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A real-time adaptive energy management strategy (EMS) used a model-based
predictive control algorithm that continuously adapted to the changing driving
patterns and traffic conditions. With battery degradation in an operation being
considered, the algorithm was designed to minimize the total cost of electricity
consumed by vehicles with hybrid energy storage systems (HESSs) while ensuring
that the battery and supercapacitor cell were not overcharged or overdischarged.
First, the objective function was taken as the instantaneous minimization of the
comprehensive cost. Second, a hierarchical instantaneous optimal control EMS
(HIOC-EMS) was suggested to solve the optimal power coupling coefficient of the
supercapacitor that satisfied the constraints at any moment. Third, the HIOC-EMS
was proven to be an efficient and robust method for optimizing the energy
management system of HESSs. The experimental results of three different
driving cycles showed that the HIOC-EMS, when compared to the particle
swarm-optimized fuzzy EMS (PFZY-EMS), achieved reductions in battery losses
of 18.41%, 13.94%, and 20.37% and comprehensive cost reductions of 11.16%,
7.37%, and 9.61%, respectively, in the three cycles. Furthermore, compared to the
dynamic programming EMS (DP-EMS), the HIOC-EMS resulted in increased
battery losses of 14.87%, 10.77%, and 4.87% and increased comprehensive
costs of 8.48%, 2.98%, and 1.55%, respectively. These results proved the
effectiveness of the HIOC-EMS in reducing the usage cost of electric vehicles
with HESSs.
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1 Introduction

Electric vehicles (EVs) are the future of sustainable transportation. With their low energy
consumption and simple power system structure, EVs offer a cost-effective and
environmentally friendly alternative to traditional gasoline-powered vehicles. As the
world shifts toward a more sustainable future, EVs have emerged as the inevitable
choice for those seeking a cleaner and greener transportation option. The instantaneous
high charge/discharge rate, battery temperature, and long-term high workload will lead to
the degradation of power battery performance, shortened life cycles, and increased EV usage
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costs (Martel et al., 2016; Wu et al., 2017; Ji et al., 2020). Although
supercapacitors offer benefits such as high power density and long
service life, they have the drawback of having low specific energy. As
a result, they are not suitable as the sole power source for EVs (Dubal
et al., 2014). To address this limitation, hybrid energy storage
systems (HESSs) for EVs have been developed, which integrate
supercapacitors and power batteries (Zhao et al., 2012; Song et al.,
2017a; Huan et al., 2019). HESSs leverage the strengths of both
components, utilizing the high specific power of supercapacitors and
the high specific energy of power batteries. Additionally, they
efficiently capture the kinetic energy during braking. These
advantages and capabilities are vital for safeguarding power
batteries, enhancing a vehicle’s range (Dubal et al., 2014), and
reducing the overall vehicle operating costs.

In order to enhance the overall efficiency and power of the
vehicle, HESSs adopt an effective energy management strategy
(EMS) that enables the optimal distribution of power between
supercapacitors and batteries. This approach helps in increasing
the cost efficiency and effectiveness of the system, ensuring that
power is allocated in a manner that maximizes performance
across the board (Yao et al., 2019). The aging of power
batteries deepens along with the increase in operating time,
and the power battery cost accounts for a large proportion of
the overall vehicle cost. Currently, there are two commonly used
types of EMSs: rule-based and optimization-based EMSs (Panday
and Bansal, 2014). Rule-based EMSs include strategies based on
logic thresholds and fuzzy control, while optimization-based
EMSs utilize dynamic planning algorithms, genetic algorithms,
and convex optimization techniques.

However, little research has considered the impact of the
power battery aging degree on the power allocation in HESSs
consisting of supercapacitors and power batteries. Wang (2018)
studied EVs with HESSs and designed a logic threshold control
strategy after considering the state of charge (SOC) of
supercapacitors, power batteries, and the motor power of an
EV. These findings indicate that the approach can enhance the
performance of vehicles and mitigate the maximum power
demand on the battery. To avoid high currents in the charging
and discharging of power batteries during operation, Hu et al.
proposed a composite fuzzy control strategy to obtain the optimal
output power of power batteries (Hu et al., 2018). Sisakat et al.
developed a fuzzy control EMS that incorporates the
performance characteristics of HESSs. The fuzzy rules were
used to determine the optimal discharge power of power
batteries and supercapacitors, resulting in reduced current
fluctuation in the batteries (Sisakat and Barakati, 2016).
Santucci et al. introduced the battery capacity loss model and
adopted dynamic programming to achieve the optimal energy
distribution of HESSs, which can optimize the battery life and
reduce the cost of HESSs (Santucci et al., 2014). Based on the
battery life model, Xie et al. integrated energy consumption cost
and the equivalent battery life loss cost in the design of the EMS
and concluded that including the battery life into the strategy
significantly increased the battery cycle life compared to the
strategy that did not consider the battery life (Xie et al.,
2019a). Zhou et al. used the genetic algorithm to optimize the
fuzzy membership function and fuzzy control rules (Zhou et al.,
2017). Furthermore, to avoid problems of the high computational

burden of dynamic programming and suboptimal results from
search algorithms, Song et al. proposed an EMS based on convex
optimization, which found a globally optimal solution close to
dynamic programming and significantly improved the
computational efficiency (Song et al., 2017b).

To sum up, control rules of the fuzzy control strategy rely on
expert experience and require only simple algorithms. However,
a significant gap exists between the optimization effect of the
strategy and the globally optimal result (Zhang et al., 2015; Xu
et al., 2017), and the strategy is also subjective (Zhang et al.,
2017). Dynamic programming can produce the optimal solution
for a problem, but it is unsuitable for real-time applications as it
requires a significant amount of computation time. Convex
optimization needs prior convex processing before its
application, which is difficult to implement. Instantaneous
optimization control (IOC), as a typical algorithm of the
instantaneous optimization algorithm, has real-time
advantages and is highly practical in applications. Hence, the
algorithm is gaining increasing attention in industrial control.

