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With global climate change, increasingly frequent natural disasters have brought
great challenges to the safe and reliable power supply and low-carbon transition
of power distribution systems. Most of the existing researches on the distribution
system under the impact of natural disasters only focus on the improvement of
power supply reliability, but have not consider the impact of disaster severity and
disaster response measures on carbon emissions. In order to juggle the load
restoration and carbon emission mitigation of distribution system under natural
disasters, this paper proposes an optimal allocation method of distributed
renewable generations (DRGs) considering carbon emission for multi-scenario
natural disasters based on the framework of cyber-physical-social system in
energy (CPSSE), and establishes a three-stage optimization model of pre-
disaster prevention-disaster attack-post-disaster restoration. For the purpose
of ensuring the practicability and robustness of the allocation results, the
disaster scenario is modeled and the selection method of the worst fault
scenario under disaster is proposed. The progressive hedging algorithm (PHA)
is adopted to solve the proposedmulti-scenario optimization problem. Finally, the
simulation results indicate that the proposedmethod can restoremore lost load at
a lower cost of carbon emissions.
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1 Introduction

The power industry is the main battlefield for achieving carbon peaking and carbon
neutrality targets. It is of great strategic significance to build a modern power system with
renewable energy as the main part and realize the low-carbon transition of the power system
(FERNÁNDEZ-GUILLAMÓN et al., 2019; Wen et al., 2020; Zhuo et al., 2020). However, the
realization of low-carbon transition of power system is a complex systematic project, which
requires decision analysis of system development in the context of many new difficulties and
new technologies. In recent years, with the increase of global carbon emissions, climate
change has intensified (Wang et al., 2016; IPCC, 2019), and increasingly frequent natural
disasters have brought great challenges to the safe and reliable power supply of power
distribution systems. The distribution system is located at the end of the power grid and is
directly connected to the power consumers. Due to its own characteristics, the distribution
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system is extremely vulnerable to natural disasters (Li et al., 2014),
which seriously affects people’s production and life, causing huge
losses (Chen et al., 2017). Thus, it is one of the primary tasks to
construct a modern distribution system by formulating
corresponding prevention and restoration strategies to improve
the response capability for disasters and power supply reliability
of the distribution system (Xue et al., 2013; Shen et al., 2020).

A large number of existing studies focus on the resilience
improvement of distribution systems and the restoration of
power supply under the impact of natural disasters. The
measures taken can be divided into two categories: pre-disaster
prevention and post-disaster restoration.

Pre-disaster preventionmeasures usually optimize the allocation
and deployment of infrastructure or disaster prevention resources in
advance to alleviate the damage and impact of disasters on the
distribution system. In order to improve the resilience of the
distribution system against hurricanes, the pre-disaster optimal
placement model for the depots of the repair teams is proposed
in the references (Khomami and Sepasian, 2018; Arif et al., 2020), so
as to realize the rapid repair of the post disaster poles and lines. In
the reference (Gan et al., 2022), considering the coupling of
distribution system and transportation system, a planning model
is proposed to improve the resilience of coupled network under
disaster. The model includes the capacity expansion of power lines,
roads and charging stations and the hardening of roads and power
lines. In the reference (Barnes et al., 2019), the transmission capacity
of the line is guaranteed by configuring additional lines, circuit
breakers and transformers. According to the prediction of possible
fault scenarios, the locations of the gathering point of the mobile
emergency generators are selected in the reference (Lei et al., 2018)
to minimize the system load loss. In the references (Lin and Bie,
2018; Ma et al., 2018), the weak lines are identified and hardened
before disasters to improve the resistance of the lines to the disaster.
In the references (Alguacil et al., 2014; Yuan et al., 2016; Wang et al.,
2019a; Wu et al., 2019), a typical three-layer optimization strategy of
defender-attacker-defender (DAD) is proposed. In the first layer, the
system planning layer (acting as a defender) determines the optimal
installation location of distributed generation or energy storage
under specified budget constraints. In the second layer, the
natural disaster (attacker) maximizes the system load loss under
the specified number of line faults. In the third layer, the system
operation layer minimizes the system load loss through the
restoration strategy.

Post-disaster restoration measures are mainly to restore load
power as quickly and as much as possible by formulating operation
strategies after the disaster caused damage to the distribution
systems. In the reference (Zhang et al., 2023), the characteristics
of AC/DC hybrid distribution system are studied, and a topology
search strategy and fault restoration model with DC lines as the core
are proposed to realize the restoration of multiple power sources and
key loads. In the references (Yao et al., 2019; Li et al., 2021), the real-
time post-disaster dispatching strategies for transportable energy
storage are proposed in view of the power outages caused by
disasters. The efficient dispatching strategies of maintenance
crews and restoration crews are developed restore electricity
customers after the disasters (Zhang et al., 2020a; Sun et al.,
2023). In the reference (Hafiz et al., 2019), load restoration is
combined with direct load control and demand response to

improve system resilience through the flexibility provided by
load. In the references (Lin and Bie, 2018; Ghasemi et al., 2021),
the network reconfiguration (NR) method is used to divide the
island, so as to minimize the load loss in the fault scenario. In the
reference (Hao et al., 2022), a two-layer decision support framework
is designed for the post-disaster restoration of distribution systems.
The upper layer generates a pre-adjustment scheme through load
transfer and topology partition, and the lower layer optimizes the
restoration scheme of each partition.

In summary, the existing research on the distribution system
under disasters is mainly carried out from the perspective of
improving the reliability of power supply, but the impact of
disasters on carbon emissions is ignored. It is pointed out in the
references (Yu and Xue, 2016; Xue and Yu, 2017) that the power
system is gradually developing into a CPSSE that combines multiple
fields and interdisciplinary. Under the CPSSE framework, the
previous methods for analyzing disaster issues in power
distribution systems have been unable to meet the requirements
of the new research paradigm under the social issue of low-carbon
transition, and an integration of holistic thinking and reductive
thinking should be applied for research and analysis (Mulej, 2007).
Moreover, addressing the impact of natural disasters is also a
challenge that needs to be overcome in the development of low-
carbon power systems. Based on such a background and
methodological guidance, research on the impact of disasters
should not only focus on the power balance, but also on the
change of carbon emissions. From a long-term perspective, with
the sudden and frequent occurrence of disasters, the cumulative
effect will lead to the deviation of carbon emission trajectory from
the expected path, which will hinder the realization of low-carbon
transition goals. Accordingly, the study of the resilience of
distribution systems under disasters should not be separated
from carbon emission factors. Additionally, in the process of
actual disaster prevention and power supply restoration, some
measures are often taken to maximize the benefits of power
supply reliability at the expense of high carbon emissions.
However, from a low-carbon perspective, these prevention and
response measures for disasters still have room for improvement.

