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Centrifugal pump, which is widely used in water conservancy, electric power,
petrochemical, ship, aerospace, and other technical fields, is the core equipment
used to ensure all kinds of energy transfer. Cavitation not only affects the service
life of the centrifugal pump but also seriously impacts the reliability of the process
flow or device system. Due to the influence of the life, position and number of
vibration sensors, the existing cavitation fault feature identification accuracy is not
enough. The state analysis and characteristic recognition of the current signal
under the cavitation state of the centrifugal pump are conducted in this paper
based on soft sensing technology, and the signal component and judgment
threshold representing the cavitation state are obtained. The following results
are presented. Under different critical cavitation numbers, a small number of
bubbles appeared near the suction surface of the inlet edge of the impeller, which
verified the reliability of criterion for the critical cavitation number when the head
coefficient decreased by 3%. The overall accuracy of binary classification
cavitation recognition based on the current signal is 12.9% higher than that of
three classification cavitation recognition. The recognition rate of VMD
decomposition under different working conditions is higher than that of EMD,
in design conditions, for example, overall accuracy improved by 7.3%, which also
indicates that the obtained cavitation information of each component by VMD
decomposition is richer than that obtained by EMD decomposition. Comparing
different working conditions, a large flow rate easily leads to cavitation and high
recognition current rate, compared with the flow of 0.75 Q and 1.25 Q, the overall
accuracy is improved by 9.6%.
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1 Introduction

As the main fluid conveying medium, centrifugal pump plays an important role in many
industrial applications. Cavitation is one of the key factors affecting its performance. In
traditional centrifugal pump cavitation monitoring, flow, and pressure data are measured,
and a 3% drop in centrifugal pump head is taken as the occurrence standard of cavitation
(ISO, 2010). However, in high and ultralow temperatures, conveying toxic and harmful or
easy-to-wear medium and other extreme conditions and accurately measuring the
centrifugal pump flow and pressure is difficult. Determining the centrifugal pump
cavitation state using the head-down method is also complicated. Soft sensing
technology uses relevant knowledge to build the mathematical relationship between the
easy and difficult to measure quantities in the production process. The slightly measurable
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quantities are then predicted and estimated through these easy to
measure quantities. At present, the soft sensing technology of
centrifugal pump cavitation monitoring mainly includes the
pressure pulsation, vibration, noise, and current methods. Among
them, the vibration method is the most widely used in monitoring
the cavitation state of a centrifugal pump (Sánchez et al., 2018;Wang
and Wang, 2018), which has the advantages of avoiding research
object damage and high signal sensitivity. However, in a complex
environment, the location and number of monitoring points have a
direct impact on the accuracy of cavitation identification, thus
failing to meet the needs of some remote real-time monitoring
due to the impact of sensor life and operating cost. With the
continuous development of fluid dynamics, the fault diagnosis
technology based on motor current signal is characterized by its
simple, feasible, low cost, and remote real-time monitoring, which
has attracted considerable attention (Wang et al., 2021). However,
the current signal processing methods in the cavitation state are
insufficient and comparative analysis of different signal processing
methods is lacking. Second, the low sensitivity of the current signal
leads to the unsatisfactory monitoring of the cavitation state of the
centrifugal pump in some special cases. Therefore, other signals are
also needed for multi-information fusion monitoring. Overall, the
current signal has considerable potential advantages in the soft
sensing field of the cavitation state of centrifugal pumps.
However, research and application in related fields are still lacking.

In the existing cavitation research and monitoring methods,
Mouleeswaran et al. (Senthilkumar et al., 2015) used the LabVIEW
program and DAQ card as the interface to obtain vibration
amplitude and frequency, respectively, on different axes of the
pump with the help of an accelerometer. The vibration spectrum
is then analyzed and the cavitation state of the centrifugal pump is
determined by identifying the frequency whose vibration amplitude
is higher than the dangerous limit. LIU et al. (2020) used the VMD
algorithm to process and analyze the acoustic signals of centrifugal
pump cavitation. Their results showed that the signal energy value at
50 and 100 KHz frequency bands decreased first and then increased
with the intensification of cavitation degree. Izadeh and Yari (2017)
classified the vibration signal data under the pump cavitation state
and extracted the probability of cavitation recognition as features to
build a classifier. The classifier is then used to determine the
cavitation state by using Bayesian theory. Nazarov et al. (2018)
proposed a high-speed cavitation test method, which can
significantly shorten the test cycle and improve the accuracy of
specified cavitation characteristics.

