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Spatio-temporal prediction for
distributed PV generation system
based on deep learning neural
network model

Qiangsheng Dai1*, Xuesong Huo1, Yuchen Hao1 and Ruiji Yu2

1State Grid Jiangsu Electric Power Co., Ltd., Nanjing, China, 2State Grid Xuzhou Power Supply
Company of Jiangsu Electric Power Co., Nanjing, China

To obtain higher accuracy of PV prediction to enhance PV power generation
technology. This paper proposes a spatio-temporal prediction method based
on a deep learning neural network model. Firstly, spatio-temporal correlation
analysis is performed for 17 PV sites. Secondly, we compare CNN-LSTM with
a single CNN or LSTM model trained on the same dataset. From the evaluation
indexes such as lossmap, regressionmap, RMSE, andMAE, theCNN-LSTMmodel
that considers the strong correlation of spatio-temporal correlation among the
17 sites has better performance. The results show that our method has higher
prediction accuracy.
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1 Introduction

Traditional energy sources like coal and oil have proven insufficient to meet the needs
of modern society, leading to an increase in global environmental pollution. Consequently,
there is a pressing need to develop renewable energy generation techniques. Solar energy is
particularly promising due to its green, safe, and abundant nature, and it is expected to play
a crucial role in addressing the energy crisis and optimizing our energy structure.

Currently, PV power generation systems can be divided into distributed PV power
generation systems and centralized PV power generation systems based on their installation
form. Centralized photovoltaic power generation systems are primarily located in the
remote region, where solar radiation conditions are optimal, and construction costs are
low. However, the remote region has poor load-consumption capacity, resulting in high
construction costs and line losses when transmitting excess power over long distances. In
contrast, the application prospects for distributed power generation systems are broader,
making them the primary form of photovoltaic power generation system Karalus et al.
(2023).

The uncertain nature of photovoltaic power generation systems, coupled with
their sensitivity to environmental factors such as solar irradiance and temperature,
makes output power prediction crucial. Prediction methods generally fall into three
categories: physical methods, statistical methods, and machine learning methods. Physical
methods model the relationship between irradiance and PV output power based
on geographic and meteorological data. However, physical methods have limitations
in terms of accuracy, anti-interference ability, and robustness Stüber et al. (2021).
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Statistical prediction methods, such as time-series analysis,
regression analysis, grey theory, fuzzy theory, and spatio-temporal
correlation analysis, explore historical data to establish data
models for photovoltaic power generation prediction. While
statistical methods have the advantage of being simple to
model and generalizable across different regions, they also
require large amounts of data and complex computational
processing, leading to difficulties in achieving ultra-short-term
forecasting.

Machine learning methods, such as deep neural networks, can
effectively extract high-dimensional complex nonlinear features
and directly map them to the output, making them a commonly
used method for PV power prediction Kollipara et al. (2022);
Voyant et al. (2017). Deep neural networks include models such
as convolutional neural networks (CNN), deep belief networks
(DBN), superposition denoising autoencoders (SDAE), and long-
term memory (LSTM). Machine learning-based prediction models
can integrate temporal and nonlinear features of time-series data
to discover complex data associations from large amounts of data
with better performance and robustness. Hybrid models, which
combine the strengths of different models, often show superior
performance. A multitasking RNN(MT-RNN) hybrid model that
performs knowledge transfer among different tasks to improve
the prediction accuracy of each task has been demonstrated to
be sufficiently superior in terms of prediction accuracy, compared
to a single LSTM and GRU Li et al. (2022). The hybrid model
combines Pearson correlation coefficient (PCC), ensemble empirical
modal decomposition (EEMD), sample entropy (SE), sparrow
search algorithm (SSA), and long short-term memory (LSTM)
has been verified to have the smallest prediction error compared
to PCC-EEMD-LSTM, SSA-LSTM and other models Song et al.
(2023).

The combined deep learning model is an effective hybrid
model that can extract complex features using CNN and learn
temporal information using LSTM, resulting in higher prediction
accuracy Khan et al. (2022). Previous studies have demonstrated
the effectiveness of this model in predicting the power production
of self-consumption PV plants Gupta and Singh (2022) and daily-
ahead PV power forecasting Agga et al. (2022). A combined CNN-
LSTM model that combines the ability of CNN to extract complex
features with LSTM to extract temporal features has been shown
to yield very good prediction results Kim and Cho (2019). One
hybrid CNN-LSTM model were proposed to effectively predict the
power production of a self-consumption PVplant Agga et al. (2021).
Based on the advantages of the combinedmodel, this paper proposes
a deep learning model-based spatio-temporal prediction method
for distributed PV systems. This method can effectively utilize the
strongly correlated multi-machine spatial correlation and is suitable
for predicting Distributed PV generation systems. The training
data used in this study is from the Oahu Island PV generation
system provided by the National Renewable Energy Laboratory
(NREL). Experimental results are compared with a single CNN
and LSTM model to demonstrate the effectiveness of the proposed
model.