Given that the aforementioned EMSs do not consider the
battery aging cost and exhibit problems such as poor
optimization effects, long computation time, and difficulties in
practical applications, this paper established a comprehensive
cost function (including the cost of electricity consumption of
HESSs and the aging cost of power batteries) for operating EVs
with HESSs composed of supercapacitors and power batteries. In
order to minimize the instantaneous comprehensive cost, the
function took into account the battery aging cost, used the
instantaneous supercapacitor and power battery SOC as the
state variables, and the hierarchical instantaneous
optimization control (HIOC) algorithm to solve the optimal
power coupling coefficient of a supercapacitor that satisfied
the constraints at any time. Based on the aforementioned
method, a novel EMS was developed with good real-time
optimization effects.

2 Overall vehicle model of pure EVs

2.1 Overall vehicle parameters and power
train configuration

Table 1 lists the major overall parameters of EVs.

TABLE 1 Main parameters of the vehicle simulation model.

Parameter Value

Vehicle body mass/kg 1,700

Rolling resistance coefficient 0.01

Windward area/m2 1.6

Air resistance coefficient 0.3

Air density/(kg/m3) 1.18

Conversion factor of rotational inertia 1.1

Mechanical efficiency of the drivetrain 0.95
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Figure 1 presents the schematic diagram of the EV power train
structure. Its main components include a ternary lithium battery
pack, a supercapacitor pack, and a drive motor. As shown in
Figure 1, the motor, main gear reducer, and tires are
mechanically connected; the vehicle controller, BMS, EMS, and
DC–DC converter are connected by signals; the rest of the
components are electrically connected. The HESS structure of the
EV model is a semi-active structure with the power battery, BMS,
EMS, and the motor controller connected in series to form a bus.
The supercapacitor and DC–DC converter are connected first in
series and then in parallel to the bus line. This HESS configuration
allows the power battery to fulfill the vehicle range requirements and
enables the supercapacitor to deliver a short-term high-power
output to meet the power demands of the vehicle.

2.2 Longitudinal dynamics model of whole
vehicles

The paper mainly studied the EMS of EVs with
supercapacitors in their HESSs, so only the kinematic
characteristics along the longitudinal driving direction were
considered. For the whole vehicle required power model, the
equation of the longitudinal force state during driving was
adopted (Liu et al., 2019). This study utilized the method of
backward simulation to estimate the energy needed for vehicular
propulsion based on the velocity and acceleration patterns of
driving cycles. The resulting equation is as follows:

Preq � mgf cos θ + ACdρv
2/21.15 + δm

dv

dt
+mg sin θ( )v/ 3600ηqm( ),

(1)
where Preq denotes the required power (kW); m indicates the

total vehicle mass (kg); g signifies the gravitational acceleration (m/
s2); f represents the rolling resistance coefficient; θ stands for the
road ramp angle (°); A signifies the windward area (m2); Cd denotes
the wind resistance coefficient; ρ indicates the air density (kg/m3); v

stands for the vehicle driving speed (m/s); δ represents the rotational
inertia conversion factor; and q denotes the exponential coefficient.

3 HESS structure and power
component model

3.1 HESS structure

HESSs have various types of structures. Figure 1 shows the
structure in which a supercapacitor is in parallel with a battery pack.
This design features a bi-directional DC–DC converter in a series
connection, which offers advantages such as affordability, simplified
construction, and straightforward management. A system is
implemented to manage the energy flow of the structure by
monitoring the parameters, such as the SOC of the battery
(SOCb), the SOC of the supercapacitor (SOCu), and electricity
consumption. This allows for the computation of the power
generated by the supercapacitor and power battery (Zhou et al.,
2019).

3.2 Motor model

The permanent magnet synchronous motor is widely recognized
as the most suitable motor for EVs due to its exceptional attributes,
such as precise control, consistent torque output, high torque
density, and minimal noise (Chen et al., 2021). This article chose
a motor with up to 8,000 rotations per minute, a maximum power of
105 kilowatts, and a maximum torque of 1800 Nm. The electric
power of the drive motor can be expressed in an expression related
to the motor output power and efficiency, i.e.,

Pem � Tmωm

9550ηm
sign Tm( ), (2)

where Pem denotes the electric motor power (kW); Tm indicates
the torque (N·m); ωm signifies the rotational speed (r/min); ηm

FIGURE 1
EV power system structure.
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FIGURE 2
Motor efficiency model.

FIGURE 3
DC–DC efficiency.
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represents the efficiency of the motor; and sign stands for the sign
function.

Figure 2 shows the functional relationship between the torque
and rotational speed. The motor efficiency was calculated based on
the current motor torque and speed obtained using the look-up table
approach.

3.3 Bus power balance model

The bus power expression is given by the following:

Pdri � Pbat + PuηDC−DC,

Pre � Pbat + Pu

ηDC−DC

,

⎧⎪⎪⎨⎪⎪⎩ (3)

where Pdri denotes the drive power (kW); Pbat signifies the power
received and delivered by the battery pack (kW); Pu indicates the
supercapacitor power (kW); Pre stands for the bus power during
energy recovery (kW); and ηDC–DC represents the DC–DC
conversion efficiency, which is obtained by polynomial fitting
based on the actual collected data (Xie et al., 2019b), as shown in
Figure 3.

3.4 HESS model

3.4.1 Supercapacitor model
Figure 4 shows the supercapacitor model and the relationship

between the open-circuit voltage and the SOC variation of the
supercapacitor.

The supercapacitor consists of 133 monoliths connected in a
series to form a group and a rated voltage of 399 V. The monolith
model in supercapacitors is based on the open-circuit voltage-
internal resistance state variation model, which can be expressed
as follows:

Uu � U − IuRu. (4)
Furthermore, the supercapacitor output power is as follows:

Pu � UuIu − I2uRu, (5)
whereUu is the supercapacitor output voltage (V);U denotes the

supercapacitor open-circuit voltage (V); Iu is the supercapacitor
current (A), which is positive for discharging and negative for
charging; and Ru is the equivalent internal resistance of the
capacitor (Ω).

3.4.2 Battery model
(1) Battery circuit model

Figure 5 shows the battery model and the battery internal
resistance model. The Rint model of the internal resistance
voltage was adopted for the battery cell model (He et al., 2015).

