions are drawn on, for instance,
economic viability that is not supported by the performed local
sensitivity analysis of the uncertain input data.

Here, we present a tutorial case study where we discuss and show
the use of a range of quantitative uncertainty analysis methods to
inform TEA practitioners on the different options available, their use
and utility, and good and, perhaps, poor practices. Overall, we aim to
advance the appreciation and use of uncertainty analysis in the ex
ante TEA literature to strengthen the quality of the TEAs that are
undertaken, leading to a better-informed policy.

As a case study for techno-economic modeling of CCU
technologies, we used an integrated TEA model of a CO2

mineralization process that produces a supplementary
cementitious material (SCM) as cement replacement, as reported
earlier in Strunge et al. (2022b). We discuss in detail seven common
approaches to uncertainty analysis that may be relevant to the TEA
of CO2 mitigation technologies (i.e., one-at-a-time sensitivity
analysis, one- and multiple-way sensitivity analysis, scatterplot
analysis, rank correlation, variance-based methods, and density-
based methods) while acknowledging that many other methods (for
specific other applications) have been developed (e.g., classification

tree analysis if an analysis of smaller subsets of the input and output
space is necessary or entropy mutual information analysis for non-
monotonic relationships (Mishra et al., 2009)).

2 Case study and modeling

2.1 CO2 mineralization for SCM production

Being a major emitter of anthropogenic CO2 (Favier et al., 2018)
with one of the highest carbon intensities per unit of revenue
(Czigler et al., 2020), the cement industry needs economically
viable solutions to reduce emissions and reach net zero
(European Cement Association, 2014; Bellmann and
Zimmermann, 2019; Czigler et al., 2020). For this sector, among
other strategies, CO2 mineralization has been proposed as a means
of CO2 utilization, where CO2 is reacted with activated minerals
(e.g., magnesium- or calcium-rich minerals such as forsterite
(Mg2SiO4) present in olivine-bearing rocks or lizardite
(Mg3Si2O5(OH)4) present in serpentine-bearing rocks). As an
exemplification, the mineralization reaction of CO2 with
forsterite is shown as follows:

Mg2SiO4 + 2CO2 → 2MgCO3 + SiO2 + heat ↑ (1)
The product [mixture of carbonate (i.e., in the case of forsterite

(MgCO3) and silica (SiO2))] can be used as an SCM in the cement
industry. SCMs are materials that can be added to cement blends to
archive certain properties or, more commonly, lower the amount of
clinker (the cement’s main reactive component) needed in cement
blends to reduce emissions (Favier et al., 2018). The by-product of
CO2 mineralization silica makes the product mixture a valuable
SCM for cement blends. Amorphous silica is a widely accepted
pozzolanic additive in cement production. While the main product,
carbonate, is inert when added to cement, amorphous silica and
calcium hydroxide (CaOH) present in cement react to produce
additional binding products (e.g., calcium silicate hydrates), leading
to a comparable or increased strength to using cement alone (Wong
and Abdul Razak, 2005). Hence, mineralization products not only
permanently store CO2 as carbonates but also reduce emissions by
partially replacing conventional cement/clinker production when
used as SCMs (Sanna et al., 2012; Sanna et al., 2013; Benhelal et al.,
2018; Woodall et al., 2019; Ostovari et al., 2020; Ostovari et al.,
2021).

In Strunge et al. (2022b), we showed via integrated techno-
economic modeling that the application of CO2 mineralization for
the production of SCM could generate a net profit of up to
€202132 per tonne of cement under certain conditions (i.e., the
resulting products must be used as SCMs in cement blends and
the storage of CO2 in minerals must be eligible for emission
certificates or similar).

The CO2 mineralization process considered here is a direct
aqueous carbonation approach based on Eikeland et al. (2015) and
Gerdemann et al. (2007) (Figure 1; Supplementary Figure S1), in
which ground minerals are reacted with captured CO2 in a
pressurized stirred tank using an aqueous slurry with additives.
We advanced this process by designing a post-processing train that
i) partially separates unreacted minerals via gravity separation and
ii) separates magnesium carbonate (MgCO3) from the reaction
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products, able to produce SCMs with different properties
[i.e., different silica (SiO2) contents] (Strunge et al., 2022b;
Kremer et al., 2022). We selected the conditions with the lowest
costs as the nominal case (i.e., olivine-bearing rocks were used as
feed minerals, the reaction pressure was set at 100 bar, and the
reaction temperature was set at 190°C) (Strunge et al., 2022b). For
this case study, the mineralization plant was assumed to be located at
the cement plant’s site (located in the north of Germany) to reduce
the costly transport of flue gas or CO2. As feed minerals (i.e., olivine-
bearing rocks) are currently mined in Norway, Italy, Greece, or
Spain (Kremer et al., 2019), they are transported to the
mineralization plant, where they are first mechanically activated
via crushing and grinding (pre-treatment), followed by the
mineralization in continuously stirred reactors under elevated
pressure and temperature, in an aqueous slurry with carbonation
additives (i.e., NaCl and NaHCO3). CO2 is introduced in gaseous
form into the mineralization slurry after being separated from the
flue gas via monoethanolamine (MEA) post-combustion capture.
Following the reaction, the slurry and unreacted minerals are
recycled, and the products are purified (post-treatment) to
produce an SCM for the cement industry (Figure 1). This
purification step is needed as the carbonation reaction produces
magnesium carbonate and silica. Because the former is inert when
blended with cement, thus reducing its compressive strength, and
the latter reacts with cement (i.e., increasing its strength), the silica
content has to be increased through purification to use the
carbonation products as SCM (Bremen et al., 2022; Strunge et al.,
2022b; Kremer et al., 2022). Consequently, some of the inert
products must be landfilled (e.g., in the limestone quarry) (Figure 1).

The integrated TEA model, as is commonly the case, combines
multiple approaches. We calculated mass and energy balances from
first principles (e.g., energy transfer for heat exchangers) in
combination with literature values (e.g., energy demand for
grinding). The reaction conditions (e.g., pressure, temperature, and
concentration) and resulting yield were based on literature values. A
post-processing train did not exist yet and was therefore designed and
subsequently simulated on Aspen Plus (Strunge et al., 2022b).

2.2 TEA model implementation

We described the methodology of the used TEA model in
depth earlier in Strunge et al. (2022b). Hence, the following gives
only a short overview of the approach followed. The model was
developed following recent guidelines for TEA in CCU (IEAGHG,
2021; Rubin et al., 2021; Langhorst et al., 2022). The performance
indicator chosen for this assessment was the levelized cost of
product (LCOP) in €2021 per tonne SCMCCU produced. This
indicator combines the total capital requirements (TCR) and
operational expenditures (OpEx). We discounted the capital
costs using the interest rate i and the lifetime of the plant L to
evaluate the real cost of capital for the proposed plants as follows
(Smith, 2005):

LCOP � α · TCR + OpEx, (2)

α � i

1 − 1 + i( )−L( ). (3)

We calculated the TCR building up from the total direct cost
(TDC) and total overnight cost (TOC) (Eqs 4, 5, 6):

TOC � ∑TDC · 1 + findirect( ) · 1 + fprocess( ) · 1 + fproject( )
· 1 + fowner( ). (4)

Here, findirect, fprocess, fproject, fowner represent indirect costs,
process contingencies, project contingencies, and owners’ costs. To
calculate the TCR for an nth-of-a-kind plant, we used the following
equations (Rubin et al., 2013; Rubin et al., 2021):

TCR � TOC

_mSCM
( ) ·N−E · _mSCM · 1 + i( )tconstruction (5)

E � ln 1 − LR( )
ln 2( ) . (6)

N characterizes the number of plants built, LR the learning rate,
E the experience factor, i the interest during construction, and
tconstruction the estimated time for construction.

