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Once a distribution network failure occurs, it can spread to the traffic network
through the coupling point, causing electric vehicles (EVs) to change their
charging paths. To address this problem, this paper presents an EV charging
path planning approach that considers coupled faults in the distribution-
transportation network. First, the cascading failure model of the distribution-
transportation network and the model for choosing charging stations are
presented to transfer the information of coupling faults propagation and
coupling points power interaction to the follow-up path planning scheme.
Second, a time occupancy road resistance model that considers congested
and unobstructed traffic states is proposed to calculate the road section travel
time, based on the analysis results of the evolution process of road traffic flow
queuing using traffic wave theory. For the speed and density parameters in the
traffic wave model, values are calculated using the logistics speed-density model
and the time occupancymodel. Third, amulti-objective optimization function that
integrates travel cost and coupling network operation state is determined from the
perspective of hindering the propagation of coupling faults. The function is solved
to recommend optimal charging paths using an improved A* searching algorithm.
Finally, a 90-bus road network and three 33-bus distribution networks are
selected as examples to verify the veracity and validity of the proposed model
and method. The research results demonstrate that the proposed method can
alleviate traffic congestion.
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1 Introduction

The widespread use of electric vehicles (EVs) for transportation increases the degree of
electrification of the transportation network and intensifies the coupling between the
transportation network and the distribution network (Betancur et al., 2021). When the
distribution network experiences a fault, the permissible capacity for EV charging stations
within the affected area may be impacted, and could even result in a complete power outage,
rendering them unable to provide service. At this time, a large number of EVs need to change
their charging station selection strategy and replan their travel routes. During the same
period, traffic flow near the fault spreads to the surrounding road network, and EVs converge
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with non-faulty sections during peak charging periods. The charging
routes of the two streams of vehicles interact spatiotemporally,
causing traffic congestion in the transportation network, which
can trigger a chain reaction of inter-network faults between the
distribution network and the transportation network. Therefore, it is
particularly important to analyze the fault propagation mechanism
in the coupled network and study the EV charging behavior from the
perspective of blocking fault propagation.

The EV route planning under fault conditions can be roughly
divided into two stages. The first stage is the fault propagation and
evolution stage, which includes congestion effect analysis and chain
fault evaluation (Zhang et al., 2021). In a study by Zhang et al., 2020, the
impact of charging station faults on EV travel was considered, and a
disturbance analysis framework based on multi-layer network
cascading failure was proposed. However, their study lacked a
quantitative analysis of the spatiotemporal evolution process of faults
in both the power distribution network and the transportation network
(Zhang et al., 2021). In Liu et al. (2022), the chain-type propagation
mechanism of congestion in the road-electric dual network was
analyzed, and the active power-reactive power coordination process
of the active distribution network was optimized to mitigate or
eliminate the adverse chain congestion effects. In Zheng et al.
(2022), the traffic congestion caused by the large-scale concentration
of EV charging was considered, and an EV charging load
spatiotemporal optimization scheduling strategy was designed.

The second stage is the EV path planning stage. In a study by Su
et al. (2022), the load recovery problem after extreme disasters was
considered, and a vehicle path planning model based on a multi-
period collaborative important load recovery model was built.
Furthermore, Ding et al. (2020) proposed an optimization
scheduling strategy for grid repair vehicles and auxiliary power
recovery EVs in the case of road damage. In a report by Zhao et al.
(2020), the coordinated planning problem of repair order of the
transportation network and the working paths of repair personnel
was studied with the aim of improving the restoration efficiency of
damaged roads.

The above studies explored the path planning problem from the
perspective of fault recovery but did not involve the study of fault
propagation mechanisms and ignored the influence of different
stages of fault development on path planning results.

Road impedance is a comprehensive indicator of the road
network state, and accurate estimation of road impedance is a
prerequisite for planning user travel paths. Road impedance
models based on the BPR function were established by Li et al.
(2020); however, the impact of congested traffic on vehicle travel
time was not considered, resulting in insufficient accuracy in
describing road segments with high traffic volume. The impact
range of accidents and the evacuation of vehicles after accidents
were studied by Feizizadeh et al. (2022) and a dynamic road
impedance model that considers the mix-in rate of large vehicles
was established. The interruption flow characteristics of urban road
traffic flow were considered in a study by Evers et al. (2022) and the
queuing-dissipation process of traffic flow on a single lane was
described in detail. The mechanism of congestion evolution in
mixed traffic flow was thoroughly investigated by Zu and Sun,
2022 and a road impedance model was established to consider
the occurrence of sporadic congestion in mixed traffic flow. Those
studies established road impedance models based on the micro-

development and evolution laws of traffic flow. However, when the
traffic network is at a high load peak, the movement characteristics
of vehicles in congested road sections are different, and the position
changes of individual vehicles cannot reflect the evolution laws of
the entire road section traffic flow. Therefore, it is also necessary to
study the dynamic changes of road network traffic flow under
different conditions from a macro perspective.

To address the above problems, this study formulates a path
planning scheme for EVs in the urban traffic network based on the
coupled fault propagation mechanism, blocking the further
propagation of faults in the two networks. Firstly, a coupled fault
model is established to calculate the flow distribution results of the
coupling point from both the distribution network and the traffic
network. Secondly, the influence of coupling faults on EV charging
behavior is analyzed, and a charging station selection decision model
is established based on cumulative prospect theory. Thirdly, to
accurately describe the anxiety of EV owners in a hurry to charge,
a road impedance model is established to quantify the time cost of
EVs. The logistics speed-density model is used to analyze the
relationship between density and speed in the traffic wave model,
and the density parameter is replaced by time occupancy rate to
improve the classic traffic wavemodel. Combining traffic wave theory,
the traffic flow queuing evolution process is analyzed, and a road
impedance model is established with the time occupancy rate as the
variable. Finally, a path planning model is constructed by considering
the time cost and economic cost of EV drivers, as well as the
operational status of the power grid and transportation network
from the perspectives of EVs, power grids, and transportation
networks, and the A* algorithm is used for solving analysis.

2 Distribution network-transportation
network coupled fault model

2.1 Coupled fault definition

A single point failure in the distribution network can impact the
operational status of charging stations. If a charging station is
directly connected to a fault node, it may lose its charging
function. Charging stations not directly connected to the fault
node may also be affected by dispatching strategies, which can
cause them to stop working (Cai et al., 2020). In such cases, EVs at
the faulty charging station will need to replan their charging
itinerary. EVs that trigger charging demand will be allocated to
the remaining charging stations, exacerbating the fluctuation of the
distribution network load. If EVs choose charging stations randomly
without considering the node voltage, it may lead to a situation
where a large number of EVs are charging at charging stations with
lower voltage, posing a serious threat to the safe operation of the
distribution network. This paper defines the cascade effect caused by
a single distribution network fault as a distribution network-
transportation network coupled fault.

2.2 Coupled network scheduling model

In the future of intelligent EV networking, EVs will upload real-
time charging information such as electric quantity and location to
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the intelligent networked system (Yang et al., 2022). The system will
analyze the operation status of charging stations and coupling
networks to recommend charging stations for EVs reasonably.