To fill the gaps in the previous research, this paper proposes an
optimal allocation method for DRGs considering carbon emissions
under multi-scenario disasters. The main contributions can be
summarized as follows:

• A DAD optimization model under multi-scenario natural
disasters with consideration of carbon emissions is
proposed, in which the DRGs are optimally allocated before
the disaster and the NRmethod is adopted after the disaster to
achieve disaster prevention and post-disaster restoration.

• The load loss emission ratio (LER) is established as the
evaluation index of disaster prevention and response scheme.

• The line fault model under disaster scenarios is modeled, the
fault constraints are given, and the selection method of the
worst fault scenario is proposed.

• The PHA is adopted to solve the proposed multi-scenario
optimization model.

The rest of the paper is organized as follows: In Section 2, the
influence of natural disasters on the change of carbon emissions of
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distribution system is analyzed. In Section 3, the mathematical
formulation of the DAD optimization model is developed. In
Section 4, the disaster scenario is modeled and the worst fault
scenario selection process is proposed. In Section 5, the solution
method to solve the multi-scenario optimization model is presented.
Case studies are performed in Section 6. The paper is concluded in
Section 7.

2 Carbon emission increment analysis
of distribution system under natural
disasters

Extreme events such as natural disasters can cause changes in
the trajectory of carbon emissions and carbon sinks, bringing risks to
achieving carbon neutrality target (Jiang et al., 2022). From the
perspective of natural ecosystems, disasters will lead to a series of
consequences of reducing carbon sinks and increasing carbon
emissions, such as vegetation destruction and fire burning. From
the perspective of power system, disasters will directly or indirectly
affect the carbon emission. The carbon emission increment caused
by natural disasters in the distribution system can be analyzed from
the following aspects (Zhang et al., 2022):

1) Natural disasters lead to the functional failure of some
equipment, and additional carbon emissions are caused by the
replacement of redundant equipment. For example, the
destruction of low-carbon power generation resources or the
damage of lines lead to the blockage of low-carbon power
transmission. In order to ensure the demand of power load,
high-carbon power supply is used for replacement, resulting in
an increase in carbon emissions.

2) Due to the lack of power supply caused by natural disasters, the
increase of carbon emissions can be caused by other power
substitution on the power consumer side. After some functions
of the distribution system fail, the capacity of redundant
equipment can be insufficient, which may lead to consumer-
side power outages. For some unstoppable energy supply in
production and life, such as many enterprises use self-provided
power generation, some commercial or residential electric
heating using gas instead, and electrified transportation using
fuel oil instead, it means replacing low-carbon power with high-
carbon power to meet demand.

3) The reference (Dou et al., 2022) pointed out that natural disasters
can reduce carbon emissions to a certain extent, because natural
disasters inhibit power consumption. However, in fact, for some
production rigid loads, even if the load is reduced due to loss of
power supply during the disaster, the production plan will be
postponed until the fault is removed, so this part of the carbon
emissions is not reduced. Therefore, although this part of the
load transfer caused by the disaster itself does not bring excess
carbon emissions, it cannot be ignored when calculating the
carbon emissions of the power system after the disaster.

The additional carbon emissions of the distribution system
under natural disasters may also include: the reduction of carbon
sinks caused by the outage of artificial carbon reduction engineering
equipment such as carbon capture, utilization and storage (CCUS),

and the additional carbon emissions generated during the physical
damage removal and fault repair of the distribution system. These
are not considered in this paper.

3 Optimal allocation model of DRGs
considering carbon emissions

Natural disasters can cause component damage, partial load
loss of power supply, and also lead to the risk of additional carbon
emissions in the distribution system. In order to improve the
resilience to the impact of extreme disasters and reduce the
negative impact of extreme disasters on the load loss and
carbon emissions of the distribution system, appropriate
disaster prevention and response measures need to be
developed according to the different vital stages of the disaster
effects. In this paper, the occurrence of natural disasters is
regarded as an attack on the power grid, and a DAD three-
stage model is proposed. The first stage is that the power grid
operator acts as the defender to deploy the optimal allocation
scheme of the distribution system before the disasters. The
second stage is that the disasters act as the attacker to
implement the attack behavior. The third stage is to develop a
post disaster dispatching plan for the defender to reduce the
impact of disasters. The schematic diagram of the three-stage
model proposed in this paper is shown in Figure 1.

From the perspective of power grid decision makers, the optimal
allocation model proposed in this paper can be divided into two
levels: planning investment level and simulated operation level. The
objective function can be written in the form of min-max-min as
follows:

min
x

{Cinv +max
α

min
y,z

Cop} (1)

where Cinv denotes the investment and construction cost of wind
turbines (WTs) and PV units; Cop denotes the typical daily scenario
minimum operating cost; x is the decision-making variable of DRGs
optimal allocation, which is a binary variable; α denotes disaster
attack scenario; y and z are continuous decision variables and
integer decision variables at the operation level.

3.1 Planning investment level model

The model at the planning investment level is to solve the
optimal DRGs allocation scheme under the disaster attack
scenario. The objective function consider both the investment
and construction cost. The objective function is as follows:

Cinv � ∑
n∈ΩN

cpvxpv
n + cwtxwt

n( ) (2)

where cpv and cwt are the cost coefficients of PV units and WTs,
respectively; xpv

n and xwt
n are the decision variables for optimal

allocation at node n; ΩN the set of nodes in the system.
The constraints at the planning investment level are mainly the

allocation budget constraints of DRGs, including the cardinality
budget and the monetary budget. The mathematical form of the
constraints is as follows:
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∑
n∈ΩN

xpv
n ≤Gpv, ∑

n∈ΩN

xwt
n ≤Gwt

∑
n∈ΩN

cpvxpv
n + cwtxwt

n( )≤Cbudget

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

where Gpv and Gwt denote the available number of PV units and
WTs respectively; Cbudget is the budget cost.

