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Taking into account the challenges of obtaining accurate physical parameters and
uncertainties arising from the integration of a large number of sources and loads,
this paper proposes a real-time voltage control method for AC/DC distribution
networks. The method utilizes model-free generation and coordinated control of
multiple converters, and employs a combination of agent modeling and multi-
agent soft actor critic (MASAC) techniques for modeling and solving the problem.
Firstly, a complex nonlinear mapping relationship between bus power and voltage
is established by training an power-voltage model, to address the issue of
obtaining physical parameters in AC/DC distribution networks. Next, a Markov
decision process is established for the voltage control problem, with multiple
intelligent agents distributed to control the active and reactive power at each
converter, in response to the uncertainties of photovoltaic (PV) and load variations.
Using the MASAC method, a centralized training strategy and decentralized
execution policy are implemented to achieve distributed control of the
converters, with each converter making optimal decisions based on its local
observation state. Finally, the proposed method is verified by numerical
simulations, demonstrating its sound effectiveness and generalization ability.
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1 Introduction

In recent years, there has been a growing focus on promoting energy conservation and
emission reduction to achieve the goals of “carbon neutrality” and “peak carbon emissions”
(Fu and Zhou, 2023). In this context, the integration of DC power sources, represented by
photovoltaic (PV), and DC loads, represented by electric vehicles, has become increasingly
widespread in distribution networks. However, this integrationmethod can result in network
losses due to the need for AC/DC conversion. To address this challenge, researchers have
explored the direct integration of DC power sources and loads into DC distribution
networks, thereby avoiding the need for a large number of AC/DC conversion steps and
reducing network losses. In addition, DC distribution networks offer several advantages,
including high voltage quality and large transmission capacity, making them an attractive
area of study for researchers (Blaabjerg et al., 2004; Wang et al., 2021; Zhang et al., 2022).
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Considering that current distribution networks are primarily
based on AC distribution networks, AC/DC hybrid distribution
networks are considered a feasible transitional mode. This approach
involves converting some AC branches into DC branches and
connecting them through converters, leveraging the advantages of
DC power sources and loads to reduce network losses. In the
development of future power systems, AC/DC hybrid distribution
networks have become an important direction (Wei et al., 2022).
However, the high proportion of DC power sources, such as PV,
being integrated into these networks has presented challenges. Due
to the strong uncertainty of PV power output and its susceptibility to
environmental factors, issues such as voltage fluctuations or
exceeding limits are easily caused. Therefore, it is necessary to
reasonably adjust the various controllable resources in the AC/
DC distribution networks to achieve effective voltage control.

Currently, traditional voltage regulation methods for
distribution networks include on-load tap changers (OLTC) (Jiao
et al., 2022), reactive power compensation equipment (Kryonidis
et al., 2021), and others. In (Wu et al., 2017), a voltage control
method that combines OLTC and feeder control section (FCS) was
proposed to minimize voltage deviation and DG output reduction.
The authors used a least squares method to fit the objective function
curve to achieve optimal multi-objective control. In (Pachanapan
et al., 2012), a decentralized voltage control method for multi-time
scale distributed generations (DGs) was proposed. The authors also
proposed a principle for dividing regions based on the number of
DGs, which effectively controlled the voltage of the distribution
network (Valverde and Van Cutsem, 2013). Proposed a method that
centralized the control of OLTC and DGs to solved the voltage
control problem using quadratic programming algorithms. These
methods can accurately determine the optimal voltage control
strategy under given conditions, however, they require accurate
physical models of the distribution network. With the
increasingly complex structure of AC/DC distribution networks,
it has become more difficult to estimate the model parameters
accurately, requiring a large amount of measurement data to
obtain line parameters. Traditional model-based voltage control
methods are difficult to achieve ideal results in practical
operation. Therefore, it is necessary to develop new data-driven
voltage control methods that combine existing traditional methods
to achieve precise control of the voltage in AC/DC distribution
networks.

