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This paper presents a novel visual-admittance-based model predictive control
scheme to cope with the problem of vision/force control and several constraints
of a nuclear collaborative robotic visual servoing system. A visual-admittance
model considering the desired image feature and force command in the image
feature space is proposed. Moreover, a novel constraint scheme of the model
predictive control (MPC) is proposed to cancel the overshoot in the interaction
force control for most cases by taking the desired force command as the
constraint of the proposed MPC. Via applying the robotic dynamic image-
based visual servoing (IBVS) model, some other constraints, such as the actuator
saturation, joint angle, and visual limits, can be satisfied simultaneously. The
simulation results for the two-degrees-of-freedom (DOF) robot manipulator
with an eye-to-hand camera are present to demonstrate the effectiveness of
the proposed controller.

KEYWORDS

visual-admittance model, visual/force control, model predictive control, collaborative
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1 Introduction

In recent years, collaborative robots have become more and more popular in the
nuclear industry since the increasing need for safe and secure nuclear power plants (NPPs).
Interaction between the robot and the environment or human is a fundamental requirement
for the construction of NPPs 1, such as moving objects, deburring, grinding, polishing,
and high-precision assembling (Nabat et al., 2005; Yang et al., 2008; Xu et al., 2017;Wu et al.,
2017; Song et al., 2022, Figure 1).How to realize the precision position control and compliant
interaction force control simultaneously in the nuclear environment is crucial for the
execution of an interaction task.

To cope with this problem, numerous force control schemes have been proposed. Two
main categories of those control schemes are direct and indirect force control. Direct force
control adds the feedback of the force sensor directly into the closed motion control loop.
For example, in the hybrid position/force control approach, the force and position controllers
work separately and are connected with a diagonal section matrix (Raibert and Craig, 1981).
However, these kinds of schemes lead to a trade-off between the force controller and the
position controller, which implies that neither force nor position can precisely converge to
their desired target. The indirect force control includes impedance control and admittance
control. They all create a mass–spring–damper (MSD) model to describe the interaction
force between the robot and the environment (Mason, 1981; Hogan, 1985) and are inverse
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FIGURE 1
Application of collaborative robots in nuclear power plants (NPPs).

to each other. When the robot is controlled with the conventional
model-based controller, precise interaction environment
information and an accurate dynamic model of the robot are
essential in compliant force control.

In the nuclear environment, where nuclear radiation can
affect sensors and electronics, measuring accurate knowledge of
the interaction environment and robot feedback is quite hard.
Motivated by reducing or avoiding the need for precise preliminary
knowledge of the environment, numerous researchers are trying
to equip robot systems with vision and force sensors together.
This method allows the robot system to get the environmental
information and modify the vision/force controller online. In order
to combine the visual and force information, several vision/force
control schemes have been proposed to replace the motion
control of the aforementioned force control with visual servoing
(Bellakehal et al., 2011; Zhu et al., 2022b). For instance, in the
hybrid vision/force control scheme (Zhu et al., 2022b), the force
and vision are controlled separately, and a trade-off matrix is
used to combine the output of two sensor controllers. Thus, these
kinds of methods may result in local minima and reduce the
robot control precision. In Lippiello et al. (2018), three vision-
impedance controllers with the feedback of the camera and force
sensor have been proposed to realize the physical interaction of a
dual-arm unmanned aerial manipulator. However, the impedance
control schemes can neither combine the vision and force sensing
simultaneously nor avoid the trade-off between the two control
loops.

To handle this problem, we propose a novel visual-admittance-
based model to drive the robot with the trajectory of vision and the
command of contact force. In this approach, the vision and force
can be coupled in the image feature space successfully. Therefore,
the convergence to a local minimum can be avoided, and the
discrepancy between the modalities of vision and force sensors can
be overcome.

However, due to the combination of force and vision in the image
feature space, the controller is only employed to track the image
feature commands generated from the aforementioned vision-
admittance model without real-time perception of the contact force,
which may lead to the unacceptable overshoot phenomenon and
thus break the interaction environment or robot body.Therefore, we
propose to consider the force command as a contact force constraint
of the vision tracking controller. In practical applications, there are
some other constraints on robot control systems, such as actuator
saturation and visual limitation, that prevent the visual features from
leaving the camera view.