2 Materials and methods

2.1 Spatio-temporal correlation analysis of
distributed PV systems

Time series predictive analysis involves using past event
characteristics to predict future event characteristics, but it is a
complex problem that is different from regression analysis models.
Time series models are dependent on the sequence of events, and
before using a time series forecastingmodel, the time series needs to
be made smooth. A time series is smooth if it has a constant mean,
constant variance, and constant autocorrelation. Time series can be
classified as smooth series, those with periodicity, seasonality, and
trend in the variance and mean that do not change over time, and
non-smooth series.

Analyzing the relevant characteristics of PV power, it can be
found that the data of the PV power varies with time and shows
typical time series characteristics. The aim of PV power prediction
is to find the nonlinear relationship between input variables and
PV power generated by a single sample. With the continuous
advancement of machine learning algorithms, machine learning
methods have achieved remarkable results in the fields of image
power output and data analysis, which are beneficial for predicting
PV power. The traditional methods of building time series models
include moving average method and exponential average method,
and the more commonly used ones are Auto Regressive and Moving
Average. Modern forecasting methods mainly use machine learning
methods and deep learning methods. For deep learning methods,
recurrent neural network (RNN) is the most commonly used and
suitable for solving this type of problem, but convolutional neural
network (CNN) and the new spatial convolutional network (TCN)
can also be tried. Ortiz et al. (2021).

The temporal correlation refers to the degree of correlation
between values taken before and after the same time series, while
spatial correlation refers to the degree of correlation between
values taken from different time series obtained from multiple
locations Liao et al. (2022). Strong correlation can lead to significant
synchronization of trends between moments before and after the
sequence itself or between multiple sequences. In this paper,
the auto-correlation function (ACF) and partial auto-correlation
function (PACF) are used to describe the temporal correlation
of the amplitude parameters, which is used to characterize the
correlation of the peak solar radiation/output available at the same
PV plant location during different days. The spatial correlation
of the amplitude parameters is also described by the correlation
function, which is used to characterize the correlation of the
available solar radiation/peak output at different sites on the same
date.

The autocorrelation function and the partial autocorrelation
function are commonly used to characterize the correlation between
the moments before and after a single time series, and they are
defined as shown in (1) and (2), respectively:

ρk = {E[(Zi − μi)(Zi+k − μi+k)]}/σ
2 (1)
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FIGURE 1
The classical LSTM module.

FIGURE 2
Connection of two different LSTM modules.
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(2)

where, Zi is the amplitude parameter series, μi and σ are the mean
and variance of the series, ρk is the autocorrelation coefficient of k-
order time delay, and Pk is the partial autocorrelation coefficient of
k-order time delay.

The correlation number is used to characterize the correlation
between multiple time series, and is expressed as follows:

ρ12 =
E[(Z1,i − μ1,i)(Z2,i − μ2,i)]

√D (Z1) ⋅D (Z2)
(3)

where, D (Z1) and D (Z2) are the variances of the sequences Z1 and
Z2.

It is generally accepted that two sequences with an
interrelationship number greater than 0.7 have strong
interrelationships and very synchronized changes. Solar irradiation
conditions of PV plants in the same area or in close proximity are
expected to be similar, while the solar irradiation correlation is
weaker between PV plants farther apart. Therefore, the close spatial
locations of PV plants lead to a strong mutual correlation of the
amplitude parameter series, and vice versa.
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FIGURE 3
The proposed deep learning network structure.

Solar irradiance has a strong diurnal periodicity, and the
irradiance curves in different regions have similar shapes on clear
sky days. When the spatial distance between different points is
small, the amplitude and phase of solar irradiance curves outside the
atmosphere are closer and have stronger similarity Liu et al. (2022b).
Meteorological factors such as temperature and humidity are also
closer, and clouds become the main factor affecting irradiance
fluctuations. With the movement of clouds, the solar irradiance
received by different PV plants in the same area may produce
similar fluctuations successively. Therefore, differences in the solar
irradiance curvesmay be due to the spatial distance between the two
locations and the time delay caused by fluctuations in themovement
speed of the clouds.