In solving the voltage control problem in distribution networks,
it is necessary to address not only the issue of parameter acquisition,
but also the uncertainty caused by the randomness of PV and load
factors (Fu et al., 2020; Fu, 2022). Currently, there are two main
methods for dealing with uncertainty in the system: stochastic
programming (Bizuayehu et al., 2016) and robust optimization
(Huang et al., 2022). Stochastic programming models uncertain
factors as random variables and uses probability distribution
functions to describe their stochastic properties. The optimization
problem is then transformed into a stochastic programming
problem and solved using corresponding stochastic optimization
algorithms. For example, (Wei et al., 2022), established a probability
model of distributed generation output and constructed a
distribution network economic dispatch model considering the
uncertainty of DG, with the goal of achieving economic efficiency
while considering opportunity constraints (Nguyen and Crow,

2016). Established a scheduling model that includes renewable
energy and energy storage, and used probability constraints to
handle the uncertainty of renewable energy and load (Su et al.,
2014). Established a stochastic output model of renewable energy,
constructed a two-stage stochastic scheduling model with the goal of
minimizing network loss. Robust optimization describes the range
of changes in uncertain factors using a set of uncertainties. For
example, (Xu et al., 2017), established a distributed robust control
model of controllable devices in a distribution network with the goal
of maximizing social welfare (Li et al., 2021). Evaluated the operating
costs and risks of wind power to determine the allowable range of
wind power output, and converted a centralized robust scheduling
model into multiple sub-scheduling models for solution using the
alternating directionmethod of multipliers. Although these methods
can address uncertainty, they also have some limitations. For
example, stochastic programming methods require obtaining the
probability density function of random variables, but their actual
distribution is often difficult to obtain and the use of artificially set
methods cannot include all scenarios, thus leading to weak
generalization. Robust optimization, although it does not require
consideration of the distribution of random variables, needs to
consider extreme scenarios, which can make the optimization
results more conservative. In future research, it is necessary to
consider the uncertainty of DG and loads and the actual
situation of distribution networks, and to develop more effective
voltage control methods to meet the needs of AC/DC hybrid
distribution networks.

With the rapid development of AI technology, using Deep
Reinforcement Learning (DRL) to solve sequential decision-
making problems in distribution networks has become a hot
research topic in recent years. DRL has excellent generalization
ability and fast online decision-making speed, which can effectively
deal with the uncertainty of PV and loads. Currently, DRL has been
widely used in distribution network economic dispatch (Shuai et al.,
2021), voltage control (Liu and Wu, 2021a; Liu and Wu, 2021b),
reactive power optimization (Zhang et al., 2021), network
reconfiguration (Oh et al., 2020), and other areas. In (Bai et al.,
2023), the QMIXmethod was used to control DGs, and graph neural
network (GNN) and graph attention (GAT) layers were introduced
to enhance the information capture ability of agents. In (Xiang et al.,
2023), based on the multi-agent deep deterministic policy gradient
(MADDPG) method and perception of the network topology, the
power of energy storage was controlled to achieve real-time voltage
regulation. In (Yang et al., 2022), an advantage actor-critic (A3C)-
based energy management strategy for distribution networks was
proposed to solve large-scale decision-making problems. Currently,
centralized control based on a single intelligent agent requires
improved communication facilities, as well as centralized
computing and storage centers. However, as the number of
devices and network topology in AC/DC distribution networks
increases, the amount of data to be collected also increases
sharply, and centralized control is susceptible to the impact of
local communication failures, thereby affecting control effectiveness.

The paper proposes a data-driven, model-free voltage control
method for AC/DC distribution networks based on multi-agent
reinforcement learning. Firstly, a power-voltage model is trained
to capture the nonlinear mapping between the bus power and
voltage using a large amount of historical data. Then, an agent is
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assigned to each subarea and a multi-agent deep reinforcement
learning method (MADRL) is adopted for centralized training.
Finally, the trained agents are deployed in a decentralized
manner and each agent can make optimal decisions based on
local observations only, achieving global optimal performance.
This method does not require an accurate physical model of the
distribution network and can control the inverters. Each
converter can make optimal decisions based on local
observations only, and the coordination of multiple converters
can minimize the overall voltage deviation. The proposed method
provides valuable insights and references for the future
development of AC/DC distribution networks.

2 Problem description of AC/DC
distribution networks voltage control

The AC/DC distribution networks mainly consists of a
voltage source converter (VSC), an AC distribution network,
and a DC distribution network. The VSC can control various
variables such as AC/DC voltage, active power, and reactive
power, and has various control modes. The V-Q control mode
is used to control the voltage of the DC branch and adjust the
power factor of the AC branch. The P-Q control mode is used to
control the power exchange between the AC and DC distribution
networks. Since the ratio of resistance to reactance of the
distribution network line R/X is relatively large, both active
and reactive power have a significant impact on the bus
voltage. By adjusting the active and reactive power of the
VSC, the voltage of the AC/DC distribution networks can be
regulated.