Model predictive control (MPC) has been proven to be
an efficient optimal control scheme aimed at addressing the
disturbances and constraints of the system (Allibert et al., 2010;
Deng et al., 2022). Recently, more and more researchers have
concentrated on the advantages of MPC and applied this
control scheme to the visual control of robots. In contrast
to the aforementioned vision/force control scheme, MPC can
explicitly handle the system constraints and resist disturbances. In
Allibert et al. (2010), an MPC-based image-based visual servoing
(IBVS) method is designed based on the conventional image
Jacobian matrix and considers the constraints of image features.
According to Hajiloo et al. (2016), a robust online MPC scheme
based on the tensor product (TP) model of IBVS is proposed
to realize the online control of MPC. By simplifying the image
Jacobian matrix as a TP model, the computational speed of MPC
is considerably increased. In Fusco et al. (2020b), the image feature
acceleration is used to construct the model of MPC in order to get
a shorter sensor trajectory and better motion in the feature space
in Cartesian space. However, the aforementioned methods only
consider the image feature constraints and kinematics constraints,
such as the joint velocity or acceleration of the robot system,
without taking into account the dynamic constraints of the robot
system.

In general, in this paper, a novel visual-admittance-based
MPC scheme with non-linear constraints based on the dynamic
IBVS of the collaborative robot and desired force constraint is
proposed to address the problem of the vision/force control with
constraints. The visual-admittance model is formulated to converge
the force and vision commands into image features to avoid
the trade-off between two targets’ (vision and force) tracking
control. Considering the overshoot of the visual-admittance
model, force constraints are added to the predictive model of
the MPC. Moreover, the non-linear input bounds are added
to the proposed MPC based on the dynamic model of the
robot.

This paper is organized as follows: in Section 2, some
preliminaries of the robot dynamic model and IBVS are presented.
The vision-admittance-based trajectory generator is introduced to
combine the force and visual information in Section 3. Section 4
presents the MPC controller with the non-linear constraints based
on the dynamic model of the robot and force constraints. In
Section 5, simulations based on a robot manipulator model with
an eye-to-hand camera are performed to verify the effects of the
proposed control scheme. Finally, the conclusions are given in
Section 6.
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2 Preliminaries

2.1 Dynamic model of the robot
manipulator

The dynamic model of the manipulator robot with n actuators
in the task space is often described as an Euler–Lagrange second-
order equation (Roy et al., 2018).When the end effector of the robot
comes into contact with the environment, the environment exerts an
interactive force on the robot system. Considering the external force
developing from the contact between the end-effector of the robot
and the environment, the dynamic model of a robot can be written
as

M (q) q̈+C (q, q̇) q̇+G+ JTFe = T+Td, (1)

where q, q̇, q̈ ∈Rn represent the position, velocity, and acceleration
of the actuate joint angle, respectively.M(q(t)) ∈Rn×n is the inertia
matrix of the robot. C(q, q̇) denotes the Coriolis–centripetal matrix
of the robot torques. G ∈R6×1 is the gravitational vector. J is
the Jacobian matrix of the robot system. Fe ∈R6×1 represents the
interactive force vector between the robot and environment. T,Td ∈
Rn represent the input vector of the proposed controller and
disturbance of the robotic system, respectively.

2.2 Dynamic model of image-based visual
servoing

Image-based visual servoing (IBVS) is a sensor-based control
scheme. It uses cameras as the main sensor to estimate the pose of
the robot directly.

In this work, an eye-to-hand IBVS system is established to get
the visual information, and we denote the visual feature estimated
by the single fixed camera as s ∈Rm. For a point p = (X,Y,Z)T in the
Cartesian space, the projection in the 2D image space is given as

{
x =X/Z = (xs − cx)/Px,

y =Y/Z = (ys − cy)/Py
(2)

where s = (x,y)T is the projection of p in the image space and
si = (xi,yi)

T represents the coordinates of the image point expressed
in pixel units. cx,cy,px, and py are the intrinsic parameters of the
camera. cx and cy denote the coordinates of the principal point. px
and py are the ratios between the focal length and pixel size.