We estimated OpEx using mass and energy balances as a basis to
calculate the costs of utilities and feedstocks and the costs of material
transport:

OpEx � ∑wi · πi + _mmineral,in ·∑ πj · dj + OpExfixed, (7)

where the amount of feedstock or utility needed is represented
by wi, πi is the price of feedstock or utility, πj is the price of
transportation means (i.e., truck, train, or ship), and dj is the
distance for material transported. OpExfixed consists of insurance
and local taxes, maintenance costs, and labor, which we derived on a
factorial basis from TPC and the plant’s capacity (Peters et al., 1991;
Anantharaman et al., 2018).

The model was specified in MATLAB 2019b, which allowed for
combining the technical and economic performance estimation
into one model and running local and global sensitivity analysis
methods on the integrated TEA model. For all global uncertainty
analysis calculations, we used UQLab v1.4.0 (Marelli and Sudret,
2014), which is fully MATLAB-based, to easily link it to the TEA
model.

FIGURE 1
System boundaries of carbon capture utilization via
mineralization model, adapted from Strunge (2021). Process
flowsheet shown in Supplementary Figure S1.
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TABLE 1 Used input variables for the uncertainty analyses. *Only used in local sensitivity analysis because these variables are dependent on each other (e.g., yield
of the reaction increases with pressure not modeled in the TEA model).

Category Description Abbreviation/
symbol

Process assumptions Recycling of the reaction solution (additives + water): the recycling rate determines how often the solution
of water and additives can be recycled in the process. High recycling rates lead to lower operational costs

Add.Rec

Reaction rate: the reaction rate determines the time needed to obtain a desired yield and thus with smaller
rates the size of the reactors rise, leading to higher capital and operational expenditures

kreaction

Pressure*: elevated pressure of the reactor is necessary to increase the reaction rate via the dissolution of CO2

in the slurry, where it can react on the mineral particle’s surface. Higher pressures lead to higher capital and
operational expenditures for compression

Preaction

Temperature*: increased temperature is needed to initiate the reaction. Higher temperature needs lead to
higher capital costs for heat exchangers and higher operational costs for natural gas

Treaction

Yield of the reaction*: a higher yield will lead to longer residence time in the reactors and hence increase
capital and operational expenditures for the reactors but will require fewer separation steps after the reaction
to purify the product, which decreases the capital and operational expenditures for the separation step

Yield

Solid–liquid ratio in slurry: the solid–liquid ratio determines the amount of solid in the slurry. Higher values
reduce the amount of water and additives needed and require smaller reactors, leading to a decrease in
capital and operational expenditures for these accounts, as the density of the slurry increases operational
expenditures for stirring rise

XS/L

Unreacted mineral recovery rate: after the reaction, a share of the unreacted mineral is recovered and fed
back to the reactor. Higher values increase electricity demand and capital costs but reduce costs for feed
minerals

Xunreactedmineral

Silica content in the SCMCCU: the SCM produced by this process is a mixture of SiO2 and inert material
(i.e., unreacted mineral and magnesium carbonate). Higher contents of SiO2 in the SCM require an
increased purification effort because the process produces more carbonates than silica. Higher contents lead
to increased capital and operational expenditures

XSiO2

Purity of feed mineral: the feed minerals are of natural origin; they can contain impurities (e.g., Fe2SiO4),
which may act inert when reacted with CO2. Higher purities will decrease both capital and operational
expenditures

pmineral

Capital expenditures assumptions Lifetime of the plant: the lifetime determines how many years the plant operates. Long lifetimes will reduce
annualized capital expenditures

Lplant

Number of plants to reach NOAK: the model estimates the costs of the mature plant, with costs decreasing
through learning effects with each iteration of building a plant. This value determines how many plants will
have to be built to reach the nth-of-a-kind (NOAK). Higher values decrease capital expenditures

Noofplants

Learning rate: the learning rate factors in cost reductions archived though iterative learning. Higher values
decrease capital expenditures

Learning rate

Combined process and project contingencies: the contingencies used in the model combine both project and
process contingencies. Higher values of contingencies increase capital expenditures

Contingencies

Overall interest rate on capital: the interest rate combines interest on loans and equity needed to obtain the
capital for constructing a plant. Interest will be paid over the entire lifetime of the plant. Higher interest rates
lead to higher annualized capital expenditures

i

Operating time of the plant per year: the operation time determines how much the plant is running on full
load. Higher operation times will require a smaller plant for the same output and hence will reduce capital
expenditures

toperating

Prices of utilities, feedstock, and
product

Price of electricity πelectricity

Price of natural gas πnatural gas

Price of feedstock mineral πmineral

Price of sodium bicarbonate πNaHCO3

Price of sodium chloride πNaCl

Price of MEA πMEA

General Transport distance: distance from the mining site of feed mineral to the cement plant. Higher values
increase operational expenditures

Transport distance
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2.3 Quantity of interest and selected input
variables for the uncertainty analyses

For the case study, we used the output variable LCOP as the so-
called quantity of interest (a term often used in uncertainty
quantification for the output parameter of which the sensitivity is
tested) to compare the different uncertainty analysis methods. We
chose to vary the following input variables (Table 1).

3 Uncertainty analysis methods in TEA

This section discusses the uncertainty analysis method we
investigated here. It first gives a general introduction to uncertain
TEA problems before discussing local sensitivity analysis in more
detail. It then introduces global sensitivity analysis methods and
approaches to characterize uncertainty and variability in model
inputs.

A general formulation of an uncertain TEA problem can be
specified as a function g(x), where x � (x1, x2, . . . , xn) represents
the input space (e.g., process variables and feedstock prices) and
y � (y1, y2, . . . , ym) the model’s output space (e.g., LCOP and
profit). The initial or base values of the input space are denoted
as x0 � (x0

1, . . . , x
0
n) and the base value output space

as y0 � (y0
1, . . . , y

0
n):
y � g x( )with y0 � g x0( ). (8)

As many parameters or variables of the input space x0 are not
fully known (e.g., the actual yield of the process when in operation),
TEAs require assumptions to be made for some of the uncertain
inputs.