Voltage control in AC/DC distribution networks is a complex
nonlinear problem. Although traditional mathematical methods
perform well in terms of solution accuracy and control effects,
accurate mathematical models of the distribution network and
differentiable objective functions are required, etc. The voltage
control model is as follows:

minf x( ) � ∑
i

Vac,i − Vac0

∣∣∣∣ ∣∣∣∣ +∑
j

Vdc,j − Vdc0

∣∣∣∣ ∣∣∣∣
s.t.g Pac,i, Qac,i, Pload,i, Qload,i, PPV,i, Pac,VSC, Qac,VSC( ) � 0
g Pdc,j, Pload,j, PPV,j, Pdc,VSC( ) � 0
g Pac,VSC, Pdc,VSC( ) � 0
−PVSC,max ≤Pac,VSC ≤PVSC,max

−QVSC,max ≤Qac,VSC ≤QVSC,max

Vac,min ≤Vac,i ≤Vac,max

Vdc,min ≤Vdc,j ≤Vdc,max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

Where, in the objective function is to minimize the voltage
deviation in the AC/DC distribution networks. Vac,i represents
the voltage of AC bus i; Vac0 represents the reference voltage of
AC bus; Vdc,i represents the voltage of DC bus i; Vdc0 represents
the reference voltage of DC bus; g (·) denotes the load flow
equation; Pac,i and Qac,i are the active and reactive power injected
at AC bus j, respectively; Pload,i, Qload,i, and PPV,i represent the
active power, reactive power, and PV output of the load at AC bus
i, respectively; Pdc,i denotes the active power injected at DC bus j;
Vac,j represents the voltage of AC bus j; Vdc,j represents the
voltage of DC bus j; Pload,j and PPV,j are the active power and

PV output of the load at DC bus j, respectively; Vac,max and
Vac,min are the upper and lower limits of AC bus voltage,
respectively; Vdc,max and Vdc,min are the upper and lower
limits of DC bus voltage, respectively. Pac,VSC and Qac,VSC

represent the active and reactive power on the AC side of the
VSC, respectively; PVSC,max and QVSC,max are the upper limits of
VSC active power and reactive power, respectively. Figure 1.

In reality, the following problems exist in the process of realizing
the above optimization problems: 1) There are more types of devices
in AC/DC distribution networks and the models are complicated, so
it is difficult to obtain accurate physical models; 2) For distribution
networks with large structures, the amount of information to be
observed is large and the information transfer time is long, so it is
difficult to make the optimal control decision quickly based on the
centralized control method.

In summary, this paper proposes a model-free voltage control
method for AC/DC distribution networks based on multi-agent soft
actor critic (MASAC), which solves the problem of difficult to obtain
model parameters by constructing a power-voltage model; by setting
multi-agent to control multiple VSCs, each VSC can make optimal
decisions based on the local observation state and realize distributed
control.

3 Model-free coordinated voltage
control framework for multiple
converters

The model-free voltage control framework for multi-converter
collaboration is shown in Figure 2. The steps are as follows: 1) Train
the power-voltage model using the operation data of AC/DC
distribution networks and establish the nonlinear mapping
relationship between node power and node voltage through
neural network. 2) Construct a Markov decision process for the
voltage control problem and set an agent for each VSC. 3) Train the
agents by MASACmethod to solve the Markov decision problem. 4)
Deploy the agents in a distributed manner to achieve real-time
voltage control.

3.1 Power-voltage model

3.1.1 Model construction
There is a complex nonlinear mapping relationship between

node power and voltage in the AC/DC distribution networks. Since
neural networks have strong capability in fitting nonlinear models,
Multilayer Perceptron (MLP) is used to solve this problem. The
power-voltage model takes a six-layer structure, including one input
layer, four hidden layers, and one output layer. Among them, the
input layer includes the power of each node and the power of the
converter, and the output layer is the voltage amplitude of each
node, which can be expressed as:

Vac, Vdc[ ] � 〈Ws, gs Pload,i, Qload,i, PPV,i , PVSC, QVSC( )〉 + bs (2)
Where, <·,·> is internal product;Ws is the weights; bs is the bias;

gs (·) is the activation function.
The main training process consists of the following steps.
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1) Initialization: random initialization of the weights and biases of
the MLP model;

2) Forward propagation: (Pload,i, Qload,i, PPV,i, PVSC, QVSC) is passed
to the input layer of the model and enters the output layer
through the hidden layer, where the activation function is chosen
as the ReLU function, and the analytic formula of the function is:

ReLU x( ) � max 0, x( ) (3)

3) Calculated loss: The error between the voltage amplitude
obtained by forward propagation and the actual voltage
amplitude is calculated using the MSE function as:

L y, ŷ( ) � 1
n
∑ yi − ŷi( )2 (4)

Where, y is the predicted voltage value of the power-voltage
model, ŷ is the true voltage value.