The correlation between the total solar irradiance at different PV
stations in a region and the delay between the irradiance sequences
can be analyzed using correlation coefficients Jiao et al. (2021). Let
R1(t) and R2(t) be the total solar irradiance sequences received by
two PV stations in the region. The Pearson correlation coefficient
ρR1R2 (t = t1 − t2) is used to describe the correlation between R1 (t1)
and R2 (t2), as shown in the following equation:

ρR1R2 (t = t1 − t2) =
σ2
R1R2
(t1, t2)

σR1
σR2

(4)

where σ2
R1R2
(t1, t2) is the mutual covariance of series R1 (t1) and

R2 (t1), and σR1
and σR2

are the autocovariance functions of R1 (t1)
and R2 (t1), respectively.

2.2 The proposed deep learning model for
PV System’s spatio-temporal prediction

The proposed model mainly consists of convolutional neural
networks (CNN) exlopring distributed PV’s spatial correlations and
long short-term memory (LSTM) that can efficiently mine the time-
series information.

CNN is a class of feedforward neural networks with
convolutional computation and deep structure, which is one of
the representative algorithms of Deep Learning. CNN is widely
used in the fields of time series analysis, computer vision, and
natural language processing. It mainly consists of a data input
layer, convolutional layer, rectified linear unit (ReLU) layer,
pooling layer, and fully connected layer Sim and Lee (2020);
BANDARRA FILHO et al. (2023).

In CNN, the original data is first preprocessed through the data
input layer, such as de-meaning, normalization, and PAC. The data
is then convolved in the convolutional layer using filters to extract
local features. After that, the pooling layer performs downsampling
to reduce the amount of data and the number of parameters,
preserve important information, and reduce the computational cost
of the CNN network to prevent overfitting Jurado et al. (2023). The
activation function layer uses ReLu function, which is widely used
because the previous activation functions, such as tanh function
and sigmoid function, converge slowly and suffer from gradient
disappearance. The specific expression of ReLu is shown below:

f (x) =max (0,x) (5)

Finally, the fully connected layer combines all local features into
global features.The fully connected layer can operate efficiently only
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TABLE 1 The specific parameters settings of the proposedmodel.

Proposed model

Conv1D1 filters 32

Kernel size 3

activation relu

Stride 2

Padding 3

Conv1D2 filters 64

Kernel size 3

activation relu

Stride 3

Padding 3

Maxpooling Pool size 3

LSTM1 Hidden Node 256

activation relu

time steps 10

LSTM2 Hidden Node 512

activation relu

time steps 10

after the convolutional layer and the pooling layer have reduced the
dimensionality of the data. Otherwise, the data volume is too large,
which increases the computational cost and reduces efficiency.

The LSTM neural network is a variant of recurrent neural
network (RNN) with powerful dynamic properties. The general
network structure of LSTM, as shown in Figure 1, splits the original
RNN structure into a finer structure by introducing forgetting
gates, input gates, and output gates, and three gating units to make
the “cell state” (Ct) more dynamic Haputhanthri et al. (2021). This
helps avoid the vanishing gradient problem, and allows the (Ct) to
retain important information.TheLSTMselectively forgets the input
passed in from the previous node through the forgetting gate. The
information from the previous state ht−1 and the current input xt
are input to the sigmoid function at the same time. The output of
the sigmoid function is in the range [0,1]. If the output value is 0,
the historical information is completely deleted. If the output value
is 1, all the original information is kept. The equations used for the
forgetting gate, input gate, and cell update are as follows:

ft = σ(W f ⋅ [ht−1,xt] + b f) (6)

it = σ(Wi ⋅ [ht−1,xt] + bi) (7)

C̃t = tanh(Wi ⋅ [ht− 1,xt] + bi) (8)

where, ht−1 denotes the output of the previous cell, xt denotes
the input of the current cell, and σ denotes the sigmoid activation
function.

Next, the LSTM determines which information is stored in the
cell state through the input gate sigmoid layer for selective memory.
A new vector C̃t is created by the tanh layer to receive the hidden

FIGURE 4
(A) Comparison of the training process. (B) Comparison of the
validation process.

states and current inputs. The tanh layer and the sigmoid layer are
then combined to update the state of the cell Liu et al. (2022a);
Gruber and Jockisch (2020).