3.2 Simulated operation level

An ideal DRGs allocation scheme can not only reduce the
output of carbon-emitting units and improve the low-carbon
performance of the system operation, but also effectively prevent
the risk of insufficient power supply and increased carbon
emissions caused by disaster scenarios. Under a given
allocation scheme and determined scenario conditions, the
model at the simulated operation level minimizes the load loss
in the disaster scenarios by means of NR, while also considering
the economic efficiency and carbon emission mitigation.
Therefore, the optimization objective includes the operation
cost Cop

ECO and the degree of load loss Cop
LS under the multi-

scenario disasters. In addition, the optimal allocation scheme
should be able to mitigate the additional carbon emissions caused
by disasters, so the optimization objective also includes the
carbon emission cost Cop

CO2. The objective function is as follows;

Cop � Cop
LS + Cop

ECO + Cop
CO2 (4)

Cop
LS � ∑

s∈Φ
φs ∑

t∈T
∑
l∈Γ

VoLLl L
pre
l,t,s − Ll,t,s( ) (5)

Cop
ECO � ∑

s∈Φ
φs CG

s + CRE
s( ) (6)

CG
s � ∑

t∈T
∑

g∈NG

agPg,t,s + bg( ) (7)

CRE
s � ∑

t∈T
∑

m∈NRE

λREPm,t,s (8)

Cop
CO2 � ∑

s∈Φ
φs · pCO2 ∑

t∈T
∑

g∈NG

δgPg,t,s +∑
l∈Γ

δsubl Lsub
l,t,s

⎛⎝ ⎞⎠ (9)

where Φ denotes the set of disaster scenarios; φs is the
probability of occurrence for disaster scenario s; NG, NRE and Γ
are the set of carbon emission units, DRGs and loads respectively;
CG
s and CRE

s denote the output cost of carbon emission units and the
operation and maintenance cost of DRGs in the scenario s
respectively; ag and bg are the cost coefficients; VoLLl is the
value of lost load (VoLL) l; Lprel,t,s is the expected load value of
load l during period t in the disaster scenario s; Ll,t,s is the actual
load value of load l during period t in the disaster scenario s; Pm,t,s is
the output of DRGs; Pg,t,s is the output power of carbon emission
units; λRE is the operation andmaintenance cost coefficient of DRGs;
pCO2 is the penalty cost per unit mass of CO2; δg is the emission
coefficient of carbon emission units; Lsubl,t,s is the output of power
substitution on the consumer side; δsubl is the emission coefficient of
energy substitution.

The constraints of the above model are as follows:

3.2.1 Power balance and power flow constraints
The DC power flow model is adopted for modeling, and the

following constraints should be met for all scenarios s ∈ Φ:

AgPg,t,s + AmPm,t,s � AlLl,t,s + Ab,sPb,t,s + AswPsw,t,s (10)
PLij,t,s − Bij θsi,t − θsj,t( )∣∣∣∣∣ ∣∣∣∣∣≤M 1 − zsij( ), i, j ∈ ΩN (11)

PLij
min ≤PLij,t,s ≤PLij

max, i, j ∈ ΩN (12)
θi

min ≤ θsi,t ≤ θi
max, i ∈ ΩN (13)

where Ag, Am, Al, Ab,s and Asw are the incidence matrices of carbon
emission units, DRGs, loads, lines and reconfiguration switches
respectively; Pb,t,s and Psw,t,s are the power flow through the
branches and the reconfiguration switches; PLij,t,s is the power
flow from node i to node j; Bij denotes the line admittance; θsi,t

FIGURE 1
Three-stage model diagram.
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and θsj,t denote the phase angle; M is a big number; zsij is the
operating status of line i-j ; PLij max and PLij min are the upper and
lower limits of line transmission capacity.

3.2.2 Reconfiguration switch constraint
Under the disaster scenario, the distribution system adjusts the

state of the reconfiguration switches by means of NR, so as to change
the operation mode, which can effectively reduce the load loss,
mitigate the impact of disasters and improve the ability to cope with
natural disasters. The reconfiguration switch constraint is as follows:

zsswP
min
sw ≤Psw,t,s ≤ zsswP

max
sw , sw ∈ Nsw (14)

where zssw denotes the final state of the line controlled by the
reconfiguration switch; Pmax

sw and Pmin
sw are the upper and lower

limits of reconfiguration switch transmission capacity;NSW is the set
of the reconfiguration switches.

3.2.3 Power output constraints
The power sources in the distribution system mainly include

controllable distributed generators (DG) and renewable power
generation. In addition, the injection power of the upstream
power grid is also regarded as the power output, and the output
cost mainly considers the purchase cost of the upstream power grid.

Pg
min ≤Pg,t,s ≤Pg

max, g ∈ NG, s ∈ Φ (15)
0≤Pm,t,s ≤Pm,t,s

max, m ∈ NRE, s ∈ Φ (16)
where Pg

max and Pg
min are the maximum and minimum power

output of non-renewable power generations; Pm,t,s
max is the

maximum power output of DRGs.

3.2.4 Load shedding constraint
In order to maintain power balance, part of the load can be

disconnected from the grid by load shedding when the
distribution system fails due to disasters. The load shedding
cannot exceed the expected load, so the constraint can be
expressed as follows:

0≤ Lpre
l,t,s − Ll,t,s ≤L

pre
l,t,s, s ∈ Φ (17)

3.2.5 Topological constraints
After natural disasters, the distribution system can realize island

partition through NR and improve the reliability of power supply.
To prevent the occurrence of ring and node isolation after NR, the
radiality of the distribution system and the connectivity of the
islands should be guaranteed. The reconstructed grid topology
under the fault scenario should meet the following two necessary
and sufficient conditions (Balakrishnan and Ranganathan, 2012).

Condition 1. The number of closed branches is equal to the total
number of nodes minus the number of partitions.

Condition 2. Each partition should ensure its connectivity.
The key to satisfy the first condition is to determine the number

of partitions. In the reference (Lavorato et al., 2012), the number of
DGs is taken as the number of partitions when partitioning islands.
However, in fact, there may be multi-power island and load island.
In this regard, this paper assumes that each partition has only one

dominant node, and the number of dominant nodes determines the
number of partitions. Then the constraints corresponding to
Condition 1 can be expressed as follows:

∑
i,j( )∈ΩB

zij � Nbus − ∑
i∈ΩN

rsi (18)

whereΩB is the set of branches;Nbus is the total number of nodes; rsi
denotes whether node i is selected as the dominant node of the
partition under scenario s.