4) Back propagation: Calculate the gradient of the loss function
with respect to each weight and bias.

5) Updating weights and biases: With the objective of minimizing
the loss function, the Stochastic Gradient Descent (SGD)
algorithm is used to update the weights and biases:

θ ← θ − η · ∇L θ; x, y( ) (5)

6) Iterative training: Repeat steps 2)-5) to train the power-voltage
model.

FIGURE 1
Typical structure of AC/DC distribution networks.

FIGURE 2
Model-free coordinated voltage control framework.
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3.1.2 Sample generation
The training of the power-voltage model requires a large amount

of operational data of the AC/DC distribution networks and
converter stations. To verify the accuracy of the proxy model, it
is based on real AC/DC distribution networks load data and accurate
physical model of the distribution network. The voltage of the
distribution network is obtained by power flow, and then the
power-voltage model is trained and the accuracy of it is verified
by test sets.

(1) AC Distribution Network Model

The model for the AC side of the AC/DC hybrid distribution
network is:

Pac,j � ∑
k∈πjk

Pac,jk− ∑
i∈πij

Pac,ij − I2ac,ijRac,ij( ) (6)

Qac,j � ∑
k∈πjk

Qac,jk− ∑
i∈πij

Qac,ij − I2ac,ijXac,ij( ) (7)

V2
ac,j � V2

ac,i − 2 Pac,ijRac,ij + Qac,ijXac,ij( ) + I2ac,ij R2
ac,ij +X2

ac,ij( ) (8)
I2ac,ijV

2
ac,ij � P2

ac,ij + Q2
ac,ij (9)

Pac,i � PPV,i − Pload,i (10)
Qac,i � −Qload,i (11)

In the formula, Pac,ij and Qac,ij are the active power and reactive
power of AC branch ij, respectively; Rac,ij and Xac,ij are the resistance
and reactance of AC branch ij, respectively; Iac,ij is the current of AC
branch ij; πij, and πjk are the sets of branches with AC bus j as the
terminal node and AC bus j as the starting node, respectively.

(2) DC Distribution Network Model

The model for the DC side is:

Pdc,j � ∑
k∈Ωjk

Pdc,jk − ∑
i∈Ωij

Pdc,ij − I2dc,ijRdc,ij( ) (12)

V2
dc,j � V2

dc,i − 2Pdc,ijRdc,ij + I2dc,ijR
2
dc,ij (13)

I2dc,ijV
2
dc,ij � P2

dc,ij (14)
Pdc,i � PPV,i − Pload,i (15)

Where Pdc,ij is the active power of DC branch ij; Rdc,ij is the
resistance of DC branch ij; Idc,ij is the current of DC branch ij; Ωij,
and Ωjk are the sets of branches with DC bus j as the terminal node
and DC bus j as the starting node, respectively.

(3) VSC Model

The model of the VSC is shown in Figure 3. In the figure, QVSC
*

represents the reactive power output of the VSC; Vac,VSC is the
AC side voltage magnitude, Vdc,VSC is the DC side voltage
magnitude; VVSC

* is the equivalent internal potential magnitude,
and RVSC and XVSC are the equivalent resistance and reactance,
respectively.

The VSC model can be expressed as:

Pac,VSC − I2VSCRVSC � Pdc,VSC (16)
Qac,VSC − I2VSCXVSC � −QVSC

* (17)

VVSC
* �

�
3

√
3

μMVSCVdc,VSC (18)

Where μ is the DC voltage utilization factor; 0≤μ ≤ 1, when the
modulation mode is SPWM, it is set to 0.866; MVSC is the
modulation index of the VSC, 0≤MVSC≤1.

3.2 Markov decision process construction

In the whole AC/DC distribution system, there are multiple
converters, and multiple converters cooperate cooperatively to
achieve the minimum overall voltage deviation of the whole
distribution system. The synergistic problem of multiple
converters is modeled as Markov Decision Process (MDP),
which mainly contains the following components:

3.2.1 Agent
In MDP, each VSC that needs to be controlled is modeled as an

Agent.