Differentiating Eq. 2, the relationship between the time variation
of the visual feature vector ̇s and the spatial relative camera–object
velocity of the robot ṗ can be written as described inMariottini et al.
(2007)as follows:

̇s = Lsṗ, (3)

where Ls is the interaction matrix related to s (Chaumette and
Hutchinson, 2006; Zhu et al., 2022a) given as

[

[

−1/Z 0 x/Z xy −(1+ x2) y

0 −1/Z y/Z 1+ y2 −xy −x
]

]
. (4)

The robot spatial velocity ṗ can be transformed to the actuator
velocity q̇ with the Jacobian matrix J. Then, Eq. 3 can be written as

̇s = LcsTeJq̇, (5)

where cTe denotes the transform matrix from the kinematic screw
to the camera frame. We define Js = LcsTeJ. Equation 5 can be
rearranged as follows:

̇s = Jsq̇. (6)

In order to generate the actuator torque, the relationship
between the image feature and acceleration of the actuator joint has
been formulated in the IBVS dynamic model (Fusco et al., 2020a;
Liang et al., 2022).

By differentiating Eq. 3, the second-order interaction model can
be demonstrated as

̈s = Lsp̈+ L̇sṗ. (7)

When differentiating Eq. 5, we derive

̈s = L̇csTeJq̇+ L
c
sṪeJq̇+ L

c
sTe ̇Jq̇+ L

c
sTeJq̈

= Jsq̈+Pq̇, (8)

where P = L̇csTeJ+ LcsṪeJ+ LcsTe ̇J.
Substituting Eqs 5, 8 into Eq. 1, the dynamic model of IBVS can

be written in the following form:

T =MJ+s ̈s+ Ĉ ̇s+G+ J
TFe −Td, (9)

where Ĉ = CJ+s −MJ+s PJ+s and + represents the pseudo-inverse.
Assumption 1: During the control process, the robot and

the IBVS controller do not encounter the controller singularity
(Zhu et al., 2020). J and Ls are full-rank matrices.

3 Visual-admittance-based trajectory
generator

In this section, a novel visual-admittance-based (VAB)
trajectory generation is proposed and used to generate a reference
trajectory for the robot end-effector online with feedback from the
force sensor and camera in the image feature space.The structure of
the robot manipulator system with an eye-to-hand visual servoing
system is given in Figure 2.

The contact dynamic model between the robot end-effector and
environment is often considered a second-order MSD model in the
Cartesian space (Wu et al., 2022). We assume the contact model as
follows:

KM ̈ep +KD ̇ep +KSep = Fe, (10)

where ep = pr − pd represents the error between the reference
trajectory and the desired trajectory of the robot end-effector in the
Cartesian space. KM ,KD,KS denote the positive definite impedance
parameters.

Due to the intrinsic technological constraints (such as the need
for certain robot intrinsic parameters), the visual/force control
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FIGURE 2
Structure of the visual-admittance-based model predictive control.

cannot be realized directly (Oliva et al., 2021).Therefore, the vision-
admittance-based trajectory generator is designed to avoid those
limits.

First, after some simple manipulations with Eq. 9, the
relationship between image features and external force can be
rewritten as follows:

̈s+C ̇s+ ds + fpumi = fu, (11)

where

C = JsM
−1Ĉ,

ds = JsM−1 (G−Td,)

fpumi = JsM
−1JFe = JTsfFe,

fu = JsM
−1T,

(12)

where fpumi represents the vector of per unit mass/inertia
(p.u.m.i) virtual forces applied on the image feature space
corresponding to the robot in the Cartesian space. fu denotes the
actuator torque projection in the image feature space.