A helpful categorization of uncertainty was suggested by Rubin
(2012), who distinguishes between “uncertainty,” “variability,” and
“bias.” Although true uncertainty means the precise value of a
parameter is not yet known (e.g., reaction yield of the process at
scale), variability simply means a variable can take on different
values (e.g., over a time period or at different locations) and the
modeler chooses one (e.g., the temperature in a certain location).
The principal difference between uncertainty and variability is that
the precise value of uncertain parameters is not known, nor is the
probability of the parameter taking on a certain value, whereas
variable parameters are known or at least knowable, allowing
quantification of a probability density function. This does not
mean an uncertain parameter should not be quantified, they can
and need to be, but their quantification is a guess or good estimate at
best, rather than a (series of) measured value(s) per se. The
uncertainty analysis methods discussed in this study can be used
to assess uncertainty and variability, and hereafter, we refer to both
simply as uncertainty. Bias refers to assumptions that (intended or
unintended) change the results (e.g., choosing the highest or lowest
reported reaction yield for the assessment of a chemical process)
(Rubin, 2012; Van der Spek et al., 2020). Bias analysis is challenging
as only third-party reviews of a study’s assumptions, and their
reasoning might be able to detect these (Rubin, 2012).

The goals of uncertainty analyses can be manifold, including
testing the robustness of a model and providing insight into changes
in outputs due to changes in inputs and their probabilities to
determine key drivers of uncertainty and gain insights into the

strength of the model or its input data (Saltelli et al., 2008; Van der
Spek et al., 2020). In this study, we focused on the commonly used
goal to determine key drivers of uncertainty on the output of the
model (i.e., creating a ranking of the most influential parameters on
the model’s uncertainty) and investigated their input–output
relationships, frequently called sensitivity analysis (Mishra and
Datta-Gupta, 2018). In the following, we give an overview of
seven suggested sensitivity analysis methods (Table 2).

3.1 Local sensitivity analyses

Local sensitivity analyses (LSA) are the most commonly used
methods in ex ante TEA, in which one or multiple input variables
are varied around a base value. The simplest form of local analysis
is the one-at-a-time (OAT) local sensitivity analysis, in which
input variables of interest xi are varied using two realizations (e.g.,
± 10%, ± 50% or a defined minimum and maximum) around the
base value x0

i (Sagrado and Herranz, 2013; Van der Spek et al.,
2020). Overall, given the local nature of the OAT analysis, selecting
a small range for the variation (e.g., ± 10% or ± 15%) is
recommended to investigate the local sensitivities of the model
around the base values. The resulting output values with varied
inputs allow the modeler to test the local robustness of the model
and determine the strength of a local input–output relationship
(e.g., a strong relationship is present if varying xi by ± 10% leads to
the high increase/decrease of yj compared to the base value y0

j)
and the direction of the relationship (e.g., when an increase in xi

leads yj to increase from y0
j , we call it a positive relationship). The

nature of the relationship (e.g., linear or nonlinear) cannot be fully
investigated with OAT. A main advantage of OAT lies in its
computational costs, where the model for n relevant input
variables needs to be run C � (2 · n + 1) times, which translates
for 10 variables into 21 runs to be computed. We utilized the
following definition for OAT indicators (Ikonen, 2016):

OAT yi,j[ ] � y+
i,j − y−

i,j

∣∣∣∣∣ ∣∣∣∣∣
y0
j

. (9)

We can then plot the output responses for each varied input
y±
i,j

y0
j

in, for instance, a tornado graph while using the OAT indicators as a
ranking order (i.e., the variable with the highest value of its OAT
indicator is shown at the top, followed by the second highest value
on the second spot from the top).

Another commonly used approach is one-way local sensitivity
analysis, which is an extension of the OAT approach. Instead of
using only two realizations of each input variable around the base
value, a modeler varies the input variables using predefined intervals
(e.g., ten steps in the predefined interval of ± 10% of x0

i ). This
approach has higher computational costs and needs C � (2 + k) ·
n + 1 runs, with the number of added steps k (excluding the
extremes) and the number of relevant input variables n. For
10 variables with eight added steps (excluding extremes), this
translates to 101 model runs. Spider plots are a common way to
present the results of the one-way sensitivity analysis, in which the
strength, direction, and nature of the local input–output relationship
can be determined through a comparison of the slopes (Mishra and
Datta-Gupta, 2018).
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A drawback of these two methods is that no interaction effects
can be investigated, as in each run, only one variable is changed at a
time (Borgonovo and Plischke, 2016; Van der Spek et al., 2020; Van
der Spek et al., 2021). However, most TEA models are likely to
contain interaction effects because they often contain related parts.
For example, process variables that impact capital expenditures
might have a different influence on the LCOP depending on the
interest on capital. To tackle this in a simple way, multiple-way
sensitivity analysis can be used (Borgonovo and Plischke, 2016). Like
the one-way local sensitivity analysis, input variables vary along a
predefined interval, but instead of only varying one input variable,
multiple variables are changed at a time. For example, variable pairs
are varied in a two-way approach, and variable triplets are varied in a
three-way approach. This allows modelers to identify combinations
of variables with a high impact on the output that might not have
been discovered using one-way analysis. The computational costs
are significantly higher compared to the other local sensitivity
analysis measures. This analysis requires C � (2 + k)q · ( n!

(n – q)!·q!) +
1 runs, with q being the number of ways of the analysis. Hence, two-
way analysis (q � 2) for 10 variables and eight added steps requires
4,501 model runs. To analyze the results graphically, for a two-way
sensitivity analysis, the same graphical approach can be used as
described for the one-way or OAT local sensitivity analysis, albeit in
three dimensions. For higher dimensions, the values themselves
must be evaluated (e.g., setting a maximum/minimum value for yi

and collecting all combinations of xi that lead to this realization).

3.2 Global sensitivity analyses

Although local sensitivity analyses require comparably low
computational costs, a major drawback is their limited ability to
consider probabilities; hence, some considered realizations (e.g.,
± 15%) might be arbitrary (Saltelli et al., 2008). Therefore, global
or probabilistic sensitivity analyses (GSA) are frequently suggested
(Borgonovo and Plischke, 2016; Van der Spek et al., 2020; Van der

Spek et al., 2021). In contrast to local sensitivity analysis methods,
global sensitivity analysis methods study how variations in
probabilistic output parameters can be attributed to different
probabilistic input parameters (Mishra et al., 2009). Although
some of these input–output relationships could be solved
analytically in theory, due to the complexity and heterogeneity of
TEA models (i.e., they often comprise multiple different connected
models), global sensitivity analysis methods are commonly
conducted using statistical techniques coupled with a random or
quasi-random sampling of the model (Hastie et al., 2009). Here,
probabilities for the variables being a certain realization
(i.e., probability density functions, PDFs) need to be assigned, for
example, by estimation (called uncertainty characterization). Then,
using Monte Carlo (or quasi-Monte Carlo) sampling (MCS),
samples of the input variables are drawn simultaneously, and the
resulting outputs of the models are calculated (called uncertainty
propagation). The simplest method of uncertainty propagation is
random sampling. More sophisticated approaches to sampling (e.g.,
Latin hypercube sampling or low discrepancy series sampling using
Halton or Sobol sequence) have been developed to avoid that simple
random sampling leads to clustering in some areas of input space,
thus underrepresenting other areas (Saltelli et al., 2008). Following
uncertainty propagation and utilizing the obtained input and output
space, input–output relationships can be determined, and variables
with high importance are identified (called uncertainty importance
evaluation) (Mishra and Datta-Gupta, 2018).