3.2.2 Environment
The agent needs to get the power information of the

nodes and the output of PV from the distribution network,
and then make an action based on the local observed state,
and then the power-voltage model gives the node voltage
based on the power information and the action of the agents,
which gives the agents a reward. Therefore, environment
contains two parts: the AC/DC distribution networks and the
power-voltage model.

3.2.3 State
The local observed state at moment t of agent i contains the PV

output and load in region i, defined as st,i � (PPV,t,i, Pload,t,i). The
local observed states of all agents constitute the set of states St �
st,1, st,2./st,i{ }.
3.2.4 Action

The action at moment t of agent i contains the active power and
reactive power of VSC i, defined as at,i � (PVSC,t,i, QVSC,t,i). The
action of all agents constitute the set of actions At � at,1, at,2./at,i{ }.
3.2.5 Reward

In this paper, the agents are fully cooperative and the goal is to
minimize the voltage deviation of the distribution network, so all
agents use the same reward function. And the objective function in
reinforcement learning is the maximum cumulative reward, so it is
transformed into:

FIGURE 3
VSC model.
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rt � − ∑
i

Vac,i,t − Vac0

∣∣∣∣ ∣∣∣∣ +∑
j

Vdc,i,t − Vdc0

∣∣∣∣ ∣∣∣∣⎛⎝ ⎞⎠ (19)

3.3 MASAC-based markov decision process
solving

Unlike standard reinforcement learning, SAC encourages the
agents to explore a wider action space when performing tasks by
incorporating maximizing policy entropy in policy optimization.
This maximum entropy-based exploration method can make
SAC more robust and flexible for PV and AC/DC distribution
networks with high load uncertainty. The objective of the
training process is:

max J πi( ) � maxE st,i ,at,i( )~ρπi ∑
t

r st,i, at,i( ) + αiH πi ·
∣∣∣∣st,i( )( )[ ]⎧⎨⎩ ⎫⎬⎭

(20)
Where, J(πi) is the expected cumulative return of the strategy; αi

is the temperature coefficient of entropy; H(πi(·|si)) is the strategy
entropy, which can be specifically expressed as:

H πi ·
∣∣∣∣st,i( )( ) � −∑ πi at,i

∣∣∣∣st,i( )log πi at,i
∣∣∣∣st,i( ) (21)

To realize the training of multiple agents, a centralized
training method with decentralized execution is adopted. The
global critic of each intelligent body consists of two sets of action-
value networks: the global twin soft Q network and the global
target Q network, respectively. During training, MASAC uses the
global critic to collect the observed states and actions of all the
agents to obtain global information for evaluation. Among them,
the Critic network is updated by minimizing the loss function,
which can be expressed as:

L θi( ) � yt − Qπi St, At( )( )2 (22)
yt � rt + γEat+1,i~π′i

Qπ′i

′ St+1, At+1( ) − αi log π′
i at+1,i

∣∣∣∣st+1,i( )( )[ ] (23)

Where π′i andQπ′i
′ are target actor network and target Q network,

respectively. θi is the parameter of Qπi, γ is discount factor.
Each agent has its own actor network and still makes actions

through local observation states during execution without
interacting with other agents. The actor network of each agent is
updated by gradient ascent, and the gradient is calculated by the
formula:

∇J ϕi( ) � Est,i~D,at,i ~πi ∇log πi at,i
∣∣∣∣st,i( )( ) −αi log πi at,i

∣∣∣∣st,i( )( ) + B St, at,\i( )( )[ ]
(24)

B St, at,\i( )) � Qπi St, At( ) − b St, at,\i( ) (25)
b St, at,\i( ) � ∑

at,i ~πi

πi at,i
∣∣∣∣st,i( )Qπi St, at,i, at,\i( )( ) (26)

Where ϕi is the parameter of πi; B (St, at,\i) is a function to
determine whether the increase in reward is attributed to other
agents; b (St, at,\i) is the base line of multi-agent, which represents the
average value of all actions of the agents in the current state. D is
replay buffer, which is used to store experience and make the
training process of neural network more stable.

During each parameter update, the loss of α can be calculated
according to the formula for the automatic entropy tuning
mechanism:

L αi( ) � −Est,i~D,at,i~πi αi log πi at,i | st,i( ) − α log
1
Ai| |[ ] (27)

Where, |Ai| is the dimension of the action space.
The value of αi is updated using the Adam optimizer:

αi ← exp log αi − λ∇αiL αi( )( ) (28)
Where λ is the learning rate.
The algorithm of supposed method is shown in Algorithm 1.