According to the safe operation regulations, the distribution
system performs topology transformation after the fault occurs.
Usually, only the substation node and some controllable DG can be
used as the black-start power supply for the islanded partition.
Therefore, the substation node and the controllable DG node can be
used as alternatives to the dominant node. It is assumed that the
DRGs allocated in this paper are equipped with self-organizing
inverters (Du et al., 2022), which can be selected as the dominant
point of islanded partitions. In addition, due to the possibility of load
island, the associated nodes of the fault line can also be used as the
dominant nodes. Since there must be at least one dominant node in
the distribution system, the following constraints should be met:

∑
i∈ΩN

rsi ≥ 1 (19)

For Condition 2, this paper uses the single commodity flow
method to describe the connectivity constraints of the partition. For
each partition, its only dominant node is set as a fictitious source,
and other non-dominant nodes are set as fictitious loads (the load
value can be valued as 1). In order to ensure connectivity, all non-
dominant nodes should be connected to the dominant node, and the
following fictitious flow constraints need to be met (Ding et al.,
2017a; Ding et al., 2017b; Zhang et al., 2020b):

∑
j∈σ i( )

Fs
ij − ∑

j∈π i( )
Fs
ji ≥ − 1 −M · rsi · xg

i + xf
i( )

∑
j∈σ i( )

Fs
ij − ∑

j∈π i( )
Fs
ji ≤ − 1 +M · rsi · xg

i + xf
i( )

∑
j∈σ i( )

Fs
ij − ∑

j∈π i( )
Fs
ji ≥Ws

i −M · 1 − rsi( )
∑

j∈σ i( )
Fs
ij − ∑

j∈π i( )
Fs
ji ≤Ws

i +M · 1 − rsi( )
−M · zij ≤Fs

ij ≤M · zij
Wi ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20)

where Fs
ij is the fictitious flow on line i-j under scenario s; xg

i

indicates whether there is a power generation unit at node i; xf
i

indicates whether node i is associated with a fault line; Ws
i denotes

the output of the fictitious source at node i. Since the fault line may
appear at the end node of the distribution system, forming a single
node island, the minimum value of Ws

i must be 0.
If the above fictitious flow constraints can be met, it means that

there is at least one path from the fictitious source node to the
fictitious load node. Since the fictitious flow constraints have the
same topology as the original distribution system, the connectivity of
the partition can be guaranteed. In Eq. 20, (xg

i + xf
i ) denotes

whether node i can be chosen as the dominant node. The
dominant node should meet the following constraint:

rsi ≤ xg
i + xf

i( ) (21)
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3.3 Evaluation index

In order to evaluate the impact of the response scheme on the
carbon emissions of the disaster-stricken distribution system, this paper
first defines the total carbon emission (TCE) as an evaluation index to
evaluate the carbon emission of the system under a given scheme. As
previously analyzed, carbon emissions from rigid loads with production
plan postponement need to be considered in post-disaster carbon
accounting, so the TCE calculation formula is as follows:

TCE � D∑
s∈Φ

φs ∑
t∈T

∑
g∈NG

δgPg,t,s +∑
l∈Γ

δsubl Lsub
l,t,s +∑

l∈Γ
δgL

trans
l,t,s

⎛⎝ ⎞⎠ (22)

whereD is the frequency of disasters in a year; Ltransl,t,s denotes the loss
of rigid load with production plan postponement. This paper
considers that the transfer load is powered by the substation after
disaster restoration, so its carbon emission coefficient is δg.

On this basis, in order to comprehensively consider the impact of
disaster response schemes on power supply reliability and carbon
emissions, a load loss emission ratio (LER) is defined to characterize
the effect of disaster response measures. The smaller the value is, the
smaller the load loss value corresponding to the unit carbon emission
under the scheme is. That is, more loads are restored at the cost of
smaller carbon emissions. The calculation formula of LER is as follows:

LERx �
∑
s∈Φ

∑
t∈T

∑
l∈Γ

D Lpre
l,t,s − Ll,t,s( )

TCEx
(23)

where TCEx is the total carbon emissions under response scheme x.
It is worth noting that the value of LER is not the smaller the better.
It is also necessary to comprehensively evaluate the scheme
according to the actual load loss value and the total carbon emission.

4 Modeling and analysis of disaster
scenarios

4.1 Disaster development model

The occurrence and development of natural disasters have
certain regional and directional characteristics, and as a form of

attack, its impact on the distribution system has certain uncertainty.
Therefore, when analyzing the impact of natural disaster damage on
the distribution system, it is necessary to fully consider the spatial
and temporal characteristics of natural disaster development, clarify
the disaster path in the distribution system, determine the scope of
disaster impact on the distribution system, and evaluate the severity
of disaster impact on the components in the distribution system.

Due to the strong correlation between the occurrence of natural
disasters and geographical location, this paper combines the
topology with the geographical information system (GIS), divides
the system into square grids based on geographical areas (9), and
draws a disaster frequency heat map as shown in Figure 2 based on
the historical data of disasters. The red area in Figure 2 represents
the disaster-prone area, and the deeper the red color, the higher the
frequency of disasters, while the blue area represents the area where
rare disasters occur. It can be seen from Figure 2 that the distribution
system in the red area is more vulnerable to natural disasters and
damage, resulting in fault.

According to the disaster frequency heat map, the average
frequency of a certain type of disaster in each square grid can be
calculated, so as to obtain the high frequency occurrence square grid
of such disaster in the grid area. The occurrence and development of
disasters usually have certain dynamic spatial and temporal
distribution characteristics, so it is necessary to consider the
impact of disaster development path. This paper assumes that the
disaster moves geographically along the development path and
affects the distribution system along the way, causing the power
line on the moving path to fail. Figure 3 shows the path of disaster
development in the distribution system. The disaster moves along
different paths from the occurrence point, and the lines in the square
grid on the path will be affected by the disaster. Because the square
grids on the disaster path are in different geographical areas, the
degree of disaster impact is not the same. This paper assumes that in
the square grid near the disaster point, the power grid is more
seriously affected, while the grid far away from the disaster point is
relatively less affected by the disaster (18). According to the disaster
path and the disaster intensity in the square grid, the fault
probability curve can be used to calculate the fault probability of
the line in the grid. The fault probability curve can usually be
expressed as (Panteli et al., 2017):

FIGURE 2
GIS-based disaster frequency heat map in distribution system.