3.3 Uncertainty characterization

The uncertainty characterization of the input parameters is
arguably the most important step in probabilistic uncertainty/
sensitivity analysis and requires experience and careful balancing
of real knowledge of the uncertainty versus the ambitions of the
modeler (e.g., a modeler might be drawn to choosing overly
optimistic or pessimistic values to fit their goal). Often, we are

TABLE 2 Uncertainty analysis methods considered in this publication.

Local sensitivity analysis Global sensitivity analysis

One-at-a-time One-way Multiple-
way

Scatterplot-
analysis

Spearman
rank

correlation

Sobol
(variance-
based)

Borgonovo
(density-based)

Using a Monte
Carlo

simulation

7 7 7 ✓ ✓ ✓ ✓

Short
description

Changing one input
(xi) at-a-time using

two extremes
(Borgonovo and
Plischke, 2016)

Changing one
input (xi) at-a-
time over an
interval.

(Borgonovo and
Plischke, 2016)

Changing
multiple inputs
xi, . . . , xj at-a-
time over an

interval (Van der
Spek et al., 2020)

Visual analysis of
input–output
scatterplots
(Mishra and

Datta-Gupta, 2018)

Regression over
ranked

input–output
pairs (Marelli
et al., 2021)

Measuring how
much an output
variance could be
reduced if inputs
xi, . . . , xj were

fixed (Saltelli et al.,
2008)

Measuring the
distance between the
output density when
no inputs are fixed

and the density where
xi is fixed (Borgonovo
and Plischke, 2016)

Advantages Computationally
cheap

Nonlinearities can
be detected

Simple
interaction

effects can be
detected

Visual
interpretation

possible

Comparably
simple to
compute

Interaction and
total effects can be
analyzed in depths

Moment independent

Disadvantages Only one or a few inputs are varied at-a-time Computationally costly
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inclined to fit probability density functions to collected data without
accounting for its quality (e.g., completeness), leading to the
propagation of incorrect or incomplete uncertainty, directly
impacting the PDF of the parameter of interest. Care should be
taken, for instance, to maintain PDFs within a range that is
physically possible. For example, many quantities have natural
limits (e.g., you cannot have a negative number of people).
Multiple methods have been suggested to assist the modeler in
selecting their uncertainty characterization (Harr, 1984; Hawer et al.,
2018; Mishra and Datta-Gupta, 2018; Van der Spek et al., 2020; Van
der Spek et al., 2021). We here exemplify three approaches that can
help TEA practitioners define reasonable PDFs: i) a decision tree by
Hawer et al. (2018), ii) the maximum entropy principle (Harr, 1984),
and iii) simply choosing a uniform distribution for all inputs.

i) Hawer et al. (2018) (in the following referred to as Hawer’s
method) provided a useful decision tree that gives suggestions
on the probability density functions that should ideally be
assigned, mainly depending on the data quality and nature
(e.g., discrete or continuous) of the input parameter
(Supplementary Figure S2). The decision tree guides the
modeler to assign PDFs either subjectively by relying on
assumptions on a potential distribution (e.g., through
assessing the likelihood to have outliers in the dataset) or
when more data are available, more objectively (e.g., through
estimating a PDF using a maximum likelihood method on a
dataset). This uncertainty characterization method can result in
many different PDFs being assigned to the input variables (e.g.,
uniform, triangular, normal, logistic, and lognormal). Although
we find this a comprehensive method for assigning PDFs, many
options require detailed knowledge of the data, which may not
always be publicly available for new or commercially sensitive
technologies.

ii) An approach that requires slightly less knowledge is the
maximum entropy principle, where five different types of
PDF are assigned (uniform, triangular, normal, beta, and
Poisson) (Harr, 1984), subject to known constraints in the
available data (e.g., the bounds and mean, Supplementary
Table S1). The general idea of this approach is to use all
available information but not to add assumptions to estimate
the PDFs (Mishra and Datta-Gupta, 2018). In comparison to
Hawer’s method, the maximum entropy principle uses fewer
options for describing the input data.

iii) The simplest method of assigning probability densities is
assigning a uniform distribution in which all realizations
have the same probability. This approach requires the least
knowledge of the input parameters and can be performed by
only knowing or defining a range for each input variable.

Although all approaches to assigning a PDF aim to harmonize
under which conditions a certain PDF is assigned, modelers’
choices and interpretation of the underlying data quality
inherently introduce a bias, which needs careful consideration.
A method to reduce this bias can be the definition of several
subjective probability distributions by multiple experts (Mishra
and Datta-Gupta, 2018). Here, the modeler relies on multiple
experts to, for example, estimate quantiles of distribution (e.g.,
minimum value relates to the 0th quantile and maximum value

relates to the 100th quantile). Although this method can reduce
the modeler’s bias, many TEA practitioners might not have
access to experts for performing these estimations. Therefore,
this approach is not discussed further in this article. In any case,
TEA practitioners and the users of TEA results should always
consider that even well-quantified PDFs only represent reality
but may not capture it completely.

3.4 Uncertainty importance evaluation

Several approaches have been developed to describe the
uncertainty importance of the output space y (Borgonovo, 2007;
Borgonovo and Plischke, 2016; Mishra and Datta-Gupta, 2018). In
this study, we focused on a number of common approaches, namely,
scatterplot analysis, rank correlation, variance-based methods, and
density-based methods (Borgonovo and Plischke, 2016). The main
difference between these approaches is their underlying
assumptions. Hence, they are better suited for different
applications. A major distinction can be made whether a method
is a parametric (i.e., assumptions for the distribution of the inputs
are made when calculating the input ranking) or non-parametric
(i.e., no assumptions for the distribution of the inputs are made
when calculating the input ranking) (Hoskin, 2012). In general,
parametric measures will have higher accuracy but more stringent
requirements on when they can be applied. Of the approaches we
discuss here, rank correlation and the density-based measure are
non-parametric, the variance-based measure is parametric, and the
scatterplot analysis is qualitative.

3.4.1 Scatterplot analysis
Scatterplots are suited to illustrate bivariate relationships and

allow a visual determination of input–output relationships.
Therefore, we plot the output sample of output j (yj), which was
generated by MCS against the realizations of each of the input
variables (xi). The strength, direction, and nature of the
relationships can be observed visually, where a strong
relationship will lead to a smaller variance in the sample (Mishra
and Datta-Gupta, 2018).

The computational costs for scatterplot analyses are significantly
higher than those for local methods (Mishra and Datta-Gupta,
2018). Although the number of runs will depend on the nature
of the model itself, most models will require at least C =
100–1,000 runs to reach convergence (Saltelli et al., 2008; Mishra
and Datta-Gupta, 2018).