Multiplying both sides of Eq. 10 by Js, the relationship between
fpumi and the position error ep can be rearranged as follows:

fpumi = JsKM ̈ep + JsKD ̇ep + JsKSep. (13)

Substituting Eqs 2, 3, 7 into Eq. 13 and denoting p = Pzs, the
impedance model corresponding to the image feature can be
rearranged as

fpumi = K̂M ̈es + K̂D ̇es + K̂Ses, (14)

where

K̂M = JsKMLs,

K̂D = Js (KD −KML+s L̇s)L+,

K̂S = JsKSPz,

(15)

where es = sr − sd represents the error between the reference
trajectory generated from the interaction force and the desired
trajectory. When the contact force of the robot is zero, sr = sd.
Otherwise, the vision-based admittance model can generate the
reference trajectory to perform the force control of the system.

When the system is at equilibrium, the error of the image
feature accelerationwill converge to zero. To simplify the admittance
model and reduce the calculation complexity, we set ̈es = 0 and the
simplified model can be described as

̇es = −
K̂S

K̂D
es +

fpumi

K̂D
. (16)

By solving Eq. 16, we obtain

es (t) = s0eA(t) + eA(t)∫
t

0

fpumi

K̂D
e−A(τ)dτ, (17)

where A(t) = −∫t0
K̂S(τ)
K̂D(τ)

dτ and s0 is the initial state of the image
feature. Then, the reference trajectory can be described as

sr = es (t) + sd

= s0eA(t) + eA(t)∫
t

0

fpumi

K̂D
e−A(τ)dτ+ sd. (18)

Considering the desired force command Fd ∈R6, we propose a
novel integral force control law (IFCL) to obtain the p.u.m.i virtual
force fpumi as follows:

fpumi (t) = Js f (Kd ̇e f +Kpe f +Ki∫
t

0
e f (τ)dτ), (19)

where ef = Fd − Fe, Fd is the predefined desired contact
force, and Kd = diag(kd1,⋯kdn),Kp = diag(kp1,⋯kpn), and
Ki = diag(Ki1,⋯kin) are positive defined diagonal matrices.

4 Visual/force predictive controller

4.1 Model predictive control

MPC is an optimal control scheme proposed to solve the multi-
variable constraint control problem. It determines the best input
signal for a system by considering the finite future evolution of the
system state. More precisely, it finds an optimal control sequenceU*
thatminimizes a cost function Jm with a set of predefined constraints
over a finite predictive horizon Np. The obtained control sequence
is described as U*

t = {u
*
t ,…,u

*
t+Nc−1
}, where u*i−1 is the optimal input

signal in step i and Nc ≤ Np is called control horizon. The state
predictions during the control horizon are calculated using the
independent control inputs, while the remaining inputs are equal to
the last elements of the control sequence.The cost function Jm is the
sum of the quadratic error between the predictive state xt+i and the
desired state x*t+i. The optimal problem is shown as follows:

U*
t =min

Ut
Jm (t) , (20)

with

Jm (t) =
Np−1

∑
i=1

eTt+iQset+i +
Nc−1

∑
i=0

uTt+iQuut+i + eTNp
QpeNp
, (21)

which is subjected to the constraints

xt+i+1 = f (xt+i,ui) , (22a)
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ut+i ∈ U ⊆ Rnu , i = 0,…,Nc − 1, (22b)

xt+i ∈ X ⊆ Rnx , i = 1,…,Np, (22c)

where et+i = xt+i − x*t+i and i represents time i = iTs, where Ts is
the control sample.Qs,Qu, andQp are the positive definite matrices
that denote the relative importance of different components in cost
function (Eq. 21). The constraint in Eq. 22a is the predictive model
ofMPC and is often chosen as the discrete-timemodel of a system.U
and X are, respectively, the user-defined bounds of the input signal
and system state. Once the optimal problem is solved, only u*t is fed
to the system, and the obtained control sequence is used to generate
the next initial control sequence of the optimal problem. Then, the
optimal process is repeated.