After that, the LSTM updates the old cell state Ct−1 to Ct to
determine how to update the information:

Ct = ftCt−1 + itC̃t (9)

Finally, the LSTM outputs the state features of the cell through
the output gate sigmoid layer and passes the cell state through
the tanh layer to obtain a vector between −1 and 1. This vector is
multiplied with the output weights obtained from the output gate to
obtain the final output of the LSTM unit.

ot = σ(Wo [ht−1,xt] + bo) (10)

ht = ot * tanh(Ct) (11)

Different LSTM modules can be stacked together to form a
multi-layer LSTM, and by adding depth to the network, the training
efficiency can be improved. Figure 2 briefly shows the connection
states of different LSTM modules.

The proposed deep neural network structure in this paper
is shown in Figure 3. It consists of two main parts: the upper
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FIGURE 5
Prediction results of solar radiation on Oahu Island on 5 November 2011, using the proposed model.

part is a CNN, and the lower part is an LSTM. First, the CNN
extracts and integrates features from the historical light data of each
distributed power plant through convolutional kernels. However,
due to filter limitations, the temporal correlation in the input
variables cannot be obtained. Second, the LSTM neural network,
with the introduction of gating units, can learn the dependent
features before and after the input data sequence to obtain the
temporal correlation, whichmakes up for the deficiency of the CNN.
Therefore, in this paper, CNNandLSTMare cascaded to form a deep
neural network spatiotemporal prediction model. Finally, the LSTM
memorizes and filters the integrated features, fits the prediction,
and outputs the prediction results through the fully connected

layer Ozcanli and Baysal (2022); Dolatabadi et al. (2021); Sinha et al.
(2021).

3 Experimental tests

3.1 Experimental data

The data used in this study were obtained from the Oahu
Island PV plant data provided by the National Renewable Energy
Laboratory (NREL). Oahu Island is located at latitude 21.31°N and
longitude 158.08°W.There are 17 distributed PVplants on the island,
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FIGURE 6
Regression plots for 17 sites predicted by the proposed model.

and the data is collected at a frequency of one sample per second,
recording the solar radiation from 5:00 a.m. to 8:00 p.m., spanning
the period from March 2010 to October 2011. Before training the
original data, the dataset was randomly shuffled and divided into
three parts: 70% for training, 20% for validation, and 10% for testing.

3.2 Experiment design and evaluation
criteria

In this study, the next data point is predicted using the first
ten data points, i.e., the model uses the first 10 seconds of data to
predict the next data point. The accuracy of the model prediction
is evaluated using three error evaluation criteria, namely mean
absolute error (MAE), root mean square error (RMSE), and the
coefficient of determination (R2). A smaller difference between the
predicted and actual values indicates a better model prediction
result.

TheMAE indicates the average of the absolute error between the
predicted and actual values, whereas the RMSE reflects the degree of

TABLE 2 Performance comparison of Models.

Models RMSE MAE R2

LSTM 9.6702 4.9380 0.9993

CNN 9.0209 4.4816 0.9994

Proposed Model 7.3021 3.0730 0.9996

deviation from the forecast. The R2 statistically assesses the overall
goodness of fit of the model, and a value closer to 1 indicates a
better fit. The formulae for calculating the three error metrics are as
follows:

RMSE = √ 1
N

N

∑
n=1
(ŷ (n) − y (n))2 (12)

MAE = 1
N

N

∑
n=1
|ŷ (n) − y (n)| (13)
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FIGURE 7
RMSE comparison.

FIGURE 8
MAE comparison.
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FIGURE 9
Error histograms comparison among the models.

FIGURE 10
R2 value histogram comparison among the models.

R2 = 1−
∑N

n=1
(ŷ (n) − y (n))2

∑N
n=1
(ŷ (n) − ȳ (n))2

(14)

where, ŷ(n), y(n), and ȳ(n) are the predicted, actual, and mean solar
radiation values, respectively, and N is the total number of samples.

3.3 Model structure and hyperparameters

The model has a total of 14 layers of network, the CNN part
has 9 layers of network, the first layer is the input layer, the second
to the seventh layer are two iterations of convolution, activation

and regularization layers. Since the convolution is performed on
time series data, both convolutional layers are 1-D convolutional
layer, The dimensions of the input data and output data are
both two-dimensional, The size of the convolution kernel is 3
and moves in one direction only, the number of convolutional
kernels is 32, 64, the step size is 2, 3, and the patch is 2. The
activation function of both activation layers is ReLU, and both
normalization layers are layerNormalizationLayer (LN). The eighth
layer is the pooling layer, and the maximum pooling is chosen
to prevent overfitting with size x. The ninth layer is the fully
connected layer, which is used to connect to the LSTMnetwork.The
10th layer is layerNormalizationLayer, LN acts as a normalization.
Both batchNormalizationLayer (BN) and LN can suppress gradient
disappearance and gradient explosion relatively well, but LN is more
suitable for sequential networks like LSTM. the LSTM part of the
network has 4 layers. Since increasing the depth of the network
and the number of hidden cells can help improve the prediction
accuracy, the 11th and 12th layers are set as LSTM layers with 256
and 512 hidden cells respectively. The 13th layer is a fully connected
layer. Finally, the predicted values are output by regressionLayer.The
regression layer calculates the semi-mean-square error loss of the
regression task. For regression problems, this layer must be located
after the final fully connected layer.