The current was first used to detect motor faults. Nazarychev
et al. (2020) proposed a method for monitoring the rotor winding
state of the asynchronous motor based on the current variation. The
numerical simulation was conducted on the digital model of the
induction motor developed in the ANSYS software package, and
then the test was performed on the test bench. The results show that
the amplitude of the high harmonic component of the current,
which is consistent with the number of pole pairs of the motor,
increases sharply at low frequency when the rotor rod is broken.
Skowron et al. (2020) used a convolutional neural network (CNN) to
detect and classify stator winding faults of induction motors. The
feasibility of applying CNN to stator early winding fault detection
and classification is proven by an online test. Siegler et al. (2010)
used the motor current to monitor the impeller of a marine
centrifugal pump and found the relationship between the current
signal and the cavitation degree of the impeller through research.
Casada et al. (1999) studied rotor misalignment faults of pump units,
used instantaneous power spectrum analysis of motor current to
characterize rotor misalignment faults, and obtained corresponding
time- and frequency-domain characteristics of current signals under
such faults. Welch et al. (2002) monitored the operating conditions

TABLE 1 Parameters of the model pump.

Parameter Numerical value

Diameter of impeller inlet D1/mm 62

Diameter of impeller outlet D2/mm 185

Width of blade outlet b2/mm 10

Blade envelope angle θ/° 90

Number of blades Z 6

Diameter of volute Inlet Ds/mm 195

Diameter of volute outlet Dd/mm 50

FIGURE 1
Schematic diagram and physical diagram of the test bed.

Frontiers in Energy Research frontiersin.org02

Liang et al. 10.3389/fenrg.2023.1204300

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1204300


of equipment by measuring current and power and the test results
can be applied to most electromechanical equipment, realizing
remote analysis and continuous monitoring. Perovic (Perovic,
2000) proved through experiments that the energy value of a
specific frequency range of current signals could be used as the
judgment value due to pump outlet blockage, blade damage, and
cavitation. Kenull et al. (2003) studied the cavitation and inversion
faults of centrifugal pumps, extracted fault features by using the
motor current spectrum and energy distribution curve, and
established a diagnostic model. Their results showed that current
signals can effectively monitor the cavitation state of centrifugal
pumps under certain circumstances. Schmalz and Schuchmann
(2004) used the energy distribution diagram of the low-frequency
band signal of motor current to monitor the cavitation state of the
centrifugal pump under different working conditions. Harihara and
Parlos (2008) utilized the centrifugal pump monitoring algorithm to
determine cavitation faults, blade damage, and bearing failure.
However, the signal classification basis has not been provided.
Hu and Zhao (2007) analyzed the motor current signal in the
frequency domain and found a corresponding relationship
between the motor current signal and the pump medium
pulsation information in the frequency domain. They also
established the pump unit model for verification, and their
results were consistent with the experimental conclusions.

Overall, the current signal-based soft sensing technology can be
extended from motor fault diagnosis to centrifugal pump cavitation
operating condition monitoring and fault diagnosis due to the
electromagnetic coupling between the rotor system and windings.
This technology is characterized by its simplicity, feasibility, and low
cost; it can also realize the function of remote monitoring. However,
overall research on the application of current soft sensing
technology to the monitoring of centrifugal pump working
conditions is limited. Particularly, the processing methods related
to the extraction of minimal information containing cavitation state
in the current signal are insufficient. The low sensitivity of the
current signal also leads to the unsatisfactory monitoring of the
cavitation primary state of the centrifugal pump. Therefore, further
research is necessary to build an accurate identification model of the
cavitation state of the centrifugal pump. Therefore, first of all, the

current signal of the centrifugal pump model is obtained in this
paper. Two methods of Empirical Mode Decomposition (EMD) and
singular value decomposition (SVD) are adopted to analyze and
identify the current signal in the cavitation state of the centrifugal
pump. The signal component and the judgment threshold
representing the cavitation state are obtained. Cavitation signals
under different working conditions were identified and their
applicability to the soft sensing technology was compared. The
research results can provide reference for the soft sensing
technology in the fault diagnosis of centrifugal pump cavitation.