2.2.1 Distribution network scheduling model
When a distribution network fault occurs, it is necessary to

adjust the operation mode immediately to isolate the fault area and
reduce the scope of the fault propagation. This section formulates
the distribution network scheduling strategy based on the principle
of ensuring the power supply of important loads and meeting the
power supply of coupling points. This section does not consider the
involvement of distributed power sources or other mobile
emergency recovery measures to ensure that the path planning
solution is still feasible in adverse environments. The objective
function is as follows:

max ∑
i∈VP

τCSi PCS
i yCS

i + τ loadi Pload
i yload

i( ) (1)

where τCSi and τloadi are the weighting coefficients of the charging
station load and other loads respectively excluding the charging
station; the coefficients of the first-level, second-level, and third-level
loads are 1, 0.1, and 0.01, respectively; in order to restore the
charging station load as soon as possible, τCSi is set to 1; PCS

i and
Pload
i are the transmission power of the charging station load and

other loads, respectively; yload
i and yCS

i are the restoration status of
the charging station load and other loads, respectively.

2.2.2 Traffic network distribution model
After making the scheduling decision, the distribution network

provides the flow distribution results. The intelligent network
system then recommends the optimal charging station for the
EVs based on the original load and node voltage information of
each coupled node, and calculates the road traffic flow distribution.
Because this study plans the optimal charging route for EVs from a
dynamic perspective, static traffic distribution models are
insufficient to describe the time-varying characteristics of the
network state and cannot provide accurate traffic and charging
information for the planning stage. Therefore, in this section, a
dynamic traffic distribution model is established as follows:

min∫T

0

1
ϑ
∑
r∈R

∑
k∈Kr

qkr t( ) ln qkr t( )[ ]dt + ∫T

0

× ∑
a∈ET

r

∫υouta t( )

0
Ua qa t( ), z[ ]dz{ }dt (2)

qkr t( ) � qr t( ) · Pk
r t( )

Pk
r t( ) � exp −ϑ · CPTk

r t( )( )
∑

k∈Kr

exp −ϑ · CPTk
r t( )( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

s.t. qa t( ) � qa t − 1( ) + υouta Δt (4)
qa t( ) − qa t − 1( ) � Δt υina t( ) − υouta t( )[ ]∀a, t (5)

qa t( ) � ∑
r∈R

∑
k∈Kr

∑
i,j∈VT

xij · qkr t( )∀a, k, t (6)

∑ υouta t + τa t( )[ ] � ∑υina t( )
1 + τa t( ) − τa t − 1( )[ ]/Δt∀a, t (7)

υina t( )≥ 0, υouta t( )≥ 0, qa t( )≥ 0 (8)

where ϑ is the dispersion coefficient, which characterizes the degree
of familiarity of car owners with the network state; qkr(t) is the traffic
demand of path k at time t; qr(t) is the traffic demand of OD pair at
time t; ET

r is the set of road segments between OD pairs; υina (t) and
υouta (t) are the inflow and outflow rates of road segment a at time t;
qa(t) and qa(t − 1) are the traffic flow of road segment a at time t
and the previous time, respectively; Δt is the simulation step size,
which is set to 5 min;Ua is the travel cost of road segment a; Pk

r(t) is
the probability that car owners choose path k at time t; CPTk

r(t) and
CPTa(t) are the cumulative prospect values of path k and road
segment a, respectively, at time t; xij is the selection variable for path
ij; τa(t) and τa(t − 1) are the travel times of road segment a at time t
and the previous time, respectively. The dynamic distribution model
is solved using the iterative weighted method (Yang et al., 2022) to
obtain the flow distribution of the traffic network quickly.

3 Model of information interaction
between power distribution network
and traffic network

3.1 Single EV model

3.1.1 Dynamic charging queuing model for EVs
When an EV arrives at a charging station, if the number of

vehicles waiting in the queue is fewer than the number of available
charging piles, the waiting time for all EVs in the queue is zero, and
the arrival time is considered the start time of service. However, if
the number of vehicles waiting in the queue is greater than the
number of available charging piles, the waiting time for an EV is
determined by the charging time of the EVs that are currently
receiving service. The model can be expressed as follows:

twaitb �
0 Nwait

b t( )≤Nb −Nchar
b t( )

∑Nchar
b

t( )

c�1

SOCc
b,c − SOC0

b,c

�P
char
b · ηchar Nwait

b t( )>Nb −Nchar
b t( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(9)

H � Nwait
b t( ) − Nb −Nchar

b t( )[ ] (10)

where twaitb is the waiting time of the EV at the charging station b; b
and c are the identification numbers of the EV and charging station,
respectively; Nwait

b (t) and Nchar
b (t) are the number of EVs in the

queue and the number of EVs currently being charged at the
charging station in the current period, respectively, based on
real-time monitoring data; Nb is the number of available
charging piles at charging station b; SOCc

b,H and SOC0
b,H are the

expected and initial state of charge of the c-th EV, respectively; �Pchar
b

is the rated charging power of the charging pile; ηchar is the charging
efficiency of the charging station, which is set at a constant value
of 0.95.

3.1.2 Charging station decision model considering
coupled fault propagation

Based on the analysis in Section 2.2, this section adopts the
prospect theory to describe the limited rationality of EV owners in
decision-making (Wu et al., 2020). The charging station decision-
making model is constructed by establishing a search direction and
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remaining power constraint to ensure the correctness of the path
search direction. The specific model is presented as follows:

CPTbgoalc
c � max CPT1

c , CPT
2
c ,/, CPTb

c/, CPTnCS
c ,{ } (11)

s.t. �Ec · lE−Sij,min t( )<El
c t( )

θCS < 90+
(12)

where c is the EV number; the physical meaning of CPTbgoalc
c is that

the c-th EV selects the charging station with the maximum
cumulative prospect value as the target charging station, and the
calculation process of the cumulative prospect value is shown in
Appendix D; bgoalc is the node number of the target charging station
for the c-th EV; nCS is the number of charging stations; yc is the
decision variable for charging station selection; �Ec is the average
power consumption per kilometer of the EV; lE−Sij,min(t) and El

c(t) are
the shortest distance from the current time to the nearest charging
station and the remaining power of the EV; θCS is the angle between
the line connecting the node i where the EV is located to the
charging station and the line connecting the node i to the
destination.

3.2 Coupled network topology model of
power distribution network and
transportation network

The power distribution network impacts the transportation
network through electricity prices and the capacity of coupling
points. Conversely, traffic flow and charging station service
status influence the choice of EV charging nodes, which in
turn affects the spatiotemporal distribution characteristics of
charging loads and alters the operating status of the power
distribution network. The coupled network model of the
power distribution network and transportation network is
presented below:

D � DP,DT{ }, DP−T{ } (13)
whereDP andDT are the models of power distribution network and
transportation network, respectively; DP−T is the coupling
relationship matrix, which represents the coupling connection
between nodes of the power distribution network and
transportation network.