The expressions for the open-circuit voltage and equivalent
internal resistance of the battery pack are as follows:

Vb � nbs · Ub,
Ub � Uo + Ib · Rb

R � nbs · Rb,

⎧⎪⎨⎪⎩ , (6)

where Vb stands for the total rated voltage of the battery pack
(V); nbs is the number of series connections in the battery pack; Ub

denotes the battery output voltage (V); U0 is the open-circuit voltage
of the battery (V); and Rb signifies the equivalent internal resistance
of the battery (Ω), including the internal ohmic resistance,
concentration polarization resistance, and charge transfer
resistance; as shown in Figure 5B, Rb is determined by both the
battery SOC and the temperature of the battery’s surrounding
environment (Du et al., 2020), and Ib denotes the battery current
(A), which is expressed as follows:

Ib �
Vb −

�������������
V2

b − 4000R · Pb

√
2R

, (7)

where Pb denotes the input–output power of the battery
pack (kW).

The current SOC value of the power battery was calculated by
the integration method with the following expression:

FIGURE 4
Diagram of a supercapacitor model and the relationship between SOC changes and the open-circuit voltage; (A) supercapacitor model; (B)
relationship between the open-circuit voltage and SOC variations of a supercapacitor.
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SOC t( ) � SOC0 −
∫t

0
Ib t( )dt
Qb

, (8)

where SOC0 is the initial value of the SOC.

(2) Battery thermal model

The power battery temperature-rise model adopted Bernardi’s
heat production model (MASOUD and TARE YELMEK, 2014),
with the following expression:

dTem

dt
� RbI2b
mb sCp

− TemIb
mb sCp

dE0

dTem
, (9)

where dTem/dt is the Kelvin temperature increment of the battery;
mb_s denotes the mass of a single-cell battery (kg); Cp denotes the
equivalent specific heat capacity of the battery (J/(kg·K)); dE0/dTem
denotes the temperature-rise coefficient; and Tem denotes the actual
operating temperature of the power battery (K).

The vehicle’s thermal management system regulated the
battery temperature to ensure it operated within a safe range.
Specifically, the power battery’s upper temperature limit was
established at 35°C (i.e., 308.15 K) in this study, with reference
to an EV model.

The electricity flowing through the battery’s internal resistance
created heat, which was then dissipated and lost as heat energy. So
the total electricity consumption of the battery pack is as follows:

Pbat � Pb + I2b · R
1000

, (10)

where Pbat represents the battery pack’s total power (kW),
including the vehicle’s energy loss.

(3) Battery aging model

The semi-empirical battery aging model was used to represent
the percentage of capacity loss of the power battery (Li et al., 2015)
with the following expression:

Qloss � B · exp −Ea

RqTem
( ) AHthrough( )z,

Ea � γ1 + γ2cb,

cb � 1
Qb

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(11)

whereQloss denotes the percentage of the battery capacity loss (%);B
is the pre-exponential coefficient related to the battery SOC and has the
value of 31,630; Ea is the activation energy, which is linearly related to
the battery charge/discharge multiplier cb; Rq denotes the gas molar
constant and has the value of 8.314 J/(mol·K); AHthrough denotes the
total ampere-hour throughput (A·h); z is the power coefficient; and γ1
and γ2 are the linear calibration coefficients for the activation energy.

When the battery capacity loss reaches 20% of the standard
capacity, it is deemed to have reached its end of life (EOL) in terms
of battery life. When the battery is at an ambient temperature of 25°C
(298.15 K) and the charge/discharge multiplier is 0.3 C in standard
driving cycles (Chen et al., 2015), then the total ampere-hour
throughput of the power battery when it reaches its EOL is as follows:

Γnom � ∫EOL

0
Inom τ( )| |dτ
3600

� 20

B · exp −Ea cb( )
RqTem nom

( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
z

, (12)

where Γnom is the power battery termination throughput (A·h);
Inom is the battery current in standard driving cycles, which has the
value of 2.5 A; and Tem_nom denotes the temperature of the power
battery as the standard temperature.

The actual total operating ampere-hour throughput of the power
battery Γreal is expressed as follows:

Γreal �
∫EOL

0
Ireal τ( )| |dτ
3600

� 20

B · exp −Ea creal( )
RqTem

( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
z

. (13)

The aging factor σ was introduced to analyze the impact of
ambient temperature and a charge/discharge multiplier on the decay
rate of the battery life, which was the decay speed of the battery life in

FIGURE 5
Battery model and battery internal resistance model: (A) battery model; (B) battery SOCs versus the battery internal resistance and temperature.
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actual driving cycles compared to that in standard driving cycles
(Chen et al., 2015). Eq. 14 shows the following expression:

σ(I t), T t( )( ) � Γnom
Γreal

� ∫EOL

0
Inom t( )| dt|

∫EOL

0
Ireal t( )| dt|

, (14)

where Inom is the standard number of battery charging and has
the value of 0.35 and Γnom is the open temperature in the standard
driving cycle and has the value of 298.15 K.

3.4.3 HESS parameter matching
The HESS consists of lithium batteries and supercapacitors, each

having different energy densities, and they can be combined in
various configurations to meet the range requirements. The
objective of composite power supply parameter matching is to
minimize the total cycle energy consumption while maximizing
the battery life, which represents a multi-objective optimization

problem. To solve this problem, an improved non-dominated
sorting genetic algorithm II (NSGA-II) based on the elite control
strategy was adopted. The objective expression of the HESS
parameter matching optimization is as follows:

Esystem � Eb + Eu,

AHthrough � σ∫t

0
Ib t( ) | dt| ,

{ (15)

where Esystem is the energy consumption of the HESS; Eb is the
energy consumption of the battery pack; and Eu is the energy
consumption of supercapacitors.

The constraints are expressed as follows:

nbp min ≥Pdri max/VbIb max,

nbp min ≥Pre max/VbIb max,
mbody + nupnusmu s + nbpnbsmb s ≤M max,
Eu snupnus + Eb snbpnbs ≤EMmax,
SOCu min ≤ SOCu ≤ SOCumax,
SOCb min ≤ SOCb ≤ SOCbmax,
Ib min ≤ Ib ≤ Ibmax,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(16)

where nbp_min denotes the minimum number of battery packs in
parallel; Pdri_max indicates the maximum drive power; Ib_max

signifies the maximum discharge current of a single battery,
which for a 18,650 ternary lithium battery is 10 A; Pre_max

represents the maximum braking energy feedback power; mbody

indicates the body mass (excluding HESS mass); nup denotes the
number of supercapacitors in parallel; nus signifies the number of
supercapacitors in a series; mu_s represents the mass of single-cell
supercapacitors; nbp denotes the number of battery packs in parallel;
Mmax indicates the maximum design weight of the whole vehicle; Eu_
s stands for the energy of single-cell supercapacitors; Eb_s denotes the
energy of the single-cell battery; EMmax signifies the energy
consumption for the maximum design weight; SOCu_min stands
for the minimum SOC of supercapacitors; SOCu_max denotes the
maximum SOC of supercapacitors; SOCb_min indicates the
minimum SOC of a battery; SOCb_max signifies the maximum
SOC of a battery; and Ib_min represents the minimum discharge
current of a single battery.