4.2 The predictive model

In thiswork, we choose the joint configuration, interaction force,
and image features as the state vectors of MPC. This allows the
controller to explicitly take the image feature and force constraints
into account and handle the redundancy during the optimization
process. Then, the discrete predictive model of the IBVS robot
system can be described as

[[[[[[[

[

qt+i+1
q̇t+i+1
st+i+1
Ft+i+1

]]]]]]]

]

=

[[[[[[[

[

qt+i + q̇t+Δt

q̇t+i
st+i + Jsq̇t+iΔt

Ft+i +K fmJq̇t+iΔt

]]]]]]]

]

+

[[[[[[[

[

1
2Δt

2

Δt

JsΔt

K fmJΔt

]]]]]]]

]

ui, (23)

where Δt is the sample time of MPC and ui is the actuator
acceleration at the step i. Js and J are evaluated with the change in
the state vector (Allibert et al., 2010). qt, q̇t, st,Ft are the initial states
of the predictivemodel and can be obtained directly from the sensors
of the robot system.

4.3 The joint acceleration constraints

The joint acceleration constraints aim at taking into account
the physical boundaries of the actuators. Due to the interaction
with the environment, it is possible that the input torque of the
system exceeds the physical limit of the actuator torque, while the
joint acceleration satisfies the rated acceleration constraints of the
actuator. Thus, substituting the predictive state xt+i into Eq. 1, the
relationship between the joint acceleration and actuator torque can
be rewritten as

ut+i =M−1 (Tt+i −Cq̇t+i −G− J
TFt+i)

=M−1Tt+i −Πt+i. (24)

Then, the joint acceleration constraints of theMPC can be proposed
as follows:

ûmin
t+i ≤ u ≤ û

max
t+i , (25a)

ûmin
t+i =M

−1Tmin
t+i −Πt+i, (25b)

ûmin
t+i =M

−1Tmax
t+i −Πt+i, (25c)

where i = 1,…,Np andΠt+i can be generated from the predictive
state xt+i.T

max
t+i andTmin

t+i represent the upper and lower bounds of the
permissible actuator torque, respectively.

4.4 The terminal constraint (TC)

In this case, the stability of the proposed controller is ensured by
a terminal constraint. TC imposes the last predicted visual features
equal to the desired feature. However, it is difficult to satisfy a strict
equality constraint when solving the optimizing problem. Thus,
the constraints are converted into inequalities by defining a small
enough threshold δtc.

‖st+Np
− sd‖− δtc ≤ 0. (26)

4.5 The image feature constraints

In the context of visual serving, the image feature must remain
visible. The following constraint prevents the image feature from
escaping the field of the camera pixel view:

smin
t+i ≤ st+i ≤ s

max
t+i , (27)

where i = 0,…,Nc − 1. s
min
t+i and smax

t+i , respectively, represent the
maximum andminimum bounds of the image feature in the camera
pixel in sample step i.

4.6 The force constraints

Considering that the possible overshoot of force control can
break the interactive environment, we set the desired force as a state
constraint given as

Ft+i ≤ F*t+i + δ f , i = 1,…,Np, (28)

where F*t+i is the desired force in step i, and δf is the permissible error
of the interaction force control.

5 Simulation

In this section, to demonstrate the control effects of the
proposed visual-admittance-based model predictive controller,
several simulations are illustrated in the two-link manipulator with
an eye-to-hand camera. The force sensor is inserted in the end-
effector of the robot, and the robot is controlled to track the
predefined force and image feature trajectory.

5.1 Simulation design

In this simulation, we choose a two-link robot manipulator as
the control object of the proposed controller. The structure of the
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FIGURE 3
Structure of the two-link robot manipulator with eye-to-hand camera
configuration.

two-link robot manipulator with eye-to-hand camera configuration
is given in Figure 3.The coordinate of the origin of the robot system
is Pb = (0,0,0)m, and the dynamic model of this robot is given as

Mq̈ (t) +Cq̇+G+ JTFe = T, (29)

with

M (q) = [

[

M11 M12

M21 M22,
]

]

C (q, q̇) = [

[

−p1 ̇q2 −p1 (q̇1 + q̇2)

−p1q̇1 0,
]

]

G (q) = [

[

p2gcos(q1) + p3gcos(q1 + q2)

p3gcos(q1 + q2) ,
]

]

J (q) = [

[

−l1sin(q1) − l2sin(qs) −l2sin(qs)

l1cos(q1) + l2cos(qs) l2cos(qs) ,
]