3.4.2 Spearman rank correlation
The Spearman rank correlation coefficient (SRCC) assesses how

well the relationship between the input sample xi and output sample
yj can be described using a monotonic function (Helton et al., 1991).
Here, the nature of the relationship (e.g., linear) does not influence
the SRCC. Therefore, it is widely applicable, including to TEA,
where Several input–output relationships can be expected. The
SRCC is calculated by ranking the inputs and outputs from the
Monte Carlo sample. This is performed by assigning each
input–output pair xi,l and yi,l the ranks xtrans

i,l ytrans
j,l , which for n

variables consist of the ranks 1 . . . n (e.g., if the smallest value of xi,l

corresponds to the highest value of yi,l, we assign the ranks xtrans
i,l � 1
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and ytrans
j,l = n). We calculated the SRCC for each desired input and

output pair xi,l, yj,l (e.g., input interest rate and output LCOP)
(Helton et al., 1991; Mishra and Datta-Gupta, 2018) as follows:

SRCC xi, yj[ ] � ∑l x
trans
i,l − �xi( ) ytrans

j,l − �yj( )
∑l xtrans

i,l − �xi( )2 ∑l ytrans
j,l − �yj( )2[ ] 1

2
. (10)

The underlying assumption for using this measure is that the
input–output relationship is characterized by a monotonic function
(i.e., no inflection must be present in the relationship) (Helton et al.,
1991), which first needs to be established, for instance, by visual
inspection of the input–output relation. As the SRCC can be seen as
the linear regression between the ranks, a non-monotonic function
will not lead to sufficient answers (as the ranks are not linear)
(Marelli et al., 2021), or it might not be possible to assign ranks at all
if a value appears twice.

The computational costs for this method again depend on the
nature of the model and require at least C = 100–1,000 runs (Saltelli
et al., 2008; Mishra and Datta-Gupta, 2018).

3.4.3 Sobol indices
Variance-based methods assess how the expected variance of the

output model changes when knowing an input realization with
certainty. In the variance-based method, the indices by Sobol
(1993) are commonly used (Borgonovo and Plischke, 2016). These
variance based indices allow modelers not only to provide a
quantitative measurement of the strength, direction, and nature of
the global input–output relationship as the first sensitivity (i.e., the
effect of one input variable alone on the output space), but also to
investigate higher orders of input–output relationships (i.e., the effect
ofmultiple variables collectively on the output space). Usually, the first-
order effect and the total order effect are calculated and compared,
which can uncover the interaction effects of input variables (which
cannot be identified using the other suggested methods) (Borgonovo
and Plischke, 2016). As Sobol’s variance-based measure depends on a
particular moment of the output distribution (its variance), it may lead
to misleading results when input variables influence the entire output
distribution without significantly influencing the variance (Borgonovo
and Tarantola, 2008).

The general idea for calculating Sobol indices lies in the
decomposition of the model function (Eq. 11), in which g0

equals the expected value of g(x1 . . . .xn) added with summands
of the partial functions of each variable input variable and all their
combinations (Sobol, 1993; Marelli et al., 2021):

g x1 . . .xn( ) � g0 +∑n

i�1gi xi( ) + ∑
1≤ i< q≤ n

gi,q xi, xq( )/
+g1,2,...n x1, . . . xn( ). (11)

Following Sobol (1993), we define the total and partial variance
for inputs i1 till is as follows:

D � ∫g2 x( )dx − g2
0, (12)

Di1...is � ∫ . . .∫g2
i1...is

xi1, . . . , xis( )dxi1 . . . dxis. (13)

The first-order and higher-order indices Si1 ...is are then defined
as the partial variance divided by the total variance (Eq. 14).

Consequently, the total Sobol index STi for a variable i can be
calculated as the sum of all indices in which i is present. As this
definition is not practical to compute (i.e., all indices must be
computed separately), the total index can additionally be derived
using the sensitivity index of all variables excluding i, S~i (Eq. 15)
(Marelli et al., 2021). It is important to note that for this measure, the
input variables must be independent (Sobol, 1993; Borgonovo,
2007):

Si1...is �
Di1...is

D
, (14)

STi � ∑
i1 ...is( )⊃i

Si1...is � 1 − S~i. (15)

Because the calculation of each partial variance can be
cumbersome and quickly makes thousands or millions of
calculations be computed, multiple shortcut methods have been
proposed (Saltelli et al., 2008; Marelli et al., 2021). For this study, we
used the Janon estimator (Janon et al., 2014) (Eq. 16), allowing quick
calculation of first-order and total-order effects. We considered two
independent Monte Carlo samples x � (x1, . . . , xn) and x �
(x1

′, . . . , x′
n) resulting in y � g(x) and yv �

g(x1
′, . . . , xv−1′ , xv, xv+1′ , . . . , x′

n) and computed them as follows:

Sv �
1
N∑yiyv

i − 1
N∑ yi+yvi

2( )( )2
1
N∑y2i +yvi 2

2 − 1
N∑yi+yvi

2( )2 . (16)

The computational costs for Sobol indices are significantly
higher than other global sensitivity methods. Using the Janon
estimator to calculate first-order and total-order indices, the
required model runs are C � k · (2 · n + 2) with n being the
number of variables and k being the number of runs for the
measure to converge (i.e., at least 100–1,000 runs), translating to
at least 2,200–22,000 runs for 10 variables.

3.4.4 Borgonovo indices
Because Sobol indices are moment dependent (i.e., the second

moment: variance), Sobol indices cannot sufficiently analyze the
sensitivities of inputs if they cannot be fully measured by the
variance, which can, for example, be the case if selected PDFs for
inputs have long tails (Borgonovo, 2007). Density-based approaches
have been developed to counter this, which take the shape of the
output distributions and compare it to the shape of the input
distributions. Borgonovo (2007) developed the density-based
method we used in this study.

We calculated the Borgonovo indices using the conditional
and unconditional probability distribution function fyj |xi and
fyj of the output yj for each input variable of interest xi. The
general approach for output j and input i can be described as
follows (Eq. 17), with Ex i being the expected value of xi
(Borgonovo, 2007):

zi � 1
2
Ex i[∫ fyj yj( ) − f

yj

∣∣∣∣xi yj

∣∣∣∣∣xi( )
∣∣∣∣∣∣∣

∣∣∣∣∣∣∣dy]. (17)

To compute these, we used the histogram-based approach,
which is used by default in UQLab (Marelli and Sudret, 2014;
Marelli et al., 2021). To approximate the conditional distribution
yj |xi, we drew samples from the input and binned them into classes
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of xi. We computed a distribution of yj in each of the classes,
providing us an approximation of the conditional distribution fyj|xi.
We calculated the unconditional distribution fyj directly from
overall distribution of yj (Marelli et al., 2021).

The computational costs of this measure are again dependent on
the nature of the model but can be expected to be at least C =
100–1,000 runs.

4 Results and illustration of uncertainty
analysis methods

This section discusses the implementation of the deliberated
uncertainty analysis methods in the mineralization case study. We
first calculated the results using the base case assumptions (Table 3)
for a mineralization plant with a capacity of 272 ktSCM a−1 (this size
was chosen to replace 20% of cement of a cement plant producing
1.36 Mtcement a

−1), leading to a levelized cost of the product of
€129 tSCM

−1 produced via CO2 mineralization. As previously
discussed by Strunge et al. (2022b), these costs can be offset by
replacing cement production and reducing the costs for CO2

emission certificates (e.g., from the European Emission Trading

System). In the following, we applied the in Section 3 discussed
uncertainty analysis tools (i.e., one-at-a-time sensitivity analysis,
one- and multiple-way sensitivity analysis, scatterplot analysis, rank
correlation, Sobol analysis and Borgonovo analysis ) to the case
study.