The improved NSGA-II based on the elite control strategy
overcomes the disadvantages of the genetic algorithm, such as local

FIGURE 6
Range of the solution set under constraints.

FIGURE 7
HESS parameter matching solution set. (A) Optimal Pareto front of parameter matching; (B) feasible solution set of different parameter matching.
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prematurity, weak local convergence, and time-consuming iterative
operations. Hence, it is very suitable for solving non-linearly related,
multi-objective, and multi-parameter optimization problems
(MASOUD and TARE YELMEK, 2014) (Chen et al., 2015).

Figure 6 shows the range of a solution set under constraints.
When the HESS supply satisfies the constraint, the shaded parts of
nbp and nup take the value of the number of power battery cells in
parallel and the number of supercapacitors in parallel, respectively.

Figure 7 shows the HESS parameter matching the optimal frontier
and the feasible solution set. Figure 7A shows the improved NSGA-II
solution set. The solution set of NSGA-II is represented by the Pareto
solution set, and each point in the figure represents an optimal solution.
Figure 7B displays the feasible solution set under different configuration
parameters (objective function solution set).

The optimal matching scheme for each parameter in the Pareto
solution set cannot be determined without setting the weights, and
the “optimal” solution can only be determined by the designer from
an empirical point of view. If the optimization direction is a smaller
AHthrough value, then nup takes a larger value; if the optimization
direction is a smaller Esystem value, then nbp takes a larger value. By
choosing the optimal solution, the values of nup = 1 and nbp =
34 were chosen from the position marked by the arrow in Figure 7.
The nominal capacity of the supercapacitor was 28 F, and the
nominal capacity of the power battery was 102 A·h.

4 Energy management strategy for EVs
with hybrid energy supply systems

The core of energy management for operating EVs with long
driving ranges within their service lives is to reasonably allocate the
output power of supercapacitors and power batteries to improve the

battery life, reduce the frequency of battery replacement, and ensure
cost efficiency of the vehicle.

4.1 Objective function formulation

The comprehensive cost of the HESS is defined as the sum of its
electricity consumption cost and aging cost. The electricity
consumption cost is the cost of the output electricity consumption
by the supercapacitor and battery. Furthermore, the battery aging cost is
the purchasing cost of the battery pack apportioned by the battery
capacity loss in the current trip. Their expression is as follows:

J(u* t), t( ) � minCs(u t), t( ) � Ce(u t), t( ) + Cbr(u t), t( ), (17)
where u*(t) is the optimal coupling coefficient at moment t;

Cs(u(t),t), Ce(u(t),t), and Cbr(u(t),t) are the comprehensive cost
(CNY), the electricity consumption cost (CNY), and the battery
aging cost (CNY) at moment t, respectively; and u(t) is the power
coupling coefficient at moment t, u(t)∈[0,1].

Each optimization target in Eq. 17 is shown in Eq. 18:

Ce �
pe · ∫T

0
Pbat t( ) + Pu t( )( )dt
3.6 × 106

,

Cbr � Pbr ·Ncell · nb∫T

0
Eb · σ Ib t( )( ) · Ireal t( )| |

3600Γnom
dt

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (18)

where Ce denotes the electricity consumption cost (CNY); Cbr is
the battery aging cost (CNY); Pe is the unit price of electricity, which
has the value of 0.51 CNY/(kW·h); Pbr is the purchasing cost of the
battery pack, which has the value of 1,000 CNY/(kW·h); Ncell is the
number of single cells connected in parallel to the battery pack; and
T stands for the total duration of one trip by the vehicle.

FIGURE 8
Energy management strategy based on hierarchical instantaneous optimization.
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4.2 Hierarchical instantaneous optimal
energy management strategy

The adopted transient optimal EMS was a two-layer structure, of
which the top layer (logical layer) was in the hard-threshold
operation mode with the power coupling coefficient u = 0 and
the lower layer (optimization-seeking layer) was in the soft-
threshold operation mode, calculating the optimal integrated cost
and power allocation for the HESS based on the current required
power. Based on the HIOC algorithm, the solution was combined
with equidistant discrete optimization and the dichotomy
optimization level-2 algorithm, which overcomes the difficulty in
the HIOC algorithm to determine the optimal coupling coefficient.

The state variables of the algorithm are incremental SOCs of the
supercapacitor and power battery, and therefore, the state equation
at moment t will be as follows:

xu t( ) � ΔSOCu t( ) � −Iu x t( )( , u(t), t)
Qu

,

xb t( ) � ΔSOCb t( ) � −Ib x t( )( , u(t), t)
Qb

.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (19)

The constraint conditions are as follows:

Pu min ≤Pu t( )≤Pumax,
Pb min ≤Pb t( )≤Pbmax,
SOCu min ≤ SOCu t( )≤ SOCumax,
SOCb min ≤ SOCb t( )≤ SOCbmax,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (20)

where Pu_min denotes the minimum power of supercapacitors;
Pu_max signifies the maximum power of supercapacitors; Pb_min

indicates the minimum power of the battery; and Pb_max stands
for the maximum power of the battery.

The expressions for Pu(t) and Pbat(t) are as follows:

Pu t( ) � Pre t( ) · u t( ),
Pbat t( ) � Pre t( ) · 1 − u t( )( ),{ (21)

where the subscript _min denotes theminimumvalue of the variable
and the subscript _max denotes the maximum value of the variable.

Figure 8 shows the flow of the HIOC-EMS. The specific
optimization calculation process is as follows:

(1) Obtain the discrete demand power.

The whole vehicle demand power Pdri(tj) for each moment tj is
determined according to the driving conditions, namely, tj∈[0, T],Δtj = 1s,
and j = 0, 1, 2, M, where M denotes the operating time of a driving cycle.