FIGURE 3
Disaster development path in distribution system.
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P s �
0, I< Icritical
P s I( ), Icritical ≤ I< Icollapse
1, I≥ Icollapse

⎧⎪⎨⎪⎩ (24)

where P s denotes the line fault probability in the grid related to the
disaster intensity in scenario s; I denotes the intensity of disaster;
Icritical is the critical disaster intensity that causes the line to fail;
Icollapse is the intensity of the disaster that makes the line certain fault.
Figure 4A shows the line fault probability curve under the variety of
disaster intensity.

Because it is difficult to accurately measure and calculate the
disaster intensity, in order to simplify the model and facilitate the
solution, this paper uses the distance between the square grid on the
disaster path and the disaster occurrence point to replace the disaster
intensity as the input of the fault probability curve, and sets the line
fault probability in each square grid to be the same. Therefore, the
fault probability curve is discretized, and the discretized curve is
shown in Figure 4B. In the figure, the disaster distance of the abscissa
is represented by the square grid order along the disaster path.

4.2 Disaster scenario constraints

The distribution system itself has a certain degree of
resistance to natural disasters, which determines that the
damage of disasters to the power system is not without an
upper limit. Therefore, this should be taken into account
when generating line fault constraints in disaster scenarios.
The disaster scenario is modelled by using the line fault set
considering the budget of disaster attack. For a certain type of
disaster scenario, the following constraints should be met:

∑
i,j( )∈ΩR

us
ij ≤Kbudget (25)

where usij indicates whether line i-j is affected by disasters and has
faults. ΩR denotes the set of lines on the disaster path; Kbudget is the
budget of disaster attack, the maximum number of fault lines under
the disaster. Ignoring the sequence of the impact of disasters on the
line, the model can be regarded as a typical N-K fault problem. The
constraint Eq. 25 can be rewritten as follows:

∑
i,j( )∈ΩB

1 − us
ij( )≥Nbrch − Kbudget (26)

where Nbrch is the total number of the branches in the system,
containing the branches where the reconfiguration switches are
located.

After considering the impact of disasters and NR, the final state
of the line in the distribution system can be expressed as:

zsij � z0ij + Us
sw( ) · 1 − us

ij( ) (27)

where z0ij is the initial state of the line in the distribution system;Us
sw

is the state variable of the reconfiguration switch; It should be noted
that when the line controlled by the reconfiguration switch is on the
path affected by the disaster, if the disaster causes damage to the line,
the line cannot operate normally even if the reconfiguration switch is
closed.

FIGURE 4
(A) Line fault probability under the variety of disaster intensity; (B) Line fault probability under the variety of disaster distance.

FIGURE 5
Flowchart of worst-case fault scenario selection.
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4.3 Selection method of worst-case fault
scenario

For the DAD model proposed in this paper, in order to ensure
the robustness of the allocation results, the most severe impact of
natural disasters as attackers on the distribution system should be
considered. Based on the N-K criterion, a method for selecting the
worst-case fault scenario considering the line fault probability is
proposed. This method evaluates the severity of the impact of a line
fault on the distribution system by solving the risk of load loss
(Nikkhah et al., 2018). The worst-case fault scenario selection
process is shown in Figure 5.

The calculation formula of the risk of load loss (RoLL)
mentioned in the above process is as follow:

RoLLl � Cop
LS · P s

l (28)
where RoLLl denotes the load loss risk value of line l;C

op
LS denotes the

load loss after line l fault; P s
l denotes the fault probability of line l

under disaster scenario s.

5 Solution algorithm

5.1 Model linearization

After obtaining disaster information and related data, using the
aforementioned disaster scenario modeling and worst-case fault
scenario selection methods, it is possible to determine the specific
attack scenario α in which the disaster acts as an attacker in the
distribution system, corresponding to the second stage of the DAD
model proposed in Section 3. Therefore, the min-max-min problem
in this paper can be transformed into a mixed integer programming
(MIP) optimization problem with both inner and outer layers in the
form of min, so that it can be combined into a single-layer
optimization model, which can be written as follow:

min
x,ys ,zs

cTx + ∑
s∈Φ

φsd
Tys

s.t.Gx ≥ g
K sys ≥ hs
Fszs ≥ms

Qszs � rs
Isys + Jszs ≥ ls
U sys + Txys � vs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(29)

where he specific expression of the optimization decision
variables are:

x � xpv
n , xwt

n[ ]T
ys � Ll,t,s, Pg,t,s, Pm,t,s, Pb,t,s, Psw,t,s, θi,t,s, F

s
ij,W

s
i[ ]T

zs � Us
sw, r

s
i[ ]T

⎧⎪⎪⎨⎪⎪⎩ (30)

The first row of constraints in Eq. 29 corresponds to Eq. 3; the
second row corresponds to the last row of Eqs 12, 13, 15, 17, 20; the
third row corresponds to Eqs 19, 21; the fourth row corresponds to
Eqs 18, 27; the fifth row corresponds to Eqs 11, 14, and the first five
rows of Eq. 20; and the sixth row corresponds to Eq. 10.

It can be seen that there is a case where integer decision variables
are multiplied by continuous decision variables in constraint Eq. 10,
and it is difficult to solve this nonlinear constraint. Therefore, the

following linear equivalent transformation is conducted for this
constraint:

First, define the auxiliary variable ws, let:

ws � AmPm,t,s (31)
Then, the following auxiliary constraints are introduced:

ws ≤Pm,t,s

ws ≥Pm,t,s − E − Am( )Pm,t,s
max

0≤ws ≤AmPm,t,s
max

⎧⎪⎨⎪⎩ (32)

Finally, the constraint Eq. 10 becomes:

AgPg,t,s + ws � AlLl,t,s + Ab,sPb,t,s + AswPsw,t,s (33)

5.2 Solution method of PHA

As can be seen from Eq. 29, the model is a hierarchical multi-
scenario optimization problem. The investment level decision
variable a is an ex-ante decision variable that is independent of
the scenario, while the operation level decision variables b and c are
related to the scenario and need to be calculated based on the specific
disaster scenario. For the multi-scenario optimization problem, the
progressive hedging algorithm (Rockafellar and Wets, 1991) is
employed to solve it. PHA is a decomposition algorithm for
multi-scenario optimization problems. Its main idea is to use
orthogonal projection and augmented Lagrange multiplier
method to decompose the original problem into sub-problems in
multiple scenarios for iterative solution. The advantage of PHA is
that it exhibits global convergence when dealing with convex
optimization problems. For the optimization problem shown in
Eq. 29, the PHA iteration steps are as follows:

1) Initialization. Set k � 0, ω(k)
s � 0.