4EV path planning model considering
coupled faults

The most crucial factor for EV owners is travel cost, with
travel time on road segments being an essential component of
travel cost. The accuracy of travel time directly affects the
reasonableness of travel cost and plays a critical role in the
success or failure of path planning. In this section, a road
impedance model is established to calculate road travel time,
followed by the establishment of a path planning model. The
impact of subjective and objective factors on path planning is
analyzed in detail in Appendix F.

4.1 Road impedance model

According to Zu and Sun, 2022, travel time is the primary factor
contributing to traffic impedance. In this section, we study the road
impedance model, which considers the travel time of each road
segment that an EV passes through.

4.1.1 Time occupancy ratio-based traffic wave
model

The classic BPR model is based on regression analysis of low-
saturation highways in the United States. While simple and easy to
solve, it cannot be applied to urban road networks under fault
conditions for two reasons. First, the model is suited to road sections,
such as highways, where traffic flow exhibits continuous
characteristics. However, traffic flow in a faulty road network
exhibits pulse characteristics due to the influence of intersections
and congested traffic flow (Yuan and Tang, 2021). As a result, the
BPR function, which is a monotonic increasing function, cannot
reflect the dynamic fluctuations of EV flow velocity that increase first
and then decrease after a surge in traffic flow (Zhao et al., 2020).
Second, the model always assumes that traffic demand is less than
traffic capacity. When a road segment approaches saturation or
oversaturation, the time curve approaches an asymptote parallel to
the y-axis (Jiang et al., 2010). However, actual traffic networks
exhibit high and stable travel times on road segments due to the
existence of signal controls. If the BPR function, calibrated with
uniform parameters, is used continuously, the calculated results will
significantly deviate from actual values. Therefore, the traditional
BPR function is no longer applicable to congested urban road
sections with complex and variable traffic flow distributions.

Unlike the traditional static BPR model, the time-time occupancy
rate model proposed in this paper considers traffic density as the
research object instead of traffic volume. This is because traffic volume
is only a temporal observation of a road section and cannot describe
the interaction trends among vehicles in high-density road sections.
In contrast, traffic density is a spatial observation of the number of
vehicles in a road section, which can be used to analyze the
relationship among vehicles through the density changes of the
road section at different time periods, and thus describe the
dynamic development process of traffic flow. Traffic wave theory
describes the energy flow generated when traffic density changes due
to a sudden event. In cases where the coupling between the power
distribution network and the traffic network fails, the congestion
effect causes some sections of the traffic network to reach saturation or
even oversaturation. This causes vehicles to constantly switch between
stagnant and low-speed driving states, and the queue of vehicles to
move forward in a traffic wave form. In addition, the cascading
propagation characteristics of coupling faults cause vehicles to
constantly gather and form a congested traffic flow, which
dissipates after passing through signal controls at intersections. In
the dynamic process of convergence and dissipation, the traffic flow
exhibits intermittent flow characteristics. Traffic wave theory studies
the relationship between the three parameters of traffic flow and the
length of the vehicle queue, which can describe the process of
gathering and dissipating of queued vehicles from a macro
perspective (Ma et al., 2015). In addition, when calculating the
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number of queuing vehicles using the methods of traffic wave theory
such as the accumulationwave and dissipation wave of traffic flow, the
change in traffic density parameter is the research object. This is
consistent with the use of traffic load parameters (i.e., traffic density
on a road section) in the analysis of dynamic urban road network
state. Therefore, this section adopts the traffic wave theory to model
and analyze the three types of road conditions in the faulty traffic
network, accurately depicting the charging behavior of EVs in the
faulty network, and providingmodeling and solving ideas for the path
planning model to solve the coupled fault between the power
distribution network and the traffic network.

The equation for the three-parameter relationship of traffic
flow is:

q � kv (14)
where q is the traffic flow; k is the traffic density; v is the vehicle
speed on the road.

Density k is obtained by fixed-point measurement through loop
detectors installed at road intersections. The value of k is the ratio of
the number of vehicles passing through the detector during the
observation period to the observation time. When the observation
time is short, k is more closely related to the traffic attributes around
the detector. When the traffic flow states upstream and downstream
of the road section are different, it will lead to deviations in the
calculation results.

The time occupancy ratio is determined by the vehicle speed. It
represents the ratio of the time that vehicles pass through the
detector to the total observation time. Because the vehicle speed
is the same at both the intersection and the midstream of the road
segment, the calculation results are independent of the observation
time and can accurately reflect the operational status of the road
segment. Therefore, the time occupancy ratio is used instead of
density. The conversion relationship between the two is as follows:

k � o

ck
(15)

where ck is the sum of the length of the vehicle and the length of the
detector.

The traditional Greenshields model is limited in its suitability for
low-density road sections and its reliance on subjective parameter
determination. To address these limitations, the logistics speed-
density model proposed by Ma Xiaolong et al. (Ma et al., 2015) is
introduced. In addition, (vm − vf)/vf and v0/(vm − v0) are fixed
constants, represented by c−1f and c0, respectively. Substituting the
quantified time occupancy rate ω � o/of, a model for traffic flow,
parking wave, and starting wave is established as below:

The expression of traffic flow q is as follows:

q t( ) �
o t( )vmc−1k

vm − vf
vf

( ) o t( )
of

v0
vm − v0

( )
o t( )
of

−1
+ 1⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

−1

� o t( )c1 cω2 + c0( ) o t( )> otp

v0
v0 − vf
vf

( ) o t( )−otp
of−otp + 1{ }−1

o t( )≤ otp

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(16)

where vm, v0, and vf are the maximum speed that vehicles can reach
under ideal conditions, free-flow speed of the road, and traffic flow
speed in congested conditions, respectively, and all three speeds are
parameters in the Logistic model; vf is set as 2 km/h; of is the time
occupancy rate in congested conditions; otp is the turning time

occupancy rate, the physical meaning is the point on the speed-
density curve with the maximum absolute value of the slope, which
is also the turning point from free flow to congested flow of traffic.

vws,−a t( ) � qstarta t( )
kstarta t( ) − kf

� qstarta t( )
ostarta t( ) − of

vwu,−a t( ) � qenda t( )
kenda t( ) − kf

� qenda t( )
oenda t( ) − of

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17)

where c1 � c0 · vm/ck; c2 � c0/cf; vws,−a is the parking wave, defined as
the energy wave generated when entering the stationary area from
the non-zero velocity area; vwu,−a is the start-up wave, defined as the
energy wave generated when entering the non-zero velocity area
from the stationary area; qstarta (t) and qenda (t) are the upstream and
downstream traffic flows of section a at the current time,
respectively; kstarta (t) and kenda (t) are the upstream and
downstream road densities of section a at the current time,
respectively; kf is the road density under congested conditions;
ostarta (t) and oenda (t) are the upstream and downstream time
occupancy rates of section a at the current time, respectively;
ωstart
a (t) and ωend

a (t) are the upstream and downstream
quantified time occupancy rates of section a at the current time,
respectively.