4.1 Exemplification of local sensitivity
analysis methods

For the OAT sensitivity analysis, we varied the input variables
around the base values by ± 15% (Figure 2). The graph shows
observably different local sensitivities of the different input variables.
To ease the interpretation of the results, we clustered the local
sensitivities following the induced change in the output (Δyi)
subjectively into three categories [high sensitivity
(Δyi ≥ 5% ∩Δyi ≤ − 5%), medium sensitivity
(5%>Δyi ≥ 2.5% ∩ − 5%<Δyi ≤ − 2.5%), and low-to-no
sensitivity]. The variables XSiO2 and Add.Rec produce the highest
changes of the output variable LCOP (high sensitivity). To put the
shown values into perspective, XSiO2 induced the highest change on
the LCOP with +12%, which means by increasing XSiO2 by 15%, the

TABLE 3 Base case assumptions.

Category Abbreviation/symbol Base value

Process assumptions Add.Rec 95%

kreaction 1.4717 s

Preaction 100 bar

Treaction 190°C

Yield 60%

XS/L 12.5 wt%

Xunreactedmineral 60 wt%

XSiO2 40 wt%

pmineral 80 wt%

Capital expenditures assumptions Lplant 30 years

Noofplants 20

Learning rate 10.55%

Contingencies 40%, 30%

i 7.69%

toperating 8,000 h

Prices of utilities, feedstock, and product πelectricity 62€ MWh−1

πnatural gas 32€ MWh−1

πmineral 12 € t−1

πNaHCO3 209 € t−1

πNaCl 61.9 € t−1

πMEA 1,230€ t−1

General Transport distance 1,200 km
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LCOP increases from €129 (base case) to €144 tSCM
−1. Variables

toward which LCOP shows medium sensitivity are πelectricity, XS/L,
Preaction, Yield, i, Learning rate, and Contingencies. All other
variables we can cluster as low-to-no impact on the LCOP.
Additionally, the results suggest that the sensitivity toward Yield
might not follow a linear relationship because both output bars have
the same direction (Figure 2), which needed further investigation
using one-way local sensitivity analysis (the following section).

For the one-way local sensitivity analysis, we varied the input
values in 10 steps (including the extremes) within the interval of
± 15% around the base values (Figure 3). Visual analysis of the graph
reveals that multiple relationships in addition to Yield are nonlinear
(i.e., toperating, XS/L, Preaction, and Treaction). The detected
nonlinearities are not surprising as all the input variables in
question (i.e., toperating, XS/L, Preaction, and Treaction) influence
either the design of the reactor (e.g., increasing the reaction
pressure leads to a different wall thickness of the reactor) or
other equipment (e.g., heat exchangers), which do not scale
linearly in the model. Because a comparison of the slopes is
infeasible for variables with different directions of the
input–output relationship and the presence of nonlinearities, we
used the categories high sensitivity, medium sensitivity, and low-to-
no sensitivity with the same boundaries as for the OAT to determine
a ranking of the input variables. We ranked the impact after their

highest value in each category [i.e., max (|y+
i,j

y0
j
,
y−
i,j

y0
j
|)]. This

determination of the ranking came to a similar conclusion as the
OAT analysis: the variables with the highest impact are Add.Rec
and XSiO2 followed by the medium impact variables Yield, Preaction,
XS/L, πelectricity, i, toperating, and Learning rate. Figure 3 clearly shows
that one-way sensitivity analysis is a simple method to identify
nonlinearities in input–output relationships. However, a visual
determination of the ranking order and deriving impact
categories in spider plots can become challenging when dealing
with a multitude of input variables of interest.

We performed the two-way sensitivity analysis on the six inputs
with the highest impacts (Figure 4). This analysis aimed to investigate
which combination of these inputs has a particularly high impact on the
output and thus need to be investigated thoroughly. To interpret the
results, we again clustered the local sensitivities following the induced
change in the output (Δyi). We used the three categories: high
sensitivity (Δyi ≥ 10% ∩Δyi ≤ − 10%), medium sensitivity
(10%>Δyi ≥ 5% ∩ − 10%<Δyi ≤ − 5%), and low-to-no sensitivity.
Note that compared to the categories used in the OAT or one-way
analysis, here we chose intervals with cut-off values twice as high (e.g.,
high sensitivity is defined as Δyi ≥ 10% instead of Δyi ≥ 5%), as
combinations of factors with high sensitivity will lead to bigger changes.

The results show that nine combinations, including the variables
XSiO2, Add.Rec, πelectricity, XS/L, Preaction, and Yield lead to

FIGURE 2
Results from OAT. Input variables are varied ± 15%. *Variables reached their limit within this interval, and the highest/lowest possible value was
chosen.

Frontiers in Energy Research frontiersin.org10

Strunge et al. 10.3389/fenrg.2023.1182969

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1182969


combinations with high sensitivity (Figure 4). In Figure 4, the areas
which are most desirable (i.e., decrease LCOP) or most undesirable
(i.e., increase LCOP) are clearly marked. The most undesirable
combinations are low XSiO2 and low Add.Rec, as well as low
Add.Rec and low XS/L (−15% from base value), leading to an
increase in LCOP from €129 (base case) to €156 tSCM

−1 (+21%),
as well as €152 tSCM

−1 (+18%), respectively. For some variable pairs
(e.g., πelectricity, Yield), we additionally see that much of the mapped
space does not lead to large changes in the output (i.e., categorized as
low-to-no sensitivity) and hence can be seen of lower priority during
the assessment or further research.

4.2 Exemplification of uncertainty
characterization methods

Following the exemplification of LSA methods, we applied the
aforementioned global sensitivity analysis methods to the case study.

For the comparison of global uncertainty analysis methods, we
removed dependent inputs (i.e., Preaction, Treaction, and Yield ),
which are here onward only represented by reaction rate, as they
would have to be changed simultaneously, for which the model is
not detailed enough (i.e., no reaction model present). Alternatively,
if the model had been more detailed (i.e., including a reaction
model), a dependence structure (i.e., copula) could have been
used (Soepyan et al., 2018). As discussed in Section 3.2, we first
started with the uncertainty characterization, followed by the
uncertainty importance evaluation in Section 3.4.

This section illustrates how uncertainty characterization (i.e., the
selection of PDFs) can influence the output of a Monte Carlo
simulation by applying the three methods discussed in Section
3.3 (i.e., Hawer’s method, maximum entropy principle, and
assigning uniform distributions) to our case study. With different
PDF choices resulting from the three methods, the uncertainty
quantification moreover depends on the confidence of the
modeler to determine certain moments of the distribution (e.g.,

FIGURE 3
Results from one-way LSA. Input variables are varied ± 15% for (A) process assumptions, (B) capital expenditures assumptions, (C) prices of utilities
and feedstock, and (D) general assumptions. *Variables reached their limit within this interval, and the highest/lowest possible value in this interval was
chosen.
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mean and variance). In the approaches by Hawer et al. (2018)
(i.e., Hawer’s method) and the maximum entropy approach of Harr
(1984), a modeler with low confidence (pessimistic) in the data
quality will choose simple distributions (e.g., a triangular
distribution), whereas modelers with higher confidence
(optimistic) in the data quality will be inclined to assign more
complex methods (e.g., selecting a normal distribution or beta
distribution). To exemplify this effect, we applied the maximum
entropy principle, assuming high and low confidence in the data.
The derived input samples and the selected PDFs are shown in
Figure 5 and Supplementary Table S2.