1 Initialize parameters of power-voltage model θs.

Randomly generate power data of VSC based on

historical load data of AC/DC distribution networks

2 Calculate the power flow to obtain voltage data of AC/DC

distribution networks

3 Train the power-voltage model and update the parameters

θs of the agent model

4 Initialize parameters ϕi of Actor of SAC agent i.

Initialize parameters θi,1 and θi,2 of global Critic

network

5 Initialize the replay buffer [Di]ni�1
6 Initialize parameters of target networks: ϕi′ ← ϕi,

θi,1′ ← θi,1, θi,2′ ← θi,2

7 for each epoch do

8 for each time do

9 observe the state [si]ni�1 of environment

10 select action ai ~ ϕi
11 feed action [at,i]ni�1 to environment (power-voltage

model), get reward rt and next state [st+1,i]ni�1
12 Di ~ Di ∪ (st,i ,at,i,rt,st+1,i)
13 end

14 for each update step of agent do

15 Sample a batch (st,i ,at,i ,rt ,st+1,i) from Di

16 update parameters ϕi of Actor. update parameters θi,1

and θi,2 of global Critic network

17 If update then

18 ϕi′ ← ϕi + (1 − τ)ϕi′, θi,1′← θi,1 + (1 − τ)θi,1′,
θi,2′← θi,2 + (1 − τ)θi,2′

19 end

20 end

Algorithm 1. Model-Free MASAC Voltage Control.
First, the parameters θs of the power-voltage model are

randomly initialized. Based on the generated AC/DC distribution
networks operation data, the power-voltage model is trained and the
accuracy of the model is tested, and the trained model is embedded
in a reinforcement learning environment to participate in the
training of the agents.

Then, each agent is trained based on the strategy of centralized
training. The parameters ϕi of actor network, the parameters θi,1 and
θi,2 of critic network are initialized and copied to target actor network
and target critic network. The agents are trained in M rounds, each
round contains T hours, and at moment t, the agent imakes an action
at,i to control the active and reactive power of the VSC according to
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the locally observed state st,i. The actions of all the agents form the
action set At at moment t and acting on the power-voltage model,
which gives the voltage deviation and reward rt. Finally the
environment enters the next state st+1,i, and (st,i,at,i,rt,st+1,i) is
stored in the replay buffer Di for subsequent updates.

At the beginning of training, the actions of each agent are
randomly generated, and when the total number of rounds reaches
the set value Mset, each agent starts to select actions according to the
actor network and the neural network starts to be updated. At each
update, the agent draws a batch of the history from the replay buffer
for network update. In this case, the parameter minimization loss
function of the critic network is updated, which can be expressed as:

L θi,n( ) � 1
Nbatch

∑Nbatch

m�1
ym − Qπi ,n Sm, Am( )( )2 (29)

θi,n ← θi,n + λ∇L θi,n( ) (30)

Where Nbatch is the batch size; λ is the learning rate.
The actor network is updated by maximizing the policy gradient,

which can be expressed as:

∇J ϕi( ) � Est,i~D,at,i ~πi ∇log πi at,i
∣∣∣∣st,i( )( ) −α log πi at,i

∣∣∣∣st,i( )( )([
+ B St, at,\i( ))] (31)

ϕi ← ϕi + λ∇J ϕi( ) (32)
The target actor network and target critic network update

formulas are as follows:

ϕi′ ← ϕi + 1 − τ( )ϕi′ (33)
θi,1
′ ← θi,1 + 1 − τ( )θi,1′ (34)
θi,2
′ ← θi,2 + 1 − τ( )θi,2′ (35)

Where τ is the parameter that controls the update weight.

3.4 Distributed execution of agents

After the training of each agent is completed, the parameters of
the actor network are fixed and put into distributed coordination

control of the VSCs. Each agent can make actions based on the local
observed state only and does not depend on the communication
between VSCs. Since the critic network incorporates the global state
and the actions of all the agents during training, the actions made by
each agent based on local observations are well coordinated during
distributed control, and the global voltage deviation can be
minimized.