4.1.2 Road resistance models for three traffic
situations

Three road resistance models have been established for three
road queuing conditions. Situation 1 and situation 2 correspond to
the EV passing the whole road in the first green signal cycle.
Situation 3 corresponds to the vehicle not passing the road in the
first green signal cycle. Figure 1 is the main characteristic diagram of
the traffic wave model.

4.1.2.1 Situation 1
When a vehicle approaches a red traffic light and the traffic

signal does not change before the vehicle stops, the passage time
consists of two components: the first is the free driving time from
entering the road section to the traffic signal change, and the second
is the queuing time from the traffic signal change until the vehicle
fully passes through.

The traffic flow enters the road section a at an initial velocity of
vina (t) and continues to travel to the queuing area where a traffic jam
occurs. Assuming that the positionwhere the vehicle stops is taken as the
origin of the coordinate system, the travel time of the free driving section
can be obtained based on the distance equation x � vt as follows:

twsa � Xws
a

vws,−a

(18)

Xws
a � Xa −Xwait

a (19)
where vws,−a is the parking wave; Xws

a is the driving distance from
entering the road section to stopping; Xa and Xwait

a are the total
length of the road section and the length of the existing queue,
respectively.

After the traffic light turns green and vehicles start moving, a
start-up wave is generated and the travel time is given by:

twua � Xwait
a

vwu,−a

(20)
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The total travel time for the road segment can be obtained as
follows:

ta �
twua + ta,tra c3 ≤ ttraa , twua ≤ ta,grel, 0<Xwait

a < 1
2
�at2a,tra

ta,tra c3 ≤ ttraa , twua ≤ ta,grel, X
wait
a � 0

⎧⎪⎪⎨⎪⎪⎩ (21)

where c3 � v ±
           
v2−2�a(Xa−Xwait

a )
√

�a ; ta,tra is the remaining waiting time for
the red light; ta,grel is the remaining time for the green light.

4.1.2.2 Situation 2
In the scenario where vehicles encounter a green traffic signal

before they come to a complete stop at a red light, the total travel
time for the road segment is the same as in situation 1. However, in
the free-flowing segment, the vehicle speed decreases while the
density increases, resulting in the formation of a shockwave. The
velocity in front of the shockwave is given by:

v2 � vstarta t( ) − �a · ta,tra (22)
where vstarta (t) is the upstream traffic speed of section a at the
current time; �a is the average acceleration of vehicles.

According to the Logistics speed-density model, the density ksa
of the traffic flow in front of the wavefront can be derived as follows:

ksa � ck · logσ1
c0 · vm
vsa

− 1( ) (23)

σ1 � c0
cf

( ) 1
of (24)

where vsa is the velocity of the vehicle flow in front of the wavefront
of section a.

In the queuing section, if there is no queue ahead, the traffic flow
produces a dissipation wave due to the increase of speed and the
decrease of density, with a wave speed and travel time of:

vwm,+
a � qenda t( ) − qsa

ksa − kenda t( ) (25)

twma � Xa − v2 · ta,tra
vwm,+
a

(26)

where qsa is the traffic flow rate ahead of the shockwave.
When there is a queue ahead, the gathering wave produced by

downstream traffic encounters the starting wave produced by the
queued traffic upstream.

The speed of the jam wave is given by:

vwr,−a � qsa t( ) − qstarta t( )
ksa t( ) − kstarta t( ) (27)

The distance equation is given by:

Xa − vwr,−a

∣∣∣∣ ∣∣∣∣ · ts1a � vwu,−a

∣∣∣∣ ∣∣∣∣ ts1a − ta,tra( ) (28)

The encounter time between the queuing wave and the starting
wave is obtained as follows:

ts1a � Xa + vwu,−a

∣∣∣∣ ∣∣∣∣ · ta,tra( )
vwr,−a

∣∣∣∣ ∣∣∣∣ + vwu,−a

∣∣∣∣ ∣∣∣∣( ) (29)

After themeeting of the jamwave and the startingwave, the tail of the
queue continues to propagate downstream with a wave speed of vwn,−a .

vwn,−a � qenda t( ) − qstarta t( )
kenda t( ) − kstarta t( ) (30)

At this time, the distance equation is:

Xa − vwm,−
a

∣∣∣∣ ∣∣∣∣ · τa − τs1a( ) � 0 (31)

For situation 2, the total travel time ta for the two traffic
conditions in the road segment a is given by:

ta �
twma + ta,tra 0≤ ta,tra < c3 , t

wm,−
a ≤ ta,grel , Xwait

a � 0

Xa + vwu,−a

∣∣∣∣ ∣∣∣∣ · ta,tra
vwr,−a

∣∣∣∣ ∣∣∣∣ + vwu,−a

∣∣∣∣ ∣∣∣∣ + Xa

vwm,−
a

∣∣∣∣ ∣∣∣∣ 0≤ ta,tra < c3 , twm,−
a ≤ ta,grel , 0<Xwait

a ≤
1
2
�at2a,tra

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(32)

4.1.2.3 Situation 3
When a road section becomes congested due to accidents or

urban road construction, introducing new traffic flow to the section
will worsen the traffic conditions, causing significantly increased
travel time for upstream vehicles in the section. To ensure the stable
operation of the transportation network and minimize the travel
time of EVs, this paper introduces traffic flow constraints to the
optimization model, and new EV traffic is not introduced to the
congested sections. Therefore, situation 3 does not establish a road
impedance model for the above two traffic conditions but only
analyzes the traffic conditions caused by traffic signals.

The vehicle travel time consists of three parts: The first part is the
travel time from when the vehicle enters the road segment to the first
stop, where the traffic flow joins the queue ahead and creates a
stopping wave that propagates forward at a wave speed of vws,−a . The
second part is the travel time from the vehicle stopping before the
stop line until it passes through the intersection. Here, the traffic
flow moves slowly forward due to the changing traffic signal, with a
distanceXwait

a moved of the travel distance of the last vehicle passing
through the stop line in one signal cycle. The third part is the travel
time from when the vehicle comes to a complete stop to when it
completely passes through the stop line. Here, the traffic flow
generates a starting wave that propagates forward at a wave
speed of vwu,−a .

The total travel time ta for a road segment is given by:

ta � nta,tra + twua +
twsa c3 ≤ ta,tra, t

wu
a ≤ ta,grel,

1
2
�at2a,tra ≤X

wait
a

ts1a 0≤ ta,tra < c3, t
wm,−
a ≤ ta,grel,

1
2
�at2a,tra ≤Xwait

a

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(33)

twsa � Xa −Xwait
a

vws,−a

ts1a � Xa + vwu,−a

∣∣∣∣ ∣∣∣∣ · ttraa( )
vwr,−a

∣∣∣∣ ∣∣∣∣ + vwu,−a

∣∣∣∣ ∣∣∣∣( )
Xtra

a � 1
2
�a ta,tra( )2

twua � Xwait
a − nXtra

a

vwu,−a

n � Xwait
a

Xtra
a

[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)
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where wij is the impedance value of the road segment; is the
rounding function.