Figure 5 shows that for these inputs with the highest
uncertainty (where a probability density is truly unknown,
mostly process-related inputs in this case study, e.g., kreaction,
Additive rec., and XS/L), we assign uniform distributions,
regardless of the uncertainty quantification method, whereas for
variables with more available data (here, mostly pricing data, e.g.,
πelectricity or πmineral), we choose different distributions, such as

triangular, normal, lognormal, or beta distributions, depending on
the uncertainty quantification method (Figure 5; Supplementary
Table S2).

A comparison of the resulting output distributions when
using the different uncertainty quantification methods reveals
clear differences in the shape of the distribution and the mean
and the width of the confidence interval for the quantity of
interest (here, levelized cost of product) (Figure 6). First, note
that the mean values, so the expected value from the MCSs
(altering all variables at the same time), derived here
(€145–€173 tSCM

−1; see Figure 6), are in a similar range or
exceed the maximum values for LCOP obtained using LSA
methods (maximum value from OAT €144 tSCM

−1, from two-
way analysis €156 tSCM

−1; see Section 4.1), which some might
consider as extremes in the LSA. The use of uniform input
distributions for all variables results in the highest mean (20%
higher than using Hawer’s method) and (naturally) leads to an
increase of approximately 25% in the width of the 95% confidence

FIGURE 4
Results from two-way LSA. The six most influential input variables determined via OAT are varied in combination ±15%: silica content in the SCMCCU

(XSiO2
) (fraction), solid–liquid ratio of the slurry (XS/L) [fraction], recycling of the reaction solution (additives + water) (Add.Rec) (fraction), pressure

(Preaction) (bar), yield (fraction), and price of electricity (πelectricity) (€MWh−1). The colors indicate an increase in the output variable LCOP (red) or a decrease
(green). *Variables reached their limit within this interval, and the highest/lowest possible value was chosen.
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interval compared to applying Hawer’s method. A difference can
additionally be seen between the maximum entropy principle
(optimistic) and Hawer’s method. The results suggest that higher
values of the output are less likely to follow Hawer’s method than
when following the maximum entropy principle. This might be
because we fit beta distributions to variables with high data
availability following the maximum entropy principle
assuming a confident modeler, whereas we fit lognormal and
normal distributions when applying Hawer’s method. Although
this effect will not always be statistically significant, given the
unknown nature of some of the input parameters, which method

has the highest accuracy cannot generally be concluded.
However, we can conclude that different uncertainty
quantification methods generate different output distributions.
Therefore, particular care shall be taken when using MCS outputs
for decision-making: someone cannot claim to provide a 95%
confidence interval of an output if the exact nature of the input
PDF is unknown, although this is very commonly done.
Furthermore, clear communication of the assigned PDFs (and
rationale) for MCSs must be a key element of ex ante system
analyses to increase transparency and informed interpretation of
results.

FIGURE 5
Input samples following different uncertainty characterization approaches: (A) uniform, (B) maximum entropy (pessimistic), (C) maximum entropy
(optimistic), and (D) Hawer’s decision tree. Altering the input variables, additive recovery (Add.Rec) (fraction), reaction rate constant (kreaction) (s),
solid–liquid ratio in reactor (XS/L) [fraction], silica content in the SCMCCU (XSiO2

) (fraction), unreacted mineral recovery (Xunreactedmineral) (fraction), mineral
purity (Preaction) (fraction), lifetime of the plant (Lplant) (years), number of plants to reach maturity (Noof plants) (natural number), learning rate on
CAPEX (Learning rate) (fraction), combined process and project contingencies (Contingencies) (fraction), interest rate on capital (i) (fraction), operation
hours per year (toperating) (h), price of electricity (πelectricity ) (€ MWh−1), price of natural gas (πnatural gas) (€ MWh−1), price of mineral (πmineral) (€ t−1), price of
sodium bicarbonate (πNaHCO3 ) (€ t−1), price of sodium chloride (πNaCl) (€ t−1), price of monoethanolamine (πMEA) (€ t−1), and transport distance of feed
minerals (transport distance) (€ t−1). Bounds shown in Supplementary Table S3.
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4.3 Exemplification of uncertainty
importance evaluation methods

We applied the aforementioned methods for measuring
uncertainty importance (Section 3.4) to the case study. We
here used Hawer’s method for uncertainty characterization.
Note that for the comparison of the uncertainty importance
evaluation methods, we again cluster the variables subjectively
into three categories (high sensitivity, medium sensitivity, and
low-to-no sensitivity). In contrast to the used categories for the
LSA methods in Section 4.1, here, the values of the indices do not
translate into a practical interpretation (e.g., an increase in LCOP
by 10%).

In the scatterplot analysis, the visual determination of the
most influential input variables concluded that πelectricity and i
show the most influence on the output, followed by
Learning rate, XSiO2, and XS/L (Figure 7). In particular, i and
πelectricity stick out, as they seem to be the most influential, but
they are not detected by the LSA as highly influential. Overall
determination of the ranking order via scatterplot analysis can
show high subjectivity to it. Hence, it has been suggested to couple
scatterplot analyses with SRCC analysis (Mishra and Datta-
Gupta, 2018). The SRCC analysis shows that XSiO2 and
πelectricity show the most influence on LCOP followed by
Learning rate, i, and XS/L (Figure 8). As the variance-based
measure, we calculated the first-order and total-order Sobol
indices for each variable. The results show that the most
influential variables broadly match the ones concluded by the
spearman rank correlation (XSiO2, πelectricity followed by
Learning rate, i, and XS/L) only with a couple of switches in
their ranks (Figure 9). Additionally, i, Learning rate, and XS/L

cause a significantly higher sensitivity because of interaction
effects (STi > Si). The interaction effects might arise because
they all directly impact the capital costs. For example, i
influences the annual costs of capital, Learning rate influences
the TCR, andXS/L influences the reactor size. Hence, the influence
of either of these variables change, depending on the value of the
other (e.g., for lower learning rates, the TCR will be higher and
hence changes in i have a larger impact on the overall LCOP).
Nevertheless, the impact of the observed interaction effects is
small and does not significantly change the overall ranking of
variables. The results of Borgonovo density-based indices show
that the most important inputs are XSiO2 and πelectricity, followed
by Learning rate, XS/L, and i, which are consistent with the
previously shown GSA results only with a couple of order
switches (Figure 10).

5 Discussion

The rankings of all input variables on the output described in
Sections 4.1, 4.3 are summarized in Figure 11, where they are
compared to the Sobol index (which, as the most comprehensive
method, is often considered the gold standard among sensitivity
indicators) (Roussanaly et al., 2021).