4 Example analysis

4.1 Improved IEEE 33-bus AC/DC
distribution network example

To validate the effectiveness of the proposed method, the improved
IEEE 33-node AC/DC hybrid distribution network is selected in this
paper, as shown in Figure 4. The black solid lines represent AC lines, the
red solid lines represent DC lines, and the AC/DC hybrid lines are
connected through VSCs. The rated voltage of the AC distribution
network is 12.66 kV, and the rated voltage of the DC distribution
network is 15 kV. VSC1 and VSC3 use constant voltage and constant
reactive power control on the DC side and AC side, respectively.
VSC2 and VSC4 use constant active power and constant reactive
power control, with an active power capacity of 1.5 MW and a
reactive power capacity of 0.4 Mvar for each VSC. There are a total
of nine PV arrays connected to the system, with three arrays connected
on the AC side with an installed capacity of 0.1 MWeach, and six arrays
connected on the DC side with an installed capacity of 0.2 MW each.

4.2 Performance testing of the model-free
for AC/DC distribution networks

In this paper, 26,200 sets of active and reactive power data for
VSC2 and VSC4 were randomly generated. Combined with historical
load data of each bus, the voltage data for 33 nodes over 26,200 h were
obtained through power flow calculation. The first 25,000 h of data were
used as the training set, and the data from 25,001 to 26,200 h were used
as the test set to test the performance of the model-free AC/DC

FIGURE 4
Improved IEEE 33-bus AC/DC distribution network.
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distribution networks. The number of neurons in each layer was set to
55, 512, 1,024, 2,048, and 33, with a batch size of 128, a learning rate of
1e-5, and the mean squared error (MSE) as the loss function.

The error distribution between the predicted voltage values and the
actual values for each bus is shown in Figure 5. As can be seen from the
figure, 90% of the error data is distributed in the interval [4.06e-05, 1.16e-
3], the maximum error is 3.125e-3 p.u., and the average error is 4.927e-
4 p.u. From the results, it can be concluded that the error between the
predicted voltage amplitude and the actual voltage amplitude is small,
which verifies the effectiveness of the proposed method.

4.3 Convergence and control performance
analysis of the algorithm

To evaluate the effectiveness of the proposed method, this paper
sets up five test cases and compares the control performance of
different methods, as shown in Table 1. Among them, Cases
1–4 use DRL-based methods for control, while Case 5 uses
traditional evolutionary algorithms for control. Cases 1 and 3 use
multi-agent training methods, and each agent makes decisions based
on local observation states in their respective regions. Cases 2 and 4 use
centralized control, with a single agent making decisions based on
global observation states. Cases 1 and 2 use the model-free for AC/DC
distribution networks for training, while Cases 3 and 4 use the accurate
model for training. The discount factor, smoothing factor, learning rate,
and batch size are set to 0.99, 0.005, 0.0003, and 256, respectively. The
simulation platform is configured with an AMD 3970 × 3.7 GHz CPU,
NVIDIA 3090 GPU, and 64 GB memory computer. The algorithm is
implemented using the Python language and PyTorch framework.

Except for the particle swarm optimization algorithm, all other
methods were trained for 2,000 iterations, with each iteration
consisting of a control period of 4,380 h and a time step of 1 h.
The convergence curves of different algorithms are shown in
Figure 6, and their performance metrics are presented in Table 2.

In terms of convergence time, the convergence curves of the four
cases are roughly the same since the environment settings, random
seeds, and agent parameters are the same, all of which reach
convergence at around 1,200 rounds. However, the required time is
different. Cases 3 and 4, which use the accurate model for training, have
the longest convergence time, taking more than a day. In contrast, cases
1 and 2, which use the model-free for AC/DC distribution networks
based on the historical data, can reduce the training time to a few hours.
The convergence time of Cases 1 and 3, which use multi-agent
algorithms, is longer than that of single-agent algorithms because
more neural network parameters are updated each time.

In terms of control performance, examples 2 and 4, which adopt
single-agent centralized control, make decisions based on the global state
when applied online, while in the multi-agent setting, each agent makes
decisions based on the local observation state, resulting in slightly worse
control performance than single-agent centralized control. Examples 3 and
4, which were trained using accurate models, have smaller voltage
deviations and better control performance than examples 1 and 2,
which were trained using the proposed data-driven approach. However,
the difference is small. It can be seen that examples 1–4 outperform the
particle swarm algorithm in control performance, as the particle swarm
algorithm is prone to getting stuck in local optimal solutions,while the SAC
algorithm requires exploration of actionsmore extensively tomaximize the

FIGURE 5
Error distribution of the model-free for AC/DC distribution networks.

TABLE 1 The example settings.