This study considers the scenario where vehicles encounter a
green light. It is assumed that, in the absence of a queue, vehicles exit
the section at a constant speed of 60 km/h. However, in the presence
of a queue, the calculation is performed based on situation 2.

4.2 Path planning model

4.2.1 The objective function
The objective function is established from two aspects: the

benefits of the vehicle owners and the coupled network state.

F � γ1
min CEV′( )CEV t( ) + γ2

min TEV′( )TEV t( ) + γ3
min SEV′( )SEV t( )

+ γ4
min REV′( )REV t( ) (35)

where CEV and TEV are the optimization objectives for EV charging;
SEV is the optimization objective for power grid operation; REV is the
optimization objective for traffic network state; γ1, γ2, γ3 and γ4 are
the weighting coefficients of the objectives.

4.2.1.1 The cost of an EV trip
Considering the maximization of the car owner’s interests, the

optimization is carried out by minimizing the sum of the economic
and time costs. The model is as follows:

CEV t( ) � Croute t( ) + Ccharge t( )
TEV t( ) � Tdrive t( ) + Tchar t( ){ (36)

Ccharge t( ) � p × qchar,c t( )
Croute t( ) � qEV · �p · ∑

i,j∈N
lij t( )

⎧⎪⎨⎪⎩ (37)

Tdrive t( ) � ∑
i,j∈N

xijTij t( )ρij, χi � ∑
i,j∈VT

LR
ije

20Tij t( )
lij

Tcha t( ) � Tchar
wait,c t( ) + Tchar

char,c t( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (38)

where CEV(t) and TEV(t) are the economic cost and time cost,
respectively; Croute(t) and Ccharge(t) are the driving cost and
charging cost for the EV; Tdrive(t) and Tchar(t) are the driving
time and charging time for the EV; p is the charging price;
qchar,c(t) is the charging amount for the c-th EV; qEV is the
energy consumption per 100 km for the EV; N is the set of all
nodes in the road network and service stations; �p is the average
electricity cost for the EV; xij is the path selection variable;
Tij(t) is the time for a vehicle to pass through road segment ij at
the current time; ρij is the congestion penalty coefficient for the
road segment; Tchar

wait,c(t) and Tswap
wait,c(t) are the waiting time for

the vehicle to charge and replace the battery at the service
station, respectively; LRij is the grade coefficient of road ij, which
is set to 1.2.

4.2.1.2 The state of the power distribution network
The evaluation of the distribution network status is based on

ensuring the safe operation of the system. To assess the status of the
distribution network, this model employs the voltage deviation
index and branch loss index. The optimization objective is

selected as the load of the charging station that is connected to
the distribution network.

SEV t( ) � ∑nCS
b�1
SEVb t( ) � Γlossd t( ) · ΓUd t( ) · 1

PCS
b t + 1( ) (39)

ΓUd t( ) � Ud,max − Ud t( )
Ud,max

Γlossd t( ) � P2
e t( ) + Q2

e t( )
U2

d t( ) · Pe t( )Re

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(40)

where Γlossi (t) and ΓUi (t) are the voltage deviation and branch loss
index of node d, respectively; PCS

b (t + 1) is the load connection
capacity of the charging station at the next time; Ud(t) is the voltage
magnitude of node d at the current time; Ud,max is the voltage upper
limit of node d; e is the branch connected to node d; P2

e(t) andQ2
e(t)

are the active and reactive power of branch e at the current time,
respectively; Re is the equivalent resistance value of branch e.

4.2.1.3 The state of the transportation network
The risk propagation path and fault probability model

established in (Huang et al., 2019) is used to construct a
measurement index. The specific model is as follows:

P qa( ) �
0, qa ≤Qa

qa − Qa( )
1 + γ( )Qa

− Qa Qa ≤ qa ≤ 1 + γ( )Qa

1, 1 + γ( )Qa ≤ qa

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(41)

REV � ∑
a∈Lc

P qa( ) × Wa (42)

where P(qij) is the probability of failure for road segment a with
initial flow rate of qij; qa is the upper limit of the load capacity of
road segment a;Qa is the importance of road segment a, which is the
product of the sum of the importance of the two endpoints of road
segment a and the node efficiency; γ is the fault probability
adjustment parameter, which is set to 1; Lc is the set of road
segments passed by the c-th EV; Wa is the risk path propagation
weight of the road segment, which is the product of the degrees of
the two end nodes.

4.2.2 Constraints
4.2.2.1 The operation constraints of charging stations and
distribution network

To ensure the safe operation of the charging station and the
distribution network, the following constraints are introduced:
charging station load constraints, power flow constraints, and
voltage constraints on the lines.

PDN
d,max t( )≥PES

b t( ) (43)
Pl
e t( )≤Pl

e,max (44)
Ud,min t( )≤Ud t( )≤Ud,max t( ) (45)

where PDN
d,max(t) is the rated charging capacity of node d in the power

distribution network at the current time; PES
b (t) is the charging load

of charging station b at the current time; Pl
e(t) and Pl

e,max are
respectively the transmission capacity and the maximum
transmission capacity of line e in the power distribution network
at the current time; Ud(t) is the voltage level of node d in the power
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distribution network at the current time; Ud,min(t) and Ud,max(t)
respectively are the upper and lower voltage limits of node d in the
power distribution network.

4.2.2.2 The operation constraints of the transportation
network

In China, the evaluation standard for urban traffic operation defines
“moderate congestion” as the traffic state of a road segment (Ministry of
Transport of the People’s Republic of China, 2016). However, due to the
longer travel time on such road segments, EVs may not be able to
complete the charging process and reach their destinations within the
planned time, which could result in path search failure.

To prevent the congested road segments from deteriorating as a
result of the introduction of EV traffic and to ensure that at least one
feasible path can be found, the following traffic constraints are
established:

FIGURE 1
Traffic wave models in three situations. (A) Situation 1. (B) Situation 2. (C) Situation 3.

FIGURE 2
Comparison of relative error value calculation results between im-proved model and classic BPR model.

TABLE 1 Comparison of calculation results between improved model and
classic model.

Model MAE MAPE PMSE

BPR 5.23 0.28 10.52

Model in this paper 2.86 0.11 5.03
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�va t( )≥ 20%v0

�va t( ) � v0 · 1 − �oa t( )
of

( )
⎧⎪⎪⎨⎪⎪⎩ (46)

where �va(t) is the average travel speed of segment a.

4.2.2.3 Solution algorithm
In this study, the A* algorithm is used to solve the proposed path

planning problem because it determines the search direction based
on the estimated path cost, thus avoiding searching all directions
and ensuring search efficiency.

5 Case study

5.1 Example parameters

This study analyzes and verifies a 90-node traffic system and
three IEEE33-node power systems (Xing et al., 2020) as

examples. The road network consists of 90 road nodes,
13 charging station nodes, and 147 road segments, covering
approximately 22.4 km in length and 49 km2 in area. The
basic data for the coupled network and charging stations can
be found in (Xing et al., 2020). The study specifically analyzes the
operation of the distribution network and transportation
network during the 16:00–17:00 period, with three fault
scenarios set.