]

where,

M11 =m1l
2
1c +m2 (l21 + l

2
2c + 2l1l2c cos(q2)) ,

M12 =m2 (l22c + l1l2c cos(q2))

M21 =M12, M22 =m2l
2
2c,

p1 =m2l1l2c sin(q2) , p2 =m1l1c +m2l1,

p3 =m2l2c, qs = q1 + q2,

where q1 and q2 are the joint angles of two actuators.m1 andm2
are the masses of links 1 and 2, respectively. l1 and l2 are the lengths
of two links, respectively. l1c and l2c are the distances between the
mass center of two links and the actuator joints, respectively. p1(0)
and p2(0) are the initial joint angles. The aforementioned elements
are listed in Table 1.

The camera set is fixed at Pc(0,0,−2)m, and the image plane of
the camera (X’OZ’) is set to be parallel to the Cartesian plane (XOZ).
The camera resolution is 1280× 720 pixels, and the focal length of
the camera is 10 mm. The ratio of a pixel and unit length is 100
pixels/mm along the two axes of the pixel plane. The frequency of
the camera observation is set at 50 Hz.

TABLE 1 Parameters and initial joint angle of the robot.

Parameter Value Unit Parameter Value Unit

m1 1.5 kg m2 1 kg

l1 1.0 m l2 0.8 m

lc1 0.5 m lc2 0.4 m

g 9.81 m/s2

q1(0) π/3 rad q2(0) −π/3 rad

q̇1(0) 0 rad ̇q2(0) 0 rad

Theconstraints of actuator torque, actuator acceleration, and the
image feature are, respectively, given as

−20 Nm ≤ T ≤ 20 Nm,

−5 rad/s2 ≤ q̈ ≤ 5 rad/s2,

[

[

0 px

0 px
]

]
≤ s ≤ [

[

1280 px

720 px
]

]
.

(30)

In this simulation, we use Eq. 10 as the dynamic model of the
force sensor. In the real interactive environment, compared with kS
and KD, the value of KM is small enough to be ignored. Then, the
parameters of this equation are given as KS = 10000 and KD = 0.57.
The threshold of the TC is given as δtc = 100.

In the visual-admittance model, the parameters of Eq. 19 are
given as Kp = 5× 10−4, Ki = 6× 10−4, and Kd = 2× 10−5.

In order to validate the convergence capability and the control
performance of the proposed controller, the position trajectory is
predefined and consists of two phases: the approach phase and the
interaction phase. The image feature trajectory we used in the MPC
is generated by a virtual camera model from the position trajectory.
During the approach phase, the robot needs to converge to P1, (1.5,
0.4, 0) m in 1.5 s, and in the interaction phase, the robot moves from
P1 to P2, (1.5,0.365,0)m in 3.5 s, and the position trajectory is given
as follows:

pd =
[[[[

[

1.5

0.4+ 0.01* (t− 1.5)

0

]]]]

]

. (31)

During the interaction phase, a 10 N force command is applied
along the x-axis from 2 to 4 s.

In order to verify the effects of the proposed controller, three sets
of controllers are introduced in this simulation to drive the robot to
track the desired trajectory:

• Controller 1: The MPC we proposed in this paper. The control
and prediction horizon are set at nc = 5 and np = 6, respectively,
and the discretization time used in the controller is given
as △t = 0.1 s. The parameters of the predictive model cost
function are chosen as Kmf =, 10000,Qx = diag{1000}, and
Qu = diag{0.001}.
• Controller 2: The classical MPC without the torque or
interaction force constraints. The parameters of this controller
are similar to Controller 1.
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FIGURE 4
Image trajectories and errors of three controllers. (A) Image trajectory of the proposed MPC. (B) Image trajectory of the classical MPC. (C) Image
trajectory of the PVFC. (D) Image errors of the proposed MPC. (E) Image errors of the classical MPC. (F) Image errors of the PVFC.

FIGURE 5
Position trajectories and input torques of three controllers. (A) Proposed and classical MPC. (B) PVFC.