2 Physical model

2.1 Geometric model

The model pump of this test is a single-stage single-suction
centrifugal pump with a specific speed of 62, a rated head of 10 m, a
rated flow of 13 m³/h, a motor power of 3.5 kw, and a speed of
1,450 r/min. The centrifugal pump in this test adopts a transparent
plexiglass shell and impeller to facilitate the shooting of water
conditions around the impeller during cavitation. The motor is a
three-phase AC asynchronous motor. The parameters of the tested
centrifugal pump are shown in Table 1 below.

2.2 Experimental platform

The test equipment mainly includes a closed test bench, a signal
acquisition system, and high-speed photography equipment. The
centrifugal pump test bed comprises the following: model pump,
motor, water tank, flow meter, inlet pressure sensor, outlet pressure
sensor, stainless steel tube, vacuum pump, valve, and bracket. The
schematic and physical diagrams of the test are shown in Figure 1.

FIGURE 2
The physical picture of the sensor. (A) Hall sensor; (B) Pressure
transmitter.

FIGURE 3
Cavitation performance curves of centrifugal pump under
different working conditions.
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2.3 Data acquisition system

Data acquisition for this test included flow rate, inlet and
outlet pressures, motor current voltage, speed, and vibration
signal. The data acquisition system comprises a Graphical
User interface (GUI) data acquisition system based on
MATLAB and an NI data acquisition system based on
LabVIEW. The GUI data acquisition system mainly collects
traffic, import and export pressures, and current and voltage
signals. The current signal is collected by the Hall sensor, and the
sensor adopts the principle of the Roche coil probe, which has a
fast response speed and no waveform distortion. High reliability,
can work in 10 KV high-pressure environment, anti-interference
ability to reach the national standard level two or above, precision
level of 0.1. The pressure transmitter uses a piezoresistive sensor
as a signal-measuring element with an accuracy class of 0.2% FS,
as shown in Figure 2.

2.4 Cavitation performance test analysis

The cavitation condition of the test aims to vacuum the tank.
Two important parameters in the cavitation test, namely,
cavitation number and head coefficient, are respectively
expressed as ψ � H/(u20/2g) and σ � (P − Pv)/(0.5ρu20), where
ψ is the head coefficient, σ is the number of cavitation, H is
the head of the centrifugal pump (the unit is m), u0 is the
velocity of a fluid medium (the unit is m/s), P is the inlet static

pressure (the unit is Pa), and Pv is the saturated vapor pressure
of the medium at ambient temperature (the unit is Pa).

Using the above-closed test device, the cavitation
performance curve as shown in Figure 3 is obtained. The
figure shows that the head coefficient Ψ is unchanged at the
beginning and then starts to decline with the decrease in the
cavitation number. The reduction of the head coefficient by 3%
is the critical cavitation point. When the pump cavitation occurs
relatively early at high flow (1.25 Q), its corresponding critical
cavitation σ is 0.36, the design condition (1.0 Q) critical
cavitation σ is 0.34, and the low flow condition (0.75 Q)
critical cavitation σ is 0.305. The cavitation state in each
cavitation stage of a centrifugal pump is further accurately
described and marked with cavitation σ to observe the
changes in water flow in the cavitation stage of a centrifugal
pump under different working conditions directly. Figure 4
shows that the high-speed camera technology was used to
track and capture the internal cavitation of the pump to
verify the accuracy of the above discrimination.

Figure 4 also shows the existence of relatively few vacuoles inside
the blade in the low flow condition (0.75 Q) and cavitation σ = 0.305,
and these vacuoles are mainly distributed near the suction surface at
the blade inlet. Vacuoles collapse and disappear in the middle of the
blade with the fluid flow. When σ = 0.34 in the design condition and
σ = 0.36 in the large flow condition (1.25 Q), a small number of
cavitation also appears near the suction surface at the inlet edge of
the blade, representing the birth of cavitation, which further verifies
the accuracy of the above critical cavitation determination.

FIGURE 4
Birth of cavitation under the critical cavitation number in each working condition. (A) 0.75 Q, σ = 0.305 (B) 1.0 Q, σ = 0.34 (C) 1.25 Q, σ = 0.36.