Scenario 1. The 4th node of the 2nd distribution network is faulty,
and the 5th charging station terminates service.

Scenario 2. Building on Scenario 1, the 26th node of the 1st
distribution network is also faulty, and the 12th charging station
terminates service.

Scenario 3. Building on Scenarios 1 and 2, the 4th node of the 1st
distribution network is also faulty, and the 1st charging station
terminates service.

FIGURE 3
Comparison of road impedance value calculation results between im-proved model and classic BPR model.

FIGURE 4
The comparison of the T/Tf calculation results between the model in this paper and the classical impedance model.

TABLE 2 Disordered charging route planning results of EV.

Number
of EV

Path Charging
station node

Distance/
km

Time/
min

Remaining
time/min

Computational time
consuming/s

2 18→25→24→66→64 24 5.8 22.19 15.13 0.85

5 85→86→76→17→4 76 8.6 26.23 4.57 0.84

7 10→9→16→23→22→30→29→46→45 16 5.4 19.22 6.01 0.82

9 72→76→53→56→26→27 76 10 26.15 3.57 0.85
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5.2 Impedance analysis of roads based on
traffic wave theory

To verify the accuracy of the proposed impedance model in this
paper, the travel time of the road segment is used as the output of the
model. The results of the proposed model are compared and
analyzed with those obtained from the traditional BPR
impedance function method in terms of T/T0 calculation, travel
time calculation, and error analysis. The error analysis is shown in
Table 1, which uses the mean absolute error, the mean absolute
percentage error, and the root mean square error for the error
analysis. The specific calculation formulas can be found in the
literature (Wang et al., 2021). The results of relative error
calculation are shown in Figure 2.

Figure 2A compares the impedance values of 147 roads in the
traffic network, while Figure 2B presents the relative error values. In
the results of this study’s model calculation, 57.82% of the road
segments have a relative error of less than 5%, while 37.41% have an
error between 5% and 10%, and only 4.77% of the road segments
have an error greater than 10%. Among them, 43 road segments
have a travel time of less than 1 min. Of these, 38 road segments have
a relative error between 5% and 10%, accounting for 88.37% of the
total number of road segments in this part. There are 77 road
segments with a travel time exceeding 3 min, accounting for 52.38%
of the total number of road segments. Among them, 65 road
segments have a relative error of less than 5%, accounting for
84.42% of the total number of road segments in this part. There
are 11 road segments with a travel time exceeding 5 min. Among
them, the relative error values for roads 1, 5, 59, 85, 95, 105, and
130 are less than 1%, with a maximum of 1.12%. Compared with the
BPR model, the proposed model’s relative errors in oversaturated
road sections with travel times over 5 min are all below 5%, while
those of the BPR model are close to 40%. In saturated road sections
7, 33, 52, 57, 105, 117, and 147, the proposed model’s errors are all
below 5.19%, while those of the BPR model range from 15% to 20%.
In low-saturated road sections with travel times less than 5 min, only
eight road sections have errors exceeding 10% in the proposed
model. Among them, road sections 19, 71, 90, and 102 have
relatively larger errors of 19.32%, 14.88%, 15.41%, and 16.16%,
respectively, while the remaining four road sections have errors
close to 10%. Therefore, in low-saturation road segments, the
proposed model in this paper meets the accuracy requirements.
In saturated and oversaturated road segments, the calculated results
of the classical BPR model have a large deviation from the observed
values, while the proposed model in this paper has smaller errors
and higher fitting accuracy.

To demonstrate the advantages and disadvantages of different
methods in calculating results, a detailed display of the travel time
calculation results for the time-occupancy ratio road impedance
model, the actual observed results, and the classic BPR road
impedance model is presented in Figure 3. A comparison of the
T/T0 calculation results for the time-occupancy ratio road
impedance model, the actual observed results and the
T/T0 calculation results for the BPR classic road impedance
function model is shown in Figure 4.

As is shown in Figure 3 that compared to the actual observed
results, the calculated values of the BPR model are smaller, which is
equivalent to two-thirds of the actual observed data, while the
proposed model in this paper has a higher fitting accuracy in
calculating travel time results. From Figure 4, it can be seen that
the calculated results of the classical BPR impedance model show a
monotonically increasing state, which does not match the actual
situation. Therefore, the proposed model in this paper can more
accurately calculate the travel time of road segments in the
surveyed area.

5.3 Analysis of EV charging behavior and
coupled network operation status

5.3.1 Analysis of EV charging paths
This section analyzes four EVs (No. 2, 5, 7, and 9) located on

congested and uncongested road segments.

5.3.1.1 Scenario 1: Failure of charging station 5
In Scenario 1, two sets of weight coefficients for the objective

function are used to plan the charging path, corresponding to the
disordered charging and ordered charging strategies. To ensure
successful path searching under the disordered charging strategy,
the constraints on traffic network operation are relaxed. The weight
coefficients are determined using the deviation sorting method
established in (Li et al., 2022). The path planning results are
presented in Table 2 and Table 3.

Under the disordered strategy, the total driving distance of EVs is
shorter. However, nearby charging causes traffic congestion, leading
to a large increase in the total travel time due to the large number of
queued vehicles. Taking EV 2 as an example, its target charging
station is close to the fault coupling point, resulting in a significantly
longer queue time than other EVs, with a total travel time of
15.13 min, including a charging queue time of 11.2 min, which is
4.46 times higher than the daily average value. The total travel time is
28.66% higher than that of the ordered strategy.

TABLE 3 Coordinated charging route planning results of EV.

Number
of EV

Path Charging station
node

Distance/
km

Time/
min

Remaining
time/min

Computational time
consuming//s

2 18→55→68→64 55 6.75 19.99 6.91 0.82

5 85→87→83→77→78→5→4 83 13 20 1.23 0.83

7 10→4→1→62→63→62→45 63 8.8 17.24 2.18 0.92

9 72→84→89→79→80→27 79 12.6 23.3 1.11 0.84
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Under the ordered strategy, the journey delay time is reduced to
2.19 min, and the queue time is only 5.11 min. Although the total
delay time is still higher than the daily average value due to the peak
charging period, the operating parameters of the distribution and
traffic networks do not exceed the threshold, ensuring the safe and
stable operation of the coupled network under the fault condition.

5.3.1.2 Scenario 2: Failure of charging stations 5 and 12
Taking EV 9 as an example, in comparison to Scenario 1, the EV

selects the “detour” option with better traffic conditions. Although
the distance increases by 3.17%, the driving time reduces by
0.81 min. As the number of malfunctioning charging stations
increases, the charging waiting time increases by 1.66 min, and
the total travel time increases by 0.85 min, with a user satisfaction
rate of 87.78%. If an unordered charging strategy is implemented,
the driver still selects charging station 76 due to a deviation in the
perception of road network status. The total travel time is 4.49 min,
which is 2.37 times longer than the ordered strategy. The charging
waiting time is 3.21 min, which is 88.82% longer than the ordered
strategy. Although the total stop time is still acceptable, the road
section is slightly congested due to two malfunctioning nodes, and
the driver satisfaction rate decreases to 84.7%.