FIGURE 9
Results of the HIOC-EMS in theWLTC driving cycle: (A) power allocation between the supercapacitor and power battery (established conditions); (B)
trends in the electricity consumption cost and the battery aging cost; (C) power allocation between the supercapacitor and power battery (lower power
battery prices and higher charging costs).

TABLE 2 Deduction rules for the drive state.

Pdri SOCb∈L SOCb∈M SOCb∈H

SOCu SOCu SOCu

L M H L M H L M H

SL SL SL SL SL SL SL SL SL SL

L SL SL SL SL SL SL L L L

M SL M H SL L H L M H

H L M H SL M H L H H

SH L H SH L H SH SL H SH

TABLE 3 Deduction rules for the energy feedback state.

Pre SOCb∈L SOCb∈M SOCb∈H

SOCu SOCu SOCu

L M H L M H L M H

SL SL SL SL ML SL SL M SL SL

L SL SL SL SH M SL SL SH SH

M SL SL SL SH M L SH H M

H SL SL SL SH M L SH SH M

SH SL SL SL SH M SL SH SH M
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FIGURE 10
SOC variation of supercapacitors in three driving cycles.

FIGURE 11
Energy consumption in three driving cycles.
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(2)
Judge the working mode of the supercapacitor.

If the supercapacitor SOC exceeds its upper and lower
boundaries, the logic layer is entered and u(tj) = 0 is outputted.
If the supercapacitor SOC is within its upper and lower boundaries,
then the optimum searching layer is entered.

(3) Calculate the optimal coupling coefficient u*(tj).

After entering the optimum searching layer, the instantaneous
optimal algorithm is used to calculate the integrated cost Cs(ui(tj),tj)
(ui(tj) = i/N, i = 0, 1, 2,N) with the traversal coupling coefficient ui at
moment tj (ui(tj) = i/N, i = 0, 1, 2, N). The minimum integrated cost
is written as Cs(uk(tj),tj). Then, the dichotomous method is used to
calculate u*(tj). The parameters a, b, and d are initialized. a and b are
assigned to the two coupling coefficients with smaller function
values in Cs(uk-1(tj),tj), Cs(uk(tj),tj), and Cs(uk+1(tj),tj),
respectively. a and b should satisfy the conditions of b>a,
d=(a+b)/2. Then, Cs(d(tj),tj) is calculated and ΔCs(d(tj),tj) =
Cs(uk(tj),tj)-Cs(d(tj),tj) is recorded. If |ΔCs(d(tj),tj)|≤10-3, then the
convergence condition is met and u*(tj) = d/N is outputted.
Otherwise, the value of Cs(d(tj),t) is stored.

5 Performance validation of the HIOC-
based energy management strategy

The study utilized the hierarchical transient optimal energy
management technique to simulate the model in the Worldwide

Harmonized Light Vehicles Test Procedure (WLTP) driving cycle
(Chen et al., 2021).

Figure 9 illustrates the simulation results. Figure 9A shows the
power allocation relationship between the supercapacitor and power
battery of the HIOC algorithm. Under the drive mode, the algorithm
reasonably allocates the output power of both; under the feedback
mode, increasing the power allocated to the power battery will
increase the battery aging cost Cbr. Figure 9B shows that the increase
of Cbr is greater than the decrease of Ce. At the marked points 1 and
2 in Figure 9A, the supercapacitor absorbs all the feedback energy,

FIGURE 12
Curves of the battery loss percentage in three driving cycles.

FIGURE 13
Comprehensive cost in three driving cycles.
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which reduces the electricity consumption cost and does not
influence the battery aging cost.

As shown in Eq. 18, the power coupling relationship between the
supercapacitor and power battery at any moment is related to the
price of electricity and purchasing cost of the battery pack at the
current moment, as shown in Figure 9A. In the established
conditions in this article, the supercapacitor completely absorbs
the feedback power. As shown in Figure 9C, the receding new energy
policy dividend lowers the price of electricity and purchasing cost of
battery packs, the feedback is mainly absorbed by supercapacitors in
the low-power state, and the battery pack and supercapacitors
adaptively distribute the feedback power in the high-power state.

To further evaluate the performance of the HIOC-EMS, a
comparative analysis of its optimum-searching ability and
adaptability is required.

5.1 Comparison algorithms

5.1.1 Particle swarm optimized fuzzy energy
management strategy
(1) Fuzzy control strategy

Fuzzy control is applicable in multi-objective, non-linear, and
time-varying systems with a high applicability. In this paper, a
Mamdani-type fuzzy controller was used, and fuzzy rules were
established with if-then statements.

Large logical differences exist between the drive state and the
feedback state, and separate strategies need to be established. The
input variables of the fuzzy strategy are SOCb, SOCu, and Pdri for the
drive state and SOCb, SOCu, and Pre for the feedback state. The
theoretical domain of SOCb is [0.2,1] and that of SOCu is [0.4,1],
whose fuzzy subsets are {L, M, H}, indicating low, medium, and
high, respectively. The theoretical domain of power demand Pdri or
feedback power Pre is [0,1], and their fuzzy subsets are {SL, L, M, H,
SH}, denoting super low, low, medium, high, and super high,
respectively.

The gain coefficient of the output is the percentage coefficient of
the supercapacitor in the required power, with a thesis domain of
[0,1], and the fuzzy subsets of {SL, L, M, H, SH} denote super low,
low, medium, high, and super high, respectively. The primary

guideline for creating a basic membership function is to consider
the SOC levels of both the supercapacitor and battery, along with the
power demand. When the battery has an ample amount of power,
the supercapacitor collaborates with the battery to limit the charging
and discharging current of the battery. This approach is particularly
helpful when there is a high power demand. In contrast, when the
power demand is low, the use of DC–DC and supercapacitor
charging and discharging is avoided. When the battery SOC is
low, to ensure the battery energy feedback, the system prioritizes
energy feedback for the battery, as shown in Tables 2, 3. The FZY-
EMS denotes the fuzzy control-based energy management strategy.

(2) PSO algorithm-optimized fuzzy strategy

The formulation of the membership function in the
aforementioned fuzzy control strategy relies on expert experience,
which is more subjective, and the rules may not be optimal. Using
the particle swarm optimization (PSO) algorithm, the fuzzy control
strategy can be optimized to obtain the minimum objective function,
and the optimized membership function can be applied to the
energy distribution within the HESS. The fuzzy strategy
optimized by the PSO is noted as PFZY-EMS.