2) For all scenario s ∈ Φ, solve the following optimization problems:

x k( )
s : � argmin cTx + dTys{ } (34)

3) Update the parameters.

�x k( ) � ∑
s∈Φ

φsx
k( )
s (35)

ω k+1( )
s � ω k( )

s + ρ x k( )
s − �x k( )( ) (36)

4) Set k � k + 1. And solve augmented Lagrange form optimization
problems for all scenario s ∈ Φ.

x k( )
s : � argmin

cTx + dTys

+ω k−1( )
s x + ρ

2
x − �x k−1( )���� ����2

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (37)

5) Update the parameters according to Eqs 35, 36 and calculate the
convergence index.

γ k( ) � ∑
s∈Φ

φs x
k( )

s − �x k( )���� ���� (38)

If γ(k) < ε, the iteration is terminated and then take
x* � [�x(k) + 0.5IE]; otherwise return to step 4.
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In the above iteration process, k denotes the number of iterations.
ω(k)
s denotes the auxiliary multiplier of the k-th iteration under the

scenario s. x(k)s denotes the investment level solution of the sub-problem
solved by the k-th iteration under scenario s. �x(k) is the weighted
average of the solutions of the investment level under all scenario s ∈ Φ
after the k-th iteration. ρ is a penalty parameter, and the value can refer
to the reference (Watson and Woodruff, 2011). x* denotes the optimal
solution of investment level. IE is a column vector whose elements are
all 1. [·] denotes the rounding operation for matrix elements.

6 Case study

6.1 Case description

The modified IEEE 33-node distribution system is used for case
study, as shown in Figure 6. In the system, node 16 and node 31 are
connected with a micro turbine (MT) respectively. In addition, there
are power substitutions at nodes 14, 22, and 24, and rigid load with
load transfer at nodes 10, 17, and 27. The disaster scenario data and
disaster geographic information are derived from the actual
statistical data of a disaster-prone year in a city in China. Using
the method proposed in Section 4.1 to process disaster data can
obtain typical disaster scenario probabilities, disaster paths, and line
fault probabilities on disaster paths, as shown in Table 1. Due to the
obvious seasonal characteristics of the occurrence of disasters, the
k-means clustering method is used to process the historical data of
wind power, photovoltaic and load in the disaster-prone seasons.
This paper mainly focuses on the summer with frequent floods and
the spring with frequent wildfires, and obtains the typical intraday
curves of wind power, photovoltaic and load under disaster
scenarios, as shown in Figure 7. The VoLL of each node of the

test system is shown in Table 2. The allocation budget of DRGs
includes 2 photovoltaic units and 1 WT with a capacity of 400 kW,
and the power generation costs are 0.35¥/(kW·h) and 0.28¥/(kW·h)
respectively. The cost of purchasing power from the upstream power
grid is 0.78¥/(kW·h), and other parameters are shown in Table 3. In
this paper, the duration of a single disaster is considered to be 24 h,
so the simulation time scale is set to 24 h.

6.2 Selection of worst-case fault scenario

In order to obtain the most severe line faults combination in the
disaster scenario, traverse each line on the disaster path, set the line
disconnected and calculate the RoLL value, and the results shown in
Table 4 can be obtained. Set the disaster attack budget value Kbudget,
and based on the results in Table 4, select the same number of lines
with large RoLL values in the scenario as the worst-case fault
scenario for the disaster scenario.

6.3 Operation and allocation results under
multi-scenario disasters

In order to verify the effectiveness of the model and disaster
response measures proposed in this paper, five schemes are set up
for comparison. The scheme settings are shown in Table 5. Set the
disaster attack budget Kbudget to 2, and according to Table 4, the
worst-case fault scenarios are: lines 5–6 and 7–8 (in scenario 1);
lines 31–32 and 23–24 (in scenario 2); lines 6–7 and 26–27 (in
scenario 3); lines 3–4 and 19–20 (in scenario 4). The results

FIGURE 6
Modified IEEE 33-node system diagram.

TABLE 1 Description of typical disaster scenarios.

Disaster type Scenario number Scenario probability φs Disaster path and fault probability of lines (line, probability)

Flood 1 0.2 (12–13, 0.82) (11–12, 0.78) (7–8, 0.42) (6–7, 0.22) (5–6, 0.18) (3–23, 0.12)

2 0.2 (17–18, 0.65) (31–32, 0.60) (30–31, 0.45) (27–28, 0.32) (23–24, 0.22)

Wildfire 3 0.3 (29–30, 0.78) (26–27, 0.71) (6–26, 0.55) (6–7, 0.23) (7–8, 0.18)

4 0.3 (20–21, 0.75) (19–20, 0.67) (2–19, 0.43) (3–4, 0.32) (3–23, 0.24) (23–24, 0.19)

FIGURE 7
Curve of wind power, photovoltaic power and load under
different disaster scenarios.
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solved under the five different disaster response schemes are
shown in Table 6.

By comparing the results of the scheme 1 and scheme 2, it can be
seen that by adopting the NR, the load loss caused by the distribution
system failure under the disaster is reduced by 81.94%, and the total
operation cost is reduced by 5.34 × 104¥. This indicates that NR can
effectively restore most of the power supply after a distribution
system failure, ensuring power supply reliability. Due to the NR
restoring a large amount of load, resulting in an increase in the
output of carbon emission units, the carbon emissions in scheme

2 have significantly increased compared to scheme 1. From the LER
value, it can be seen that scheme 2 is superior to scheme 1.

From the results of scheme 3 and scheme 4, it can be concluded
that compared with scheme 1, after the allocation of PV unit and
WT, the load loss under disasters is reduced by 5,171.12 and
6,978.41 kW·h respectively, and the total carbon emission is
reduced by 5.28% and 6.68% respectively. This is due to the fact
that the output of DRGs has restored the lost load in some load
islands, and the total carbon emission has decreased due to the
replacement of the output of MT and upstream power grid. This
indicates that the allocation of DRGs in the pre-disaster prevention
stage can effectively improve the load restoration capability and
reduce the carbon emissions. Compared with the result under
random allocation, the optimal allocation of DRGs can further
reduce the load loss of 1,807.29 kW·h and the total carbon
emission of 1.40% under disaster scenarios. The LER value of
scheme 4 is less than that of scheme 3, and it can be concluded
that the optimal allocation effect of scheme 4 is better than that of
scheme 3.