TABLE 2 BIMF each characteristic part data table.

Classification pattern Energy proportion Variance Kurtosis Skewness Root mean square value Sample size Class tag

Three-classification 0.882 0.0089 2.991 −0.131 0.097 125 Y1

0.880 0.010 2.828 −0.122 0.095 125 Y2

0.879 0.009 2.856 −0.197 0.094 175 Y3

Binary-classification 0.882 0.0084 2.996 −0.134 0.096 180 P1

0.880 0.0092 2.853 −0.196 0.098 200 P2
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3 Identification of the cavitation state of
the current signal

3.1 Current signal feature extraction

The empirical mode decomposition (EMD) method is used to
decompose the signal according to the time scale characteristics

of the data without setting any basis function in advance. This
method can decompose complex signals into a finite number of
intrinsic mode functions (IMFs), and each decomposed IMF
component contains local characteristic information of the
original signal at different time scales (Dragomiretskiy and
Zosso, 2014; Li et al., 2021). Singular value decomposition
(SVD) is similar considering the diagonalization of symmetric
or Hermite matrices based on eigenvectors and is a generalization
of spectral analysis theory on arbitrary matrices. In the scope of
software filtering, SVD can remove strong interference signals
and retain weak signals. Particularly, as a method of current
power frequency filtering, the effect is satisfactory; thus, SVD is
used to filter the current signal power frequency. Therefore, this
paper mainly utilizes EMD and VMD to process and analyze
current signals, respectively.

Each component of the current signal obtained by filtering
can be effectively distinguished after the decomposition of EMD
and VMD; particularly, the distinguishing effect of individual
components is observed under the low flow condition. The
obtained energy proportion of each component by different
decomposition methods can also be used as a characteristic
index to some extent. Therefore, in this paper, the energy
ratio ei, variance Si, kurtosis ki, skewness γi, and root mean
square εi values of i components obtained by EMD and VMD
decomposition are used in this paper as feature vectors T for
current identification of cavitation state.

When current is used as the signal of cavitation state
identification, the cavitation state can be divided into non-
cavitation (σ > 0.358), cavitation birth (0.358 > σ > 0.302),
severe cavitation (σ < 0.257), uncavitation (σ > 0.358), and

FIGURE 5
Multilayer feedforward (BP) neural network.

FIGURE 6
Three classification effects of EMD decomposition neural network cavitation state recognition. (A) Confusion matrix (B) ROC curve.
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cavitation (σ < 0.286) of the binary category. The sensitivity of
the current signal to cavitation is lower than that of the vibration
signal; thus, low differentiation may occur in the discrimination
between non-cavitation and cavitation initiation.
Distinguishing between cavitation and non-cavitation states
is important for some practical engineering applications.

Therefore, three classification [Y1, Y2, and Y3] and binary
classification [P1 and P2] cases are respectively used in this
paper for cavitation state identification and comparative
analysis. Table 2 shows the characteristic data of the first
component of the current signal at 1.0 Q after VMD
decomposition.

FIGURE 7
Effect of three classifications of VMD decomposition neural network cavitation state recognition. (A) Confusion matrix (B) ROC curve.

FIGURE 8
Error range distribution diagram of neural network training model based on current signal cavitation tri-classification. (A) EMD decomposition (B)
VMD decomposition.
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3.2 Cavitation state prediction and result
analysis of neural network based on current

The back propagation (BP) neural network is a multilayer feed-
forward neural network trained in accordance with an error back
propagation algorithm (Haykin, 1994; Sain, 1997). The structure of
the multilayer feed-forward BP neural network is shown in Figure 5.
Firstly, the obtained mixed current signals are estimated, and the
independent component estimates of the completely separated
source signals are obtained. Secondly, genetic algorithm is used
to optimize the weight and threshold of BP neural network. Finally,
the normalized energy of multiple independent component
estimates is isolated and used as the input of neural grid for the
training and prediction of optimized BP neural network.

The number of nodes in the BP network is determined. The
choice of the number of nodes in each layer has a considerable
influence on the performance of the network. The selection for the
output node depends on the representation of the output and the
number of categories of input vectors to be identified (or classified).