Figure 11 shows that the scatterplot method could only be
used for a limited number of rankings because determining
minor differences in the plots was challenging. All other
global SA methods led to an almost unanimous ranking with
only a few switches in positions (in particular for the first eight
ranks), whereas there are noticeable differences with the rankings
provided by the local SA methods (Figure 11). Using LSA
methods, the uncertainty importance of some variables was
highly overestimated (e.g., Add.Rec), although the importance
of others was underestimated (e.g., Learning rate). To examine
whether these differences between the LSA and GSA methods
arose solely due to the difference in input intervals (i.e., ±15% for
LSA and estimated minimum and maximum for GSA), we
repeated the OAT analysis using the same boundaries as used
for GSAmethods (Figure 11). This expanded LSA approach led to
identifying the same five variables with the highest impacts as
determined by GSA methods. However, significant differences
between the obtained rankings by LSA and GSA methods
remained present, indicating that probabilistic inputs and
interaction between variables are important when deriving
these rankings.

To compare the derived rankings quantitively, we applied the
approach suggested by Ikonen (2016) to first transform rankings
into Savage scores, followed by a correlation analysis to analyze
the consistency between the uncertainty analysis methods.
Savage scores were developed by Savage (1956) and had the
advantage that inputs with higher ranks (i.e., 1st or 2nd)
receive a significantly higher score, whereas less influential
parameters receive very similar scores (Supplementary
Equation S1). Calculated Pearson correlation coefficients
(PCC) (Supplementary Equation S2) between the Savage
scores of the uncertainty analysis methods are shown in
Table 4. The results confirm that, in this case study, the GSA
methods (i.e., SRCC, Sobol indices, and Borgonovo indices)

FIGURE 6
Comparison of the LCOP output distributions using different
uncertainty characterization methods showing the frequency, mean
(µ), and 95% confidence interval for each method derived using the
statistics toolbox in MATLAB.
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showed high consistency in the results (a PCC close to the
maximum value of 100% was reached, indicating an almost
perfect correlation between the derived rankings). However,
the correlation between LSA and GSA methods shows a much
lower strength (PCC of 77%–87% for OAT and PCC of 54%–91%
for one-way sensitivity analysis).

Although the correlation between the GSA approaches was
high, small changes in ranks were expected as they are all
calculated differently and have slightly different underlying
assumptions. The results of the GSA methods show that
position switches mainly occurred to variables with
underlying interaction effects (i.e., in this case study: i,
Learning rate, Contingencies, and XS/L), which can only be
fully investigated using Sobol indices (but at a higher
computational cost) (Figure 11). Note that the nature of our
case study was still fairly simple, and case studies with much
larger nonlinearities and interaction effects exist, for which
changes in rankings between the GSA approaches should
become more distinctive. Although the rankings of all
quantitative GSA methods were consistent, non-parametric
measures (i.e., SRCC and Borgonovo indices) provided the
impression that inputs that we categorize as being of low
sensitivity might have a higher impact than those shown with

the other methods because the differences in values between
high impact variables and low impact were smaller (Figures
8, 9, 10).

6 Summary and recommendations

The case study and analyses in this publication lead to a
number of general recommendations on the use of uncertainty
analysis in ex ante TEA studies. We showed that LSA methods can
be insufficient in identifying all inputs of high importance and
characterize inputs as important while they may not be. Therefore,
we recommend the wider use of global SA methods to improve the
utility of uncertainty analysis in ex ante TEAs and make such
studies more valuable for policy- and decision-making.

This study also showed the effect of using different
uncertainty characterization approaches for GSA, where the
characterization method used and the confidence of the
modeler can have a non-negligible influence on the computed
confidence intervals, thus communicating the message.
Therefore, policy- and decision-making should only rely on
computed confidence intervals when there is high confidence
in the inputted probability density functions (indicating they

FIGURE 7
Results of scatterplot analysis. Variables with high sensitivity marked in red, medium sensitivity marked in yellow, and low sensitivity marked in green.
Altering the input variables, additive recovery (Add.Rec) (fraction), reaction rate constant (kreaction) (s), solid–liquid ratio in reactor (XS/L) (fraction), silica
content in the SCMCCU (XSiO2

) (fraction), unreacted mineral recovery (Xunreactedmineral) (fraction), mineral purity (Preaction) (fraction), lifetime of the plant
(Lplant) (years), number of plants to reach maturity (Noof plants) (natural number), learning rate on CAPEX (Learning rate) [fraction], combined
process and project contingencies (Contingencies) (fraction), the interest rate on capital (i) (fraction), operation hours per year (toperating) (h), price of
electricity (πelectricity ) (€ MWh−1), price of natural gas (πnatural gas) (€ MWh−1), price of mineral (πmineral) (€ t−1), price of sodium bicarbonate (πNaHCO3 ) (€ t−1),
price of sodium chloride (πNaCl) (€ t−1), price of monoethanolamine (πMEA) (€ t−1), and transport distance of feed minerals (transport distance) (€ t−1).
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FIGURE 8
Results of SRCC analysis.

FIGURE 9
Results of Sobol analysis.
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FIGURE 10
Results of Borgonovo analysis.

FIGURE 11
Comparison of ranks derived from each sensitivity analysis method. Variables only used in the LSA but not in the GSA are not shown. *For the second
OAT, the same boundaries were used as for the GSAmethods. **Model convergence for the Sobol indices was only found at k = 50,000 runs for the used
19 input variables.
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represent variability rather than true uncertainty) and when all
known information has been used by the modeler. Given that this
is seldomly true for ex ante studies, we argue against using GSA to
answer strictly prognostic (what will) type of questions in the ex
ante technology/system analysis domain but limit the use of GSA
to identify sensitivities instead.

Regarding uncertainty importance evaluations, all quantitative
GSA methods used in this case study (i.e., SRCC, Sobol, and
Borgonovo) could compute consistent ranking orders (i.e., the
results were largely the same). Because Sobol analysis entails much
higher computational costs, it may suffice to use SRCC or
Borgonovo indices instead. However, we first recommend
investigating the presence and severity of interaction effects
(e.g., through only using a smaller group of variables for the
Sobol analysis or through multiple-ways LSA) because
interaction effects are likely to cause changes in rankings
between the used methods. SRCC or Borgonovo indices should
then preferably be applied when small or no interaction effects are
present. In particular, this may be of major importance with more
complex and/or nonlinear models.

In conclusion, we recommend ex ante TEA modelers to i) use
LSA methods only when computational power is truly limited, ii)
refrain from using GSA of ex ante techno-economic models for
answering prognostic questions, iii) investigate parameter
interactions a priori and use Sobol indices when significant
interaction effects are present or can be expected, and iv)
otherwise use SRCC or Borgonovo (or other “cheap”) indices
to avoid high computational costs. The results from this study
suggest that using these recommendations will not only
harmonize the results from different TEA studies but also
increase their utility for public and private policy- and
decision-making.
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TABLE 4 Pearson correlation coefficients between the calculated Savage scores for the rankings of each uncertainty analysis method. Scatterplot analysis was
excluded as it did not yield a ranking for each variable (Figure 11). *For the second OAT, the same boundaries were used as for the GSA methods.

GSA LSA

Sobol Borgonovo Spearman rank One-at-a-time One-way One-at-a-time*

Sobol 100% 98% 99% 81% 56% 88%

Borgonovo — 100% 99% 82% 81% 87%

Spearman rank — — 100% 79% 54% 87%

One-at-a-time — — — 100% 91% 77%

One-way — — — — 100% 61%

One-at-a-time* — — — — — 100%
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