As can be seen from Table 6, scheme 5 can significantly reduce
the load loss caused by disasters and greatly reduce the total cost by
optimizing the allocation of DRGs before disasters and adopting NR
after disasters. Compared with operation scheme 2, scheme 5 further
reduces the total carbon emissions. However, compared with
schemes 3 and 4, the total carbon emissions increase. The reason
is that NR leads to the restoration of power supply for a large
number of loads, and the output of carbon emission units increases.
According to the LER value, scheme 5 is the optimal scheme.

TABLE 2 Value of lost load of buses.

Node VoLL [¥/(kW·h)] Node VoLL [¥/(kW·h)] Node VoLL [¥/(kW·h)] Node VoLL [¥/(kW·h)]
2 2.18 10 3.64 18 3.788 26 3.38

3 2.93 11 1.79 19 4.02 27 1.49

4 4.08 12 2.58 20 3.30 28 2.18

5 4.10 13 3.96 21 3.52 29 1.53

6 1.84 14 3.62 22 3.48 30 1.67

7 4.11 15 4.09 23 2.50 31 3.70

8 4.09 16 3.24 24 3.24 32 3.35

9 2.76 17 1.50 25 1.88 33 2.29

TABLE 3 Parameter settings.

Parameter Value

ag/bg [¥/(kW·h)] 0.67/0

pCO2 (¥/t) 100

δg [t/(MW·h)] 1.2

δsubl [t/(MW·h)] 1.5

Psw
min/Pmax

sw (kW) −1,000/1,000

Pg
min/Pmax

g (kW) 0/800

D (d) 10

TABLE 4 RoLL of lines under different disaster scenarios.

Scenario 1 Scenario 2 Scenario 3 Scenario 4

Line RoLL Line RoLL Line RoLL Line RoLL

12–13 0.2429 17–18 8.1782 29–30 1.3026 20–21 14.3070

11–12 1.3789 31–32 18.6481 26–27 7.6033 19–20 18.8049

7–8 14.7783 30–31 0.0412 6–26 7.5696 2–19 16.7722

6–7 13.7682 27–28 5.4579 6–7 8.7538 3–4 20.4341

5–6 15.0902 23–24 17.4896 7–8 3.1352 3–23 17.2386

3–23 10.5382 — — — — 23–24 12.3542

TABLE 5 Scheme settings.

Scheme Optimal allocation Random allocation NR

1 × × ×

2 × × √

3 × √ ×

4 √ × ×

5 √ × √
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6.4 Effectiveness of NR

In order to demonstrate the effect of NR on restoring lost load,
calculation and analysis are carried out under a single disaster
scenario. Based on disaster scenario 1, the test is carried out
under scheme 1 and scheme 2 respectively. The results are
shown in Figure 8 and Table 7. Comparing Figures 8A, B, it can
be seen that without NR, two load islands are generated in the
distribution system due to line faults. Although the islands are
equipped with corresponding black-start power supplies, due to
the limited capacity of the unit, most nodes still have load loss, and
the reliability of power supply is low. After adopting the network
reconstruction method, the switches between the tie line 12–22 and
25–29 is closed, so that the entire distribution system maintains a
radial complete connection state, avoiding the generation of load
islands. In this case, the load loss of the entire power grid is reduced.
Although due to the transmission capacity limit of tie lines, the lost
load has not been fully restored, compared to the case where NR is
not taken, the load loss has been reduced by 92.04%, and the fault
restoration ability of the distribution system has been greatly

improved. From the LER value, adopting NR can restore more
power at a lower cost of carbon emissions.

6.5 Effectiveness of different allocation
scheme

In order to compare the effects of different allocation
schemes, the calculation under a single disaster scenario is
performed based on disaster scenario 4, and the results under
three different allocation schemes are obtained, as shown in
Figure 9 and Table 8.

As can be seen from Figure 9A, when allocation scheme 1 is
adopted, there are four DGs in island 1 for load restoration.
However, because there is only one power dividing point of node
7, the PV units located at node 7 and node 26 cannot deliver power
to node 27 and its downstream nodes. In fact, the total load of nodes
31 and 32 at the end of the branch is heavy, and the VoLL of the load
is large. Therefore, under this allocation scheme, the renewable
energy is not fully utilized, and the important load is not sufficiently

TABLE 6 Results under different schemes.

Scheme Total cost (104 ¥) Load loss (kW·h) TCE (t) LER Allocation node [(PV), (WT)]

1 16.49 35,034.27 1,194.87 293.21 —

2 11.15 6,325.80 1,408.38 44.92 —

3 14.68 29,863.15 1,131.81 263.85 (7, 26), (20)

4 14.04 28,055.86 1,115.06 251.61 (9, 33), (21)

5 10.28 3,334.78 1,322.82 25.21 (7, 25), (30)

FIGURE 8
(A) Operation without NR; (B) Operation with NR.

TABLE 7 Results in different case 1 and case 2 under disaster scenario 1.

Fault line NR line Total cost (104¥) Load loss (kW·h) TCE (t) LER

5–6, 7–8 — 17.04 37,650.70 1,292.65 291.27

5–6, 7–8 12–21, 25–29 12.14 2,997.12 1,627.83 18.41
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powered, resulting in more load loss and higher total carbon
emissions.

In Figure 9B, compared with scheme 1, scheme 2 changes
the allocation position of WT from node 20 to node 24. Because
the output of WT is not blocked by the fault line, it can replace
part of the output of the upstream power grid. From Table 8, it
can be found that the total carbon emission under allocation
scheme 2 is lower than that under allocation scheme 1.
Although the change in the location of the WT has little
impact on island 1, it has caused island 2 to lose the power
source for restoration, leading to island 2 becoming a load
island. The load loss of the scheme is greatly increased
compared with the allocation scheme 1, and the LER value is
the largest among the three schemes, which shows that the
scheme is not desirable.

The optimal allocation scheme is adopted in Figure 9C, so that there
are two power dividing points of node 7 and node 32 in different periods

of a day in island 1. It can be seen from the figure that the scheme has
more diverse power delivery paths than the first two allocation schemes.
During periods when the load of nodes 31 and 32 is small, the PV unit
located at node 33 can bypass node 32 to provide power supply to other
loads, and at this time node 32 does not act as a power dividing point.
When the load at the end of the branch is large, node 32 becomes a power
dividing point, and is powered by the power supplies on both sides. This
means that under this scheme, PV units are allocated more reasonably
and the load power supply mode is more flexible. It can be seen from the
results in Table 8 that the optimal allocation scheme has smaller load loss
than the first two schemes, and its total carbon emissions are relatively
low, and the LER value is the smallest, which is an ideal scheme.