• Controller 3: The parallel visual and force control (PVFC)
scheme proposed in Zhu et al. (2022b) with input constraints.
The parameters of this controller are given asKv = 7.5,Kp = 20,
Ki = 0.01, and Kf = 0.01.

5.2 Results and analysis

In this section, to illustrate the performance of the proposed
controller with the torque constraints, three controllers are
investigated through the simulation on a two-DOF robot
manipulator with an eye-to-hand camera. We use MATLAB to

conduct the simulation and sequential quadratic programming
algorithm ( fmincon function in theMATLABoptimization toolbox)
to solve the optimization problem of MPC. The frequency of the
MPC is equal to that of the camerawhich is given as 50 Hz. Similarly,
the frequency of the torque generator is equal to that of the joint and
force sensor given as 1,000 Hz.

The image trajectories and the image errors of the
three aforementioned controllers are given in Figure 4. From
Figures 4A–C, we can find that the image trajectory of the IBVS
system under the proposed MPC is smoother than that under the
PVFC and is similar to that under the classical MPC. When the
force command is applied, the overshoot of the IBVS system under
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FIGURE 6
Force trajectories of the three controllers. (A) Proposed and classical MPC. (B) PVFC.

the PVFC is much more serious than that of the classical MPC and
proposed MPC. As is shown in Figures 4D–F, during the approach
phase, the converge time of the proposedMPC (approximately 0.8 s)
is shorter than that of the PVFC (approximately 1.25 s) and is very
close to the classical MPC (approximately 0.75 s).

The position and force trajectories of the three aforementioned
controllers are shown in Figure 5A and Figure 6, respectively. As
is shown in Figure 5A, during the approach process, the length of
the position trajectory in the Cartesian space under the proposed
controller is shorter than that under the PVFCand, in the interaction
phase, the positioning accuracy of the IBVS robot system under
the proposed MPC is better than that under the PVFC. From
Figures 6A, B, we can find that the overshoot and chatters of the
force control in the IBVS robot system under the PVFC are the
most serious within the three aforementioned controllers, and the
overshoot of the force control in the IBVS system under the classical
MPC still exists. Nevertheless, due to the effectiveness of the virtual
interaction model and the force constraints, the overshoot and
chatters of the force control in the IBVS robot system under the
proposed controller are eliminated.

The input torques of three controllers are given in Figure 5B.
The red zone in Figure 5B is the predefined torque constraint. As
is shown in Figure 5B, the classical MPC without the non-linear
torque constraints cannot make the IBVS system obey the torque
constraints strictly, and the proposed MPC can satisfy the torque
constraints. Compared with the PVFC, in the interaction phase,
the input torque of the IBVS system under the proposed MPC is
smoother than that under the PVFC.

6 Conclusion

In this paper, a visual-admittance-based model predictive
controller is developed to cope with the overshoot and

trade-off of the classical position/force control scheme in the nuclear
environment. A visual-admittance-based trajectory generator is
presented to combine the desired image features and the force
feedback into the reference image trajectory. Considering the
integration element of the visual-admittance-based trajectory
generator, we propose a novel predictive model constraints scheme.
In this scheme, the desired force command is considered a constraint
to avoid the overshoot of the force control, and the non-linear
constraints based on the dynamic model of the robot are proposed
to satisfy the actuator torque limits. A torque generator is used to
generate the input signal of the robot system with the proposed
MPC output and the real-time feedback of the robot joint sensors.
An illustrative example of a two-DOF robot manipulator with an
eye-to-hand camera is given to validate the effect of the proposed
control scheme. Moreover, compared with the PVFC, the proposed
MPC controller has better precision in force and position tracking.
Compared with the classical MPC, the proposed controller can
satisfy the image feature, torque, and force constraints and eliminate
the overshoot of force control.

The proposed controller still needs information about the
interaction environment, such as the elements of the virtual force
model in the predictive model. Our ongoing research is finding a
newobserver to identify the elements of the interaction environment
online. In addition, simplification of the optimization process in the
MPC is in progress to construct a real-timeMPC scheme of the IBVS
robot systemwith non-linear constraints. In the future, experiments
will be conducted to validate the proposed method.
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