To address the issue of slow convergence and low model
accuracy, the model parameters were tuned. The training period
was initially set to 80 rounds with 295 iterations per round. The
Adam optimizer was used instead of the traditional SGD optimizer
to prevent gradient saturation, as it combines the characteristics
of AdaGrad and RMSProp to balance the gradient direction and
learning rate step. The initial learning rate was set to 0.005, and the
activation function used was ReLU or Leaky ReLU. After several
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experiments, the training period was extended to 100 rounds, the
learning rate was reduced to 0.003, and the ReLU activation function
was selected.

The specific parameter settings of the model proposed in this
paper are displayed in Table 1.

3.4 Comparison of the experimental results

Figure 4 illustrates the dynamic loss of the three models during
training and validation.The loss decreases as the number of training
cycles increases, indicating an improvement in the prediction
accuracy of the models. In DNN model training, the number of
epochs determines how many times the model works on the entire
dataset, and each epoch signifies that the model has undergone a
forward andbackward propagation.As seen in Figure 4,The training
losses of all three models have an overall decreasing trend but
fluctuate, which is due to the fact that the direction of gradient
descent in each round of the training process of the neural network
is not necessarily the overall optimal solution, so the losses do not
necessarily decrease compared to the previous round. The proposed
model’s loss convergence is faster than the LSTM and CNN models,
and the final loss value is smaller than the other models for both the
training and validation datasets. This is an intuitive demonstration
of the dominance of our proposed model.

In order to verify the superior performance of the hybrid model,
this study selected the solar radiation data from 5 November 2011,
for model training. The prediction results of the 17 distributed PV
plants on Oahu Island are shown in Figure 5. The prediction time
spanned from 5:00 a.m. to 8:00 p.m. The predicted curve fits well
with the actual value curve, indicating that the proposed model has
a better prediction effect.

Figure 6 shows the regression plots for the 17 sites,
demonstrating the degree of fit between the data and the regression
line. It can be seen that only a few data points deviate slightly
from the regression line, and the rest of the data points are evenly
distributed on both sides of the regression line, descending along
a 45-degree line. The R-value of each site reaches 0.99, further
demonstrating the superior prediction effect of the proposed
model.

To compare the performance of LSTM, CNN, and the proposed
model, they were validated using the same dataset for training.
Table 2 shows their respective errors, from which it can be seen
that the LSTM model has the largest error, and the proposed
model is significantly better than the other two models. The reason
behind this is that LSTM lacks temporal learning, and its before-
and-after feedback mechanism can only extract some data features,
resulting in poorer prediction accuracy. On the other hand, the
proposed model adds the CNN structure, which extracts and filters
temporal features, discards useless information, enhances useful
information, and fully extracts features, thus improving prediction
accuracy.

In order to make the comparison more rigorous, we added a set
of comparisons by inputting the data of 17 sites into the LSTM for
training. From Figure 7 and Figure 8, we can see that the LSTM
is significantly worse than our proposed model, thus illustrating
that the existence of strong spatial correlation among 17 sites can
improve the prediction accuracy. In addition, we also used a single

CNN and LSTM model for training on the same dataset, and from
the results, our proposed CNN-LSTM model is superior. Figure 9
and Figure 10 shows the comparison between the proposed model
and other models evaluation indexes.

4 Conclusion

In this paper, a spatio-temporal prediction scheme based on a
deep learning model is proposed to capture the strongly correlated
spatial relationships among distributed PV generation systems.
The proposed model leverages long and short-term memory
networks and convolutional neural network models to extract
spatio-temporal features from historical data and integrate them
using neural networks. Compared with single CNN and LSTM
models, the proposed model achieves significant improvements in
RMSE and MAE of 19% and 31%, and 24% and 38%, respectively,
demonstrating its effectiveness in improving prediction accuracy
for practical engineering applications. Future work may explore
other combined models and compare their performance with the
proposed deep learning model.
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