6.6 Influence of disaster severity

For a given disaster response scheme, changes in disaster severity will
lead to differences in disaster response effects. On the basis of scheme 5,
the results under themulti-scenario disasters can be obtained by changing
the disaster attack budget Kbudget, as shown in Figure 10 and Table 9. It
can be seen fromFigure 10 that as the severity of the disaster increases, the
load loss and operating costs continue to increase. FromTable 9, it can be

FIGURE 9
(A) Random allocation scheme 1; (B) Random allocation scheme 2; (C) Optimal allocation scheme.

TABLE 8 Results under different allocation scheme.

Allocation scheme Fault line Allocation node [(PV), (WT)] Total cost (104¥) Load loss (kW·h) TCE (t) LER

1 3–4, 19–20 (7, 26), (20) 14.62 30,268.90 984.87 307.34

2 3–4, 19–20 (7, 26), (24) 14.27 34,310.34 924.78 371.01

3 3–4, 19–20 (9, 33), (21) 12.78 28,712.36 943.90 304.19

FIGURE 10
Load loss and total cost under different disaster severity.

TABLE 9 Results under different placement scheme.

Kbudget Allocation node [(PV), (WT)] TCE (t) LER

0 (18, 24), (33) 1,353.08 0

1 (11, 32), (33) 1,346.79 10.58

2 (7, 25), (30) 1,322.82 25.21

3 (26, 33), (7) 1,139.64 186.63

4 (18, 26), (7) 1,000.75 342.66

5 (7, 26), (7) 1,034.02 340.63
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seen that the total carbon emissions show a downward trend, indicating
that disasters have a certain inhibitory effect on the carbon emissions.
However, this inhibitory effect is at the expense of load loss. FromTable 9,
it can also be found that the LER value is at a high level when the disaster
severity is high, which means that the load lost for each unit of carbon
emissions generated is large.When the value ofKbudget is not greater than
2, the load loss and total cost of the system are relatively low, and the LER
value is also small, indicating that the disaster response scheme at this
time has a good effect. When the value is greater than 2, the load loss and
total cost rise rapidly, and the LER value increases sharply, indicating that
the disaster is severe enough that current allocation budget and
operational methods have gradually failed to meet the disaster
response requirements. Therefore, it is necessary to increase the
allocation budget or take more effective measures [such as line
hardening (Wang et al., 2019b), etc.] to cope with more severe
disaster scenarios. When the value is greater than 4, the load loss and
total cost growth slow down, indicating that the marginal benefit of
disaster attacks has decreased, and the system is suffering the most severe
disaster damage.

According to the impact of the severity of the disaster on the
distribution system, it can be divided into three ranges. When
Kbudget ∈ [0, 2], it is called the inhibition interval, within which the
existing disaster prevention and responsemeasures play an effective role
in inhibiting the disaster. When Kbudget ∈ [2, 4], it was called a growth
range, and the existing disaster prevention and response measures
within this range gradually failed to meet the disaster response
requirements. Therefore, the impact of disaster increased sharply
with the severity of the disaster. When Kbudget ∈ [4, 5], it is called
the destroy range. In this range, the damage degree of the disaster on the
distribution system tends to be maximized, and existing disaster
prevention and response measures have little effectiveness.

6.7 Influence of allocation budget

The allocation budget mainly includes the number and capacity
of allocated units. On the basis of the scheme 5, taking the value of
Kbudget as 2, changing the capacity of the allocated units and the
number of PV units, the results shown in Figure 11 can be obtained.
It can be seen from the figure that with the increase of unit capacity
and allocation number, the load loss and carbon emissions of the

system have significantly decreased, and the LER value also
decreases. It is worth noting that with the increase in unit
capacity and number, the downward trend of load loss and LER
values becomes slower. This result shows that the marginal benefits
of disaster prevention and response brought about by the increase in
the allocation budget are decreasing. When making disaster
prevention and response decisions in practical, it is necessary to
take into account the severity of the disaster and the risk tolerance
level of the distribution system, while weighing the marginal benefits
and allocation costs, and comprehensively formulate an appropriate
allocation scheme.

7 Conclusion

Natural disasters will not only lead to load loss caused by line faults in
distribution systems, but also affect carbon emissions. In order to improve
the load restoration capability of the distribution system under disasters
and mitigate the additional carbon emissions during the load restoration
process, this paper proposes a multi-scenario DAD model considering
carbon emission based on the CPSSE framework. The model pre-
allocates the DRG units before the disaster and implements NR after
the disaster to restore the power supply of the distribution system. To
describe the impact of disasters, this paper models the line fault
probability under disasters, gives the fault constraints under disasters,
and proposes amethod for selecting the worst-case fault scenario. Finally,
the PHA algorithm is adopted to solve the multi-scenario problem.
Through the case analysis, the following conclusions can be drawn:

1) Natural disasters can cause a large amount of load losses in the
distribution system. Adopting NR can avoid the generation of
isolated islands, ensure the integrity of the distribution system
topology, and reduce load loss by 92.04%.

2) The proposed optimal allocation model comprehensively
considers the impact of disasters on load restoration and
carbon emissions of the distribution system, and is suitable
for multi-scenario disasters. It can improve the flexibility of
load restoration in islands under disasters, and restore more lost
load with less carbon emissions.

3) As the severity of disasters increases, the impact of disasters on
distribution system can be divided into three ranges: inhibition

FIGURE 11
Influence of allocation budget on (A) Load loss; (B) TCE; (C) LER.
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range, growth range, and destroy range. When the disaster attack
budget is greater than 2, existing disaster prevention and
response measures will gradually lose their effectiveness.

4) With the increase of the allocation budget, the effect of the
optimal allocation shows a diminishing marginal benefit.
Therefore, the allocation effect and budget should be weighed
simultaneously when making allocation decisions.

Due to space limitations, this paper only focuses on the impact of
disasters on the distribution system, and has not considered the impact
of disasters on carbon sinks. Future researchwill consider the changes of
carbon emissions and carbon sinks in the transmission and distribution
system under the impact of disasters simultaneously, and formulate
more comprehensive disaster prevention and emission mitigation
measures to better achieve carbon neutrality.
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