5.3.1.3 Scenario 3: Failure of charging stations 1, 5, and 12
Taking EV 9 as an example, Table 4 shows the planning results.

Under the unordered charging strategy, the roadside stop time is
3.09 min, which is 66.49% longer than the ordered strategy. The
waiting time is 4.8 min, which is 4.36 times longer than the orderedTA
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FIGURE 5
Topological structure of distribution network. (A)
No.1 distribution network. (B) No.2 distribution network. (C)
No.3 distribution network.
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strategy. As the scope of malfunctions expands, more than 20% of
road sections become oversaturated, resulting in a significant
increase in total travel time for EVs. However, the waiting time
does not exceed 10min, and the satisfaction rate remains above 80%.
Therefore, the path planning scheme is still feasible.

5.3.2 The analysis of the impact on the distribution
network side

Figure 5 shows the topology of the distribution network after
scheduling, and Figure 6 depicts the load variations of the charging
stations. The upper and lower surfaces of the surface plots
correspond to the load variations after adopting the
uncoordinated and coordinated charging strategies, respectively.

In Scenario 1, branch 2-S3 is faulted, triggering the closure of
contact switch 2-S37 and restoring the system connectivity. The
minimum node voltage of the system is 11.75 kV, and the maximum
power transmission capacity of the line is 7.41 MW, which exceeds
the threshold by 5.86%. To address this issue, third-level loads 10,
14, 19, and 21 of the No. 1 distribution network and third-level loads
9, 27, and 29 of the No. 2 distribution network are disconnected.

In Scenario 2, branch 1-S25 is added as a fault, triggering contact
switch 1-S37. In Scenario 3, branch 1-S3 is added as a fault,
triggering contact switch 1-S35. The minimum system voltages
are 11.962 kV and 12.159 kV, respectively, and the line

transmission powers are both less than 7 MW, with no line
overload or voltage violations observed. The scheduling process is
completed.

In Scenario 1, after adopting the uncoordinated strategy,
charging stations 1, 2, 6, and 7 exceed the threshold in the 6th
time window, with loads of 6.7687 MW, 6.8642 MW, 6.369 MW,
and 6.5315 MW, respectively. At this time, the minimum loads of
the four stations are 2.76 MW, 2.98 MW, 2.62 MW, and 2.32 MW,
respectively, with significant differences in load peaks and valleys.
After adopting the coordinated strategy, only charging station
6 approaches the threshold in the 10th time window, with a load
of 5.98 MW, and the minimum load increases to 3.1438 MW. The
peak loads of the other charging stations are all less than 4.2 MW,
with a minimum load of 3.221 MW. All charging station loads
decrease to within the threshold, and the peak-to-valley difference
decreases, which is beneficial for the stable operation of the charging
stations.

In Scenario 2, charging stations 1, 4, and 6 have peak loads in the
8th and 9th time windows, with loads of 5.7546 MW, 5.7981 MW,
and 5.6495MW, respectively. In Scenario 3, charging stations 2, 6, 7,
8, and 11 approach the threshold in the 6th to 12th time windows,
with charging station 7 having a peak load of 5.998 MW in the 10th
time window.

Figure 7 illustrates the voltage variation of the nodes for the
unordered and ordered charging strategies. The voltage deviation
rate of nodes 14–18 exceeds the limit under the unordered strategy,
which poses a threat to the safe operation of the distribution
network. However, under the ordered strategy, the average
voltage deviation rates of the distribution network for the three
scenarios are 3.03%, 3.23%, and 3.53%, respectively, all of which
are within the deviation limit of 7%. Therefore, the planning
scheme can guarantee the safe operation of the distribution
network.

5.3.3 Traffic network impact analysis
To describe the level of congestion, the TTI index is used as

the evaluation indicator in this section, and the conversion
relationship is shown in Table 5. In Scenario 1, after adopting
the disordered charging strategy, 21.77% of the road segments
were in a congested state, with a maximum TTI value of 2.02.
After adopting the ordered charging strategy, even during the

FIGURE 6
Charging station load. (A) Scene1 (B) Scene 2 (C) Scene 3.

FIGURE 7
Node voltage of distribution network.
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peak charging period from 16:20 to 16:35, only 11 road segments
experienced slight congestion, accounting for 7.48% of the total,
and the maximum TTI value was only 1.64. Although there are
still a few lightly congested road segments, the traffic flow
distribution is more even, which helps alleviate traffic
congestion.

Figure 8 shows the distribution of road traffic in the three
scenarios. In Scenario 2, 27 road sections experienced minor
congestion between 16:20 and 16:40, accounting for 11.2% of
the total. The average TTI was 1.41, with a maximum of 1.7. In
Scenario 3, 53 road sections experienced congestion between 16:
15 and 16:55, accounting for 36.1% of the total. The average TTI
was 1.55, with a maximum of 1.812. As the fault range expanded,
the number of congested roads increased significantly; however,
the overall traffic flow remained relatively smooth. Therefore, the
planning scheme can ensure the safe and continuous operation of
the traffic network.

5.4 Analysis of EV charging behavior and
coupled network operation status

(1) The satisfaction index is used to evaluate the planning results
under different weight ratios, and the impact of the preferences
of drivers on path planning is quantitatively analyzed. The
specific model is as follows:

σc � 1
2
∑
i∈VT

CEV
i − CEV

i,min

CEV
i,min

+ TEV
i − TEV

i,min

TEV
i,min

( ) (47)

where CEV
i and TEV

i are the economic and time costs of passing
through the road nodes, respectively; CEV

i,min and TEV
i,min are the

minimum values of the economic and time costs of passing
through the road nodes respectively.

(2) This section uses the ratio of access capacity to transmission
power to quantify the operating status of the charging station

TABLE 5 Relationship between TTI and traffic condition grade transition.

TTI [1,1.3) [1.3,1.6) [1.6,1.9) [1.9,2.2] >2.2

Level Smooth Basic smooth Mild congestion Moderate congestion Severe congestion

FIGURE 8
Number of vehicles in three scenarios. (A) Scenario 1 (B) Scenario 2 (C) Scenario 3.

FIGURE 9
Satisfaction calculation results.
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and uses satisfaction indicators to measure the effect of changes
in the operating status of the charging station on the path
planning result. The specific model is as follows:

θCSb t( ) � PCS
b t( )

Pload
i t( ) × 100% (48)

where θCSb (t) is the utilization rate of charging station b at the
current time; PCS

b (t) is the access capacity of charging station b at the
current time; Pload

i (t) is the transmission power of the distribution
network node connected to charging station b.

(3) This section measures the importance of a coupling node by
the proportion of lost capacity. The model is defined as
follows:

ζ cab t( ) � PCS
f · θCSb t( )
∑nCS
b�1
PCS
b

× 100% (49)

where ζca(t) is the percentage of the capacity loss for the current
time of charging station b; PCS

f is the rated capacity of the failed
charging station; θCSb (t) is the utilization rate of charging station b at
the current time; PCS

b is the rated capacity of charging station b.
Taking EVNo.9 as an example, the satisfaction results are shown

in Figure 9.