To obtain the optimal fuzzy control parameters by PSO, all
parameters of the membership function and fuzzy rules should be
selected optimally as particle dimension numbers. In this study, the
fuzzy rules designed based on expert knowledge remained the same,
and PSO was used to adjust the fuzzy rules to remove the rule
boundary parameters for optimization.

The optimization process is as follows:

1) The variables of the fuzzy control rule, except the boundary
function, were used as particles, which were encoded and then
initialized with a position and a velocity for each particle.

2) Each particle was decoded and outputted for the corresponding
fuzzy control rule. Then, the EV was simulated.

3) The position and velocity of particles were updated using the
PSO algorithm.

4) Step (3) was repeated for iteration until the termination
condition was fulfilled, and the optimal parameters of fuzzy
control rules were outputted.
Section 4.2 describes the simulation results.

TABLE 4 Comparison of evaluation indicators.

Indicator HIOC-EMS PFZY-EMS DP-EMS

Cycle energy consumption (106J) NEDC 4.017 3.900 3.964

UDDS 5.811 5.603 5.453

WLTP 9.318 8.986 8.812

Battery loss (10–4%) NEDC 5.144 5.977 4.644

UDDS 5.616 6.883 4.889

WLTP 8.849 11.112 8.438

Comprehensive cost (CNY) NEDC 4.663 5.034 4.528

UDDS 5.503 6.194 5.073

WLTP 8.827 9.766 8.692
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5.1.2 Dynamic programming algorithm
Dynamic programming (DP) is a problem-solving approach

that simplifies a complex global decision problem into simpler local
decision problems. This approach allows us to solve each stage
separately and find the best solution for each stage, ultimately
leading to the optimal solution for the entire problem.

According to the optimal control theory of DP (Mansour and
Clodic, 2012; Xie et al., 2018), for DP with a discrete form and
optimization objective function J as the performance index, its
iteration format is as follows:

When k = kend,

Jk u h( )( ) � min Ce + Cbr( ). (22)
When k = kend—1, kend—2, kend—3, . . ., 1

Jk u h( )( ) � min Ce + Cbr + Jk+1 u h( )( )( ), (23)
where Jk is the (hth) objective function value at the kth stage.

The global optimal solution was obtained by inverse iterations.

5.2 Analysis of the simulation results

In order to compare the effects of different energy management
strategies, four items, namely, the supercapacitor SOC, energy
consumption, battery loss, and comprehensive cost, were selected
as evaluation indexes. Moreover, three typical driving cycles, i.e., the
New European Driving Cycle (NEDC), Urban Dynamometer
Driving Schedule (UDDS), and WLTC, were selected, given that
the roads operating EV travel include urban roads, fast arterial
roads, and city ring expressways. Figures 10–13 show the simulation
results.

From Figure 10, it can be seen that for the supercapacitor
SOC, the HIOC-EMS and the PFZY-EMS have close change
trends in the three driving cycles, and the HIOC-EMS bears
the maximum power output of the HESS, which means the hard-
threshold output on the logical layer imposes a stronger
constraint on the supercapacitor SOC than the PFZY-EMS
and, hence, a stronger self-adaptability. The DP-EMS is the
global optimal algorithm, and its supercapacitor output power
trend differs from the other two strategies. For the HIOC-EMS,
its supercapacitor SOC is higher than the initial SOC at the end of
NEDC and WLTC cycles. Hence, it is fully capable of a rotation
cycle.

As shown in Figure 11, the HIOC strategy has a slightly
higher cycle energy consumption than the other two at the ends
of the three driving cycles. This is because in the corresponding
operating environment, the reduction in power battery aging
cost Cbr brought by the lowered power battery output is greater
than the increase in electricity consumption cost Ce, so the
algorithm prioritizes using the supercapacitor in operation.
Furthermore, affected by the voltage rise efficiency of
DC–DC, the supercapacitor increases the cycle energy
consumption.

In the HIOC-EMS, the supercapacitor shares the power
battery output, so the battery loss is reduced. As shown in
Figure 12, the percentage of the power battery loss decreases
significantly, especially in the first half of the driving cycle. When
the supercapacitor power is sufficient, the battery loss of the

HIOC-EMS is lower than those of the other two strategies.
Furthermore, at the end of the cycles, the power battery loss
of the HIOC-EMS is between those of the other two EMSs.

Figure 13 compares the comprehensive costs of the three
strategies in the three driving cycles. As shown, the
comprehensive cost of the HIOC-EMS is in between and
significantly better than the PFZY-EMS.

In summary, the HIOC-EMS significantly cut the
comprehensive cost of HESSs and power battery losses at a
small cost of energy and lowered the battery life loss, which
made it a much better strategy than the PFZY-EMS, although
slightly inferior to the DP-EMS.

The performances of three EMSs were quantitatively
analyzed, with the cycle energy consumption, battery loss,
and comprehensive cost in a complete driving cycle being
used as evaluation indicators. Table 4 lists the results. In the
three driving cycles of UDDS, NEDC, and WLTC, when
compared with the PFZY-EMS, the HIOC-EMS proposed in
this paper increased the cycle energy consumption by 3.72%,
3.01%, and 3.70%; reduced the battery loss by 18.41%, 13.94%,
and 20.37%; and lowered the comprehensive cost by 11.16%,
7.37%, and 9.61%, respectively. Compared with the DP-EMS,
the HIOC-EMS increased the energy consumption by 6.57%,
1.34%, and 5.74%; battery losses by 14.87%, 10.77%, and 4.87%;
and comprehensive cost by 8.48%, 2.98%, and 1.55%,
respectively. The aforementioned results indicated that the
performance of the HIOC-EMS surpassed that of the PFZY-
EMS by a significant margin and was slightly less effective than
the DP-EMS. The remarkable improvements achieved by the
HIOC-EMS validate its efficacy as a highly impactful EMS.