Therefore, the choice of hidden junction points should be
determined in accordance with the actual situation and
experience. Node selection generally follows the equation
m � ����

n + l
√ + α, where n is the number of input nodes, l is the

number of output nodes, and α is a number within 1–10.
After the decomposition of the filtered current signal by EMD

and VMD, the cavitation representation components of different
layers contain different cavitation information. This paper divides
the sample data obtained under different decomposition methods of
current signals into binary and triple classification and then
establishes different neural network training models for cavitation
pattern recognition to achieve the accuracy of sample classification
and the comprehensiveness of comparative analysis to a
considerable extent. EMD divides the filtered current signal into
seven layers according to the analysis in Chapter 3. Therefore, the
number of sample features is 5 × 7, and the number of hidden
junctions of neural networks is 40. VMD was decomposed into
seven layers; thus, the number of sample features is 5 × 7, and the
number of hidden layer junctions of neural networks is 40. The

FIGURE 9
Effect of EMD binary classification. (A) Confusion matrix (B) ROC curve.

TABLE 3 Overall recognition accuracy table of current cavitation degree of the neural network under each decomposition method.

Classification method Analytical method 0.75 Q (%) 1.0 Q (%) 1.25 Q (%) Overall accuracy (%)

Three-classification EMD 70.6 71.2 81.4 74.4

VMD 79.2 85.5 88.9 84.5

Two-classification EMD 77.8 84.8 87.4 83.33

VMD 89.3 92.1 95.5 92.30
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training times are set to 1,000 and the learning rate is 0.02. The
training of this model is based on the MATLAB pattern recognition
module. The training results are represented by a confusion matrix
and ROC curve. The confusion matrix is a direct representation of
the accuracy rate of classification results and the category where the
current classification results belongs to. The abscissa typically
represents the real target category, and the ordinate is the
obtained category by model classification. The “receiver operating
characteristic,” which is also known as ROC curve, is used to
determine the quality of the classification model and test results.
The ROC curve is an essential and common statistical analysis
method.

3.2.1 Three classifications of cavitation states
The training, validation, and test matrices comprised 75%, 10%,

and 15% of the sample data of each training model, respectively. The
classification results are shown in Figure 6.

As shown in Figure 6, the accuracy of the neural network
training set obtained by EMD decomposition is 79.4%, the
verification set is 54.5%, the test set is 54.4%, and the overall
accuracy is 71.9%. The ROC curve distribution is poor, the
verification and test sets of the first and second classifications
have a considerable uncertainty, and the recognition rate is the
lowest. Overall, the accuracy of cavitation recognition and
classification of the three classification neural network obtained
by EMD decomposition is poor, and the classification model trained
is not good.

As shown in Figure 7, the accuracy of the neural network
training set obtained by VMD decomposition is 77.4%, the

verification set is 83.0%, the test set is 80.9%, and the overall
accuracy is 78.8%. In the ROC curve distribution diagram, the
third classification has the best effect, while the first and second
categories are partially confused. The current signal contains
abundant cavitation information under serious cavitation.
Overall, the classification accuracy of the three classification
neural network obtained from VMD decomposition is universal,
and the classification model is generally trained. The error
distribution histogram of the recognition results is shown in the
Figure 8.

As shown in Figure 8, the error range distribution of the neural
network training model obtained by three classification EMD and
VMD decomposition is wide but that of VMD decomposition is
relatively concentrated. The classification effect is slightly higher
than that of EMD decomposition.

3.2.2 Cavitation state dichotomy
The effect of the three classifications is average based on the

above analysis. Model training and prediction are conducted
considering the requirement of cavitation state binary
classification in practical engineering applications. For the sample
data of the training model, the training, validation, and test matrices
accounted for 75%, 15%, and 15% of the samples, respectively. The
classification results are shown in the figure below.

As shown in Figure 9, the accuracy of the binary neural network
obtained by EMD decomposition is 84.8% for the training set, 86.4%
for the verification set, 83.1% for the test set, and 84.8% for overall
accuracy. The ROC curve distribution is vertical, the distribution of
the verification and test sets is similar, the resolution of the first and

FIGURE 10
Effect of VMD binary classification. (A) Confusion matrix (B) ROC curve.
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second classifications is also high, and the test performance of the
model is satisfactory. Overall, the binary neural network obtained by
EMD decomposition has high cavitation recognition and
classification accuracies and the trained classification model is
superior.