5.4.1 Impact of objective function weight on
planning results

As shown in Figure 9, the satisfaction degree of the path
planning results is all above 75%. Among them, when the weight
ratio exceeds 3:7, the satisfaction degree exceeds 90%. This indicates
that under the fault state, the travel time has a greater impact on the
planning results, and the car owners tend to choose the path plan
with the shortest travel time.

5.4.2 Impact of charging station operational status
on planning results

When the utilization rate of charging piles is less than 1, the
satisfaction of car owners is above 94%. When the utilization rate
reaches 1, the satisfaction drops to 93.1%. This indicates that in a
fault state, driving time has a greater impact on the planning results,
when there are available charging spots in the charging station, the
satisfaction is higher, and the impact of the charging station’s
operational status on the planning results is smaller. When there
is a queue in the charging station, the satisfaction of car owners is
affected by the waiting time, and the impact of operational status of
the charging station on the planning results deepens.

5.4.3 Impact of the importance of coupling nodes
on the scope of fault propagation

To compare the propagation range of coupling failures in the
transportation network caused by the power outage of coupling

FIGURE 10
The number of vehicles in scene 4 and scene 5. (A) Scene4 (B) Scene5.

FIGURE 11
The number of vehicles when the weight coefficient is 0.01.
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nodes with different importance levels, this section introduces two
new scenarios: Scenario 4 and Scenario 5.

(1) Scenario 1: Node 4 in distribution network 2 fails, and charging
station 5 connected to this node terminates service, with a power
outage capacity ratio of 7.14%.

(2) Scenario 4: Node 15 in distribution network 1 fails, and charging
station 4 connected to this node terminates service, with a power
outage capacity ratio of 6.57%.

(3) Scenario 5: Node 11 in distribution network 3 fails, and charging
station 10 connected to this node terminates service, with a
power outage capacity ratio of 2.7%.

The number of road vehicles in Scenario 4 and Scenario 5 are
shown in Figure 10. Comparing Scenario 1 and scenario 5, it can be
observed that when a heavily affected charging station fails, there are
significantly more congested road sections than when a lightly
affected charging station fails, indicating a more pronounced
impact on the transportation network. Comparing Scenario 1
and scenario 4, it can be seen that station 5 can distribute the

affected charging flows to nearby stations such as stations 1, 2, 4, and
6, as well as the more remote station 10. Although the moderately
congested road sections are more numerous than in scenario 4, the
flow peak-to-valley ratio is smaller, indicating a more even
distribution.

Therefore, after a fault occurs, the overall state of the transportation
network is affected not only by the capacity of the failed node, but also
by the geographical location of the failed node within the transportation
network and the distribution of nearby charging stations.

5.5 Impact of charging station load
weighting coefficients on path planning
results

When setting the load weighting coefficient of all charging station
nodes in Scenario 1 to 0.1, the scheduling result is still the closure
triggered by the connection switch 2-S37, and the loads of third-level
loads 10, 14, 19, 21 in the first distribution network, loads 9, 27, 29 in the
second distribution network, and loads of charging stations 4 and 7 are

TABLE 6 Comparison of different algorithms.

Algorithm Number of road network
nodes

Number of temporary marked
nodes

Number of permanently marked
nodes

Search
Time/s

Dijkstra 56 72 7 0.018

92 111 13 0.031

147 196 22 0.032

228 331 29 0.035

552 711 43 0.042

A* 56 20 5 0.018

92 43 8 0.023

147 87 16 0.027

228 124 17 0.031

552 155 19 0.037

FIGURE 12
Comparison of the results of different algorithms for solving parameters.
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shed. The proportion of slightly congested road segments in the traffic
network are 7.8%, 11.2%, and 36.1%, respectively, with no moderately
congested road segments.

When the load weighting factors of all the charging station
nodes in Scenario 1 are set to 0.01, the dispatching result is changed
to the closure of the switch 2-S35, and the third-level loads 3, 10, 19,
and 21 in the 1st distribution network and the loads of charging
stations 1, 2, 5, 11, and 12 in the 2nd distribution network are shed,
as well as loads 3, 9, 22, 27, 29, and 30 in the 2nd distribution
network. At this point, the proportion of lightly congested road
sections is 38.46%, with no moderately congested road sections.
Charging stations 3, 6, 7, 9, and 13 are close to their threshold loads
in the 4th to 12th time windows, and EV route planning fails for
stations 5, 7, and 10. The distribution of road traffic flow is shown in
Figure 11. If the operating constraints of the traffic network are
released, the proportion of lightly congested road sections would
reach 49.63%, with road sections 63, 75, 98, 117, 130, 131, and
135 becoming moderately congested, accounting for 4.76% of the
total, and the maximum TTI value reaching 2.08.

5.6 Output performance of different
solution algorithms

Currently, commonly used global path planning algorithms
include A* algorithm and Dijkstra algorithm. The Dijkstra
algorithm selects the shortest edge from the previous node as the
search path, which may traverse the entire network before reaching
the target node, and cannot guarantee search efficiency. The
proposed path planning solution in this paper continuously
updates the planning results based on real-time network
information within a short period of time, and it is necessary to
ensure that the search time is less than the update time. In order to
verify the impact of different algorithms on the solving speed and
performance, a planning function with the shortest distance as the
goal is constructed, and two algorithms are used to solve the path
planning model that needs to be charged, and the simulation results
are obtained as shown in Table 6 and Figure 12.

In a small area of road network, the performance of Dijkstra
algorithm and A* algorithm for solving path planning problems is
similar. However, as the size of the road network increases, A*
algorithm has advantages over Dijkstra algorithm in terms of time
complexity and space complexity. Experimental results show that in
a large area of road network, the number of nodes marked by
Dijkstra algorithm exceeds the number of nodes in the network, with
the maximum number of marked nodes reaching twice the number
of nodes in the network. Therefore, A* algorithm is more suitable for
the path planning model proposed in this paper.

6 Conclusion

In response to the uncontrolled charging behavior of EVs and its
impact on the coupled network after a distribution network failure, this
study considers the propagation path of coupled faults and establishes
an EV path planningmodel with the objectives of minimizing EV travel
costs, optimizing the distribution network, and traffic operation status.
To accurately calculate the travel time of vehicles on road segments, a

road impedance model is established based on the traffic wave theory
and Logistics speed-density model, considering three traffic conditions.
The conclusions are as follows.

1) During high load peak periods, midstream road segments
experience severe density fluctuations. Analyzing the evolution
of traffic flow under multi-time scales from the perspective of
macro traffic flow fluctuations is more in line with the actual
situation of the traffic network.

2) Under the influence of coupled faults, downstream queue length
and incoming traffic at upstream intersections increase
significantly, resulting in complex traffic conditions in the
midstream. The time-time occupancy rate model established
in this study can accurately calculate the travel time of
vehicles based on the fluctuation of traffic flow under
different spatiotemporal states.

3) Based on the background of coupled fault propagation between
the two networks, the optimal path planning solution proposed
in this paper can significantly reduce the travel time of