6 Conclusion

This paper studied adaptive energy management for
operating EVs with HESSs composed of supercapacitors and
batteries. A hierarchical optimum searching EMS was
proposed to reduce the comprehensive cost, which accounted
for both the electricity consumption cost and the power battery
aging cost. The proposed HIOC-EMS was compared with the
PFZY-EMS and the DP-EMS. The major conclusions reached are
as follows:

1) A comprehensive cost function consisting of the electricity
consumption cost of HESSs and the power battery aging cost
was formulated, with minimizing the instantaneous
comprehensive cost as the optimization objective and the
supercapacitor SOC and battery SOC as state variables. The
optimal coupling coefficient of the supercapacitor was solved via
a HIOC algorithm, which contained a logic layer and an
optimization layer. The HIOC was then adopted as a real-
time energy management solution for EVs with HESSs.

2) Simulation and verification were performed by adopting
MATLAB and Simulink software. The results showed that in
the three driving cycles of UDDS, NEDC, andWLTC, the HIOC-
EMS significantly reduced the power battery loss and the
comprehensive cost of HESSs at the expense of little energy
costs, showing remarkable optimization effects.
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3) The EMS developed in this paper has not been verified in actual
vehicles. The subsequent work will build a testing system to
conduct performance tests and to continuously optimize the
strategy based on test results.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

Conceptualization, JiZ and JuZ; methodology, JiZ; software, LW;
validation, JiZ, JuZ, LW, and YZ; formal analysis, JuZ; investigation,
YZ; resources, JiZ; data curation, LW; writing—original draft
preparation, JiZ; writing—review and editing, JuZ; visualization,
YZ; supervision, YZ; project administration, JiZ; funding
acquisition, JuZ. All authors contributed to the article and
approved the submitted version.

Funding

This research was funded by the National Key Research and
Development Program of China (grant no. 2020YFB1600400) and
the Scientific Research Project of the Department of Transport of
Shaanxi Province (grant no. 18-27R).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Chen, L. M., Liao, Z. L., Ma, X. J., et al. (2021). Hierarchical control-based real-time
energy management strategy for hybrid electric vehicles. Acta Armamentar Ⅱ (8),
1580–1591. doi:10.3969/j.issn.1000-1093.2021.08.002

Chen, Z. Y., Xiong, R., Wang, K. Y., and Jiao, B. (2015). Optimal energy
management strategy of a plug-in hybrid electric vehicle based on a particle
swarm optimization algorithm. Energies 8 (08), 3661–3678. doi:10.3390/
en8053661

Du, R., Hu, X., Xie, S., Hu, L., Zhang, Z., and Lin, X. (2020). Battery aging and
temperature-aware predictive energy management for hybrid electric vehicles. J. Power
Source 473, 228568. doi:10.1016/j.jpowsour.2020.228568

Dubal, D. P., Ayyad, O., Ruiz, V., and Gómez-Romero, P. (2014). Hybrid energy
storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44 (7),
1777–1790. doi:10.1039/c4cs00266k

He, Z. C., Yang, G., and Lu, L. G. (2015). Battery DC internal resistance test method
based on the constant current external characteristic and SOC. J Tsinghua Univ(Sci
Technol) (5), 9–18.

Hu, J. J., Zheng, Y., Hu, Z. H., et al. (2018). Parameter matching and control
strategies of hybrid energy storage system for pure electric vehicle. China
J. Highw. Transp. (3), 142–150. (in Chinese). doi:10.19721/j.cnki.1001-7372.
2018.03.016

Huan, N., Yao, E. J., Yang, Y., et al. (2019). Stochastic dynamic user equilibrium
assignment model considering penetration of electric vehicle. J. Traffic Transp. Eng.
(10), 150–160. doi:10.19818/j.cnki.1671-1637.2019.05.015

Ji, C. W., Pan, S., Wang, S., et al. (2020). Experimental study on effect factors of
aging rate for power lithium-ion batteries. J. Beijing Univ. Technol. (10),
1272–1282. doi:10.11936/bjutxb2019040020

Li, T., Zou, Y., and Liu, D. (2015). Energy management strategy for HEVs including
battery life optimization. Int. J. Veh. Des. 70 (1), 98–112.

Liu, X. D., Ma, J., Zhao, X., Zhang, Y., Zhang, K., and He, Y. (2019). Integrated
component optimization and energy management for plug-in hybrid electric buses.
Process 7 (8), 477. doi:10.3390/pr7080477

Mansour, C., and Clodic, D. (2012). Optimized energy management control for the Toyota
Hybrid System using dynamic programming on a predicted route with short computation
time. Int. J. Automot. Technol. 13 (2), 309–324. doi:10.1007/s12239-012-0029-0

Martel, F., Dube, Y., Kelouwani, S., Jaguemont, J., and Agbossou, K. (2016). Long-
term assessment of economic plug-in hybrid electric vehicle battery lifetime degradation
management through near optimal fuel cell load sharing. J. Power Sources 318 (30),
270–282. doi:10.1016/j.jpowsour.2016.04.029

Masoud, S., and Tare Yelmek, K. (2014). Multi-objective optimal design of hybrid
renewable energy systems using PSO-simulation based approach. Renew. Energy 68,
67–79. doi:10.1016/j.renene.2014.01.011

Panday, A., and Bansal, H. O. (2014). A review of optimal energy management
strategies for hybrid electric vehicle. Int. J. Veh. Technol. 2014 (2), 1–19. doi:10.1155/
2014/160510

Santucci, A., Sorniotti, A., and Lekakou, C. (2014). Power split strategies for hybrid
energy storage systems for vehicular applications. J. Power Sources 258, 395–407. doi:10.
1016/j.jpowsour.2014.01.118

Sisakat, S. T., and Barakati, S. M. (2016). Energy management using fuzzy controller
for hybrid electrical vehicles. J. Intelligent Fuzzy Syst. 30, 1411–1420. doi:10.3233/IFS-
152054

Song, C. X., Zhou, F., and Xiao, F. (2017a). Energy management optimization of
hybrid energy storage system based on dynamic programming. J. Jilin Univ. Eng.
Technol. Ed. (1), 8–14. doi:10.13229/j.cnki.jdxbgxb201701002

Song, C. X., Zhou, F., Xiao, F., et al. (2017b). Parameter matching of on-board hybrid
energy storage system based on convex optimization method. J. Mech. Eng. 53 (08),
44–51. doi:10.3901/jme.2017.16.044

Wang, B. W. (2018). Study on parameter matching and control strategy of the power
system of new energy vehicle. Hunan Univ.