Table 3 is overall recognition accuracy table of current cavitation
degree of the neural network under each decomposition method,
where the “Q” is the flow of centrifugal pump. As shown in
Figure 10, the accuracy of the neural network training set
obtained by VMD decomposition is 93.8%, the verification set is
86.4%, the test set is 89.8%, and the overall accuracy is 92.1%.
Meanwhile, the ROC curve distribution is approximately vertical,
and the first and second classification accuracies are both high. Test
set accuracy is also higher than EMD decomposition. Overall, the
binary neural network obtained from VMD decomposition has high
cavitation recognition and classification accuracy and trained
classification model is superior.

As shown in Table 3, the accuracy of binary cavitation
recognition is generally higher than that of three-category
cavitation recognition. Comparing the results under different
working conditions, a large flow rate possibly leads to cavitation;
therefore, the recognition rate of the current is high. The recognition
rate of VMD decomposition under different working conditions is
higher than that of EMD, indicating that each component obtained
by VMD decomposition contains richer cavitation information than
that obtained by EMD decomposition. Overall, in practical
engineering applications, the neural network binary classification
centrifugal pump cavitation recognition model based on VMD
decomposition has high accuracy and has application value in
general centrifugal pump cavitation monitoring applications
when the cavitation state of the centrifugal pump is identified by
current. This is consistent with the research conclusions obtained
from the application of vibration signals in literature (Li et al., 2016)
and literature (Ming et al., 2017). VMD decomposition can identify
characteristic quantities with higher accuracy in centrifugal pump
fault diagnosis. Therefore, the cavitation recognition technology
based on current signal provided in this paper can still obtain
the cavitation fault recognition rate of the same precision under
complex and harsh environment. Therefore, the research results in
this paper have obvious advantages, and also have significant value
in the traditional centrifugal pump fault diagnosis application.

4 Conclusion

This paper mainly focuses on the soft sensing of the cavitation
state of a centrifugal pump. In view of the difficulty of judging the
cavitation state of centrifugal pump under complex working
conditions, this paper analyzes the current and vibration signals
in the cavitation state of centrifugal pump based on soft sensing
technology. On this basis, based on the information fusion theory, a
cavitation state recognition model combining the current and
vibration signals is constructed to improve the cavitation state
recognition rate and anti-interference performance, and the
following conclusions are drawn:

(1) Testing results of the cavitation performance of the centrifugal
pump showed that the head coefficient Ψ initially remains

unchanged with the decrease in the cavitation number and
the value of Ψ decreases rapidly when the cavitation number is
reduced to a certain value. Comparison of the critical cavitation
number under different conditions indicated the relatively early
occurrence of cavitation under the high flow condition (1.25 Q).
Thus, under the corresponding critical cavitation number, a
small number of bubbles appear near the suction surface of the
inlet edge of the impeller, which represents the beginning of
cavitation.

(2) Comparison results of the neural network training obtained
from EMD and VMD decompositions under the cavitation
state classification revealed that the overall accuracy of EMD
is 71.9%, which is lower than that of VMD (78.8%). The ROC
curve distribution indicated that the first and second
classifications of the verification and test sets obtained by
EMD showed considerable uncertainty and the recognition
rate was the lowest. The third classification obtained by VMD
is the best, while the first and second categories are partially
obscured.

(3) Comparison results of the neural network training obtained
by EMD and VMD decompositions under cavitation state
dichotomy demonstrated that the overall accuracy of the
neural network training obtained by EMD decomposition is
84.8% while that of VMD can reach 93.8%. From the
perspective of ROC curve distribution, the distribution
obtained by VMD is approximately vertical, the resolution
of the first and second classifications is high, and the accuracy
of the test set is higher than that of EMD decomposition.

The current signal based centrifugal pump monitoring has a
high application value for some low requirements of centrifugal
pump cavitation state monitoring, especially for the monitoring
equipment portability, low cost and accuracy has a great
application demand. Therefore, the follow-up work can
develop the corresponding portable monitoring equipment,
focusing on the future 5G and Internet of things technology in
the “cloud” development of the corresponding soft sensor model
and database, to achieve the real-time monitoring of centrifugal
pump cavitation state and pump operation stability.
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