Case The example settings

Case 1 model-free, MASAC

Case 2 model-free, SAC

Case 3 accurate model, MASAC

Case 4 accurate model, SAC

Case 5 accurate model, PSO
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entropy while maximizing cumulative rewards, thus having a stronger
ability to find optimal solutions during training.

In terms of decision-making time, DRL-based algorithms have good
generalization performance and can adapt to the fluctuations of PV and

load. They can also generate decisions within milliseconds when facing
different scenarios, which can meet the real-time voltage control needs.
On the other hand, traditional evolutionary algorithms have weaker
generalization performance. They need to be re-solved when facing
different scenarios and cannot achieve real-time control of voltage.

Overall, the DRL-based methods outperform traditional
evolutionary algorithms in terms of real-time decision-making based
on observed states, without the need to solve optimizationmodels again.
The proposed model-free multi-agent control method can achieve
similar performance as the accurate model-based method, without
requiring accurate physical models of the AC/DC distribution
system, greatly reducing training time, and allowing for distributed
control of the VSCs. The trained agents can make decisions based on
local state observations, achieving good control performance.

4.4 Validation of example results

To further verify the generalization ability and control
effectiveness of the proposed method, the load and PV data of

FIGURE 6
Cumulative reward.

TABLE 2 Comparison results of the case studies.

Case Convergence
time (s)

Online
decision-
making
time (s)

Mean voltage
deviation (%)

Maximum
voltage (p.u.)

Minimum
voltage (p.u.)

Whether it
depends on an
accurate physical
model

Can distributed
control be
achieved?

Case 1 9,526 0.019 0.26 1.0125 0.9774 × √

Case 2 5,908 0.009 0.23 1.0124 0.9783 √ ×

Case 3 95,440 0.026 0.25 1.0156 0.9805 × √

Case 4 90,500 0.019 0.22 1.0156 0.9760 √ ×

Case 5 — 5,760 0.36 1.0156 0.9632 √ ×

FIGURE 7
The overall load and PV variation.
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1 day outside the training period were selected as the test set, and the
trained intelligent agent was tested online. The overall load and PV
variation are shown in Figure 7.

The agent generates actions to control the active and reactive
power of VSC2 and VSC4 based on the real-time observed state
information, as shown in Figure 7. Figure 8 It can be seen that the
trend of the active power of VSC2 is roughly opposite to that of the
net load, with negative power, i.e., in the inverter state. The active
power of VSC4 is roughly the same as the trend of the net load, with
positive power, i.e., in the rectifier state. By controlling the active and
reactive power of VSC, voltage regulation is achieved, and the
voltage distribution of each node in different periods is shown in
Figure 9. The average voltage deviation is 0.316%, the highest voltage
is 1.012 p.u., and the lowest voltage is 0.978 p.u. It can be seen that
the policy generated by the agent has good control effect. At the
same time, generating 24 sets of control actions only takes 0.019 s,
and the average time consumed for generating one set of actions is

7.916e-04 s, indicating a fast speed. Through online testing of the
agent, the fast decision-making and good generalization ability of
the proposed method are verified.

5 Conclusion

To achieve real-time voltage control in AC/DC distribution
systems, this paper proposes a model-free voltage control method
based on multi-agent reinforcement learning, which has the
following advantages.

(1) The proposed method uses a agent model to reflect the
nonlinear mapping relationship between node power and
voltage in distribution systems, without requiring accurate
physical models of the system, thus solving the problem of
difficult parameter acquisition.

FIGURE 8
The active power and reactive power of the VSC.

FIGURE 9
Voltage distribution.
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(2) The proposedmethod trains agents using theMASAC algorithm to
solve the model-free voltage control problem, which has strong
generalization ability. When applied online, the agents can adapt to
the fluctuation of photovoltaic and load in milliseconds and make
decisions in real-time, achieving real-time control.

(3) The proposedmethod uses a “centralized training, decentralized
execution” strategy, which can achieve distributed cooperative
control of the converters. Each converter only needs to make the
optimal decision based on local observation, minimizing the
global voltage deviation.

Through simulation experiments, the proposed method has
advantages over traditional evolutionary algorithms and particle
swarm optimization algorithms in terms of control performance,
decision time, and generalization ability. The online testing results
on the test set further validate the generalization ability and real-
time performance of the proposed method, indicating that it can
achieve effective voltage control. Future research can further apply
the proposed method to actual AC/DC distribution systems and
combine it with actual data to verify and improve the algorithm.
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