Wu, C., Zhu, C., Sun, J., and Ge, Y. (2017). A synthesized diagnosis approach for
lithium-ion battery in hybrid electric vehicle. IEEE Trans. Veh. Technol. 66 (7),
5595–5603. doi:10.1109/tvt.2016.2634125

Xie, S. B., Liu, T., Li, H. L., et al. (2018). A study on predictive energy management
strategy for a plug-in hybrid electric bus based on Markov chain. Automot. Eng. (8),
871–877. doi:10.19562/j.chinasae.qcgc.2018.08.001

Xie, S., Hu, X., Qi, S., Kun, L., Zongke, X., James, B., et al. (2019a). Model
predictive energy management for plug-in hybrid electric vehicles considering
optimal battery depth of discharge. Energy 173, 667–678. doi:10.1016/j.energy.
2019.02.074

Frontiers in Energy Research frontiersin.org14

Zhao et al. 10.3389/fenrg.2023.1191565

https://doi.org/10.3969/j.issn.1000-1093.2021.08.002
https://doi.org/10.3390/en8053661
https://doi.org/10.3390/en8053661
https://doi.org/10.1016/j.jpowsour.2020.228568
https://doi.org/10.1039/c4cs00266k
https://doi.org/10.19721/j.cnki.1001-7372.2018.03.016
https://doi.org/10.19721/j.cnki.1001-7372.2018.03.016
https://doi.org/10.19818/j.cnki.1671-1637.2019.05.015
https://doi.org/10.11936/bjutxb2019040020
https://doi.org/10.3390/pr7080477
https://doi.org/10.1007/s12239-012-0029-0
https://doi.org/10.1016/j.jpowsour.2016.04.029
https://doi.org/10.1016/j.renene.2014.01.011
https://doi.org/10.1155/2014/160510
https://doi.org/10.1155/2014/160510
https://doi.org/10.1016/j.jpowsour.2014.01.118
https://doi.org/10.1016/j.jpowsour.2014.01.118
https://doi.org/10.3233/IFS-152054
https://doi.org/10.3233/IFS-152054
https://doi.org/10.13229/j.cnki.jdxbgxb201701002
https://doi.org/10.3901/jme.2017.16.044
https://doi.org/10.1109/tvt.2016.2634125
https://doi.org/10.19562/j.chinasae.qcgc.2018.08.001
https://doi.org/10.1016/j.energy.2019.02.074
https://doi.org/10.1016/j.energy.2019.02.074
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1191565


Xie, S., Hu, X., Xin, Z., and Brighton, J. (2019b). Pontryagin’s minimum principle
based model predictive control of energy management for a plug-in hybrid electric bus.
Appl. Energy 236, 893–905. doi:10.1016/j.apenergy.2018.12.032

Xu, D., Zhou, H., Wang, B., et al. (2017). A simplified cascading hybrid power and its
control scheme for electric vehicles. Automot. Eng. (12), 1368–1374. doi:10.13229/j.
cnki.jdxbgxb201705002

Yao, T. Z., Xie, C. J., Zeng, T., et al. (2019). Multi-Fuzzy control based energy
management strategy of battery/supercapacitor hybrid energy system of electric
vehicles. Automot. Eng. (6), 615–640. doi:10.19562/j.chinasae.qcgc.2019.06.002

Zhang, L., Hu, X. S., Wang, Z. B., et al. (2017). Multi-objective optimal sizing of hybrid
energy storage system for electric vehicles. IEEE Trans. Veh. Technol., 1. doi:10.19562/j.
chinasae.qcgc.2017.12.003

Zhang, P., Yan, F. W., and Du, C. Q. (2015). A comprehensive analysis of energy
management strategies for hybrid electric vehicles based on bibliometrics. Renew.
Sustain. energy Rev. 48 (48), 88–104. doi:10.1016/j.rser.2015.03.093

Zhao, B., Song, Q., and Liu, W. (2012). Power characterization of isolated
bidirectional dual-active-bridge DC–DC converter with dual-phase-shift
control. Power Electron. IEEE Transaction27 (9), 4172–4176. doi:10.1109/tpel.
2012.2189586

Zhou, F., Song, C. X., Liang, T. W., et al. (2017). Parameter matching of on-board
hybrid energy storage system using NSGA-Ⅱ algorithm. J. Jilin Univ. Eng. Technol. Ed.
(9), 1336–1343. doi:10.1109/TVT.2017.2762368

Zhou, M. L., Feng, J. F., and Zhang, Y. (2019). Composite energy storage system and
its energy control strategy for electric vehicles. Electr. Mach. Control (5), 51–59.

Frontiers in Energy Research frontiersin.org15

Zhao et al. 10.3389/fenrg.2023.1191565

https://doi.org/10.1016/j.apenergy.2018.12.032
https://doi.org/10.13229/j.cnki.jdxbgxb201705002
https://doi.org/10.13229/j.cnki.jdxbgxb201705002
https://doi.org/10.19562/j.chinasae.qcgc.2019.06.002
https://doi.org/10.19562/j.chinasae.qcgc.2017.12.003
https://doi.org/10.19562/j.chinasae.qcgc.2017.12.003
https://doi.org/10.1016/j.rser.2015.03.093
https://doi.org/10.1109/tpel.2012.2189586
https://doi.org/10.1109/tpel.2012.2189586
https://doi.org/10.1109/TVT.2017.2762368
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1191565

	An energy management strategy to reduce the comprehensive cost of hybrid energy storage systems in electric vehicles
	1 Introduction
	2 Overall vehicle model of pure EVs
	2.1 Overall vehicle parameters and power train configuration
	2.2 Longitudinal dynamics model of whole vehicles

	3 HESS structure and power component model
	3.1 HESS structure
	3.2 Motor model
	3.3 Bus power balance model
	3.4 HESS model
	3.4.1 Supercapacitor model
	3.4.2 Battery model
	3.4.3 HESS parameter matching


	4 Energy management strategy for EVs with hybrid energy supply systems
	4.1 Objective function formulation
	4.2 Hierarchical instantaneous optimal energy management strategy

	5 Performance validation of the HIOC-based energy management strategy
	5.1 Comparison algorithms
	5.1.1 Particle swarm optimized fuzzy energy management strategy
	5.1.2 Dynamic programming algorithm

	5.2 Analysis of the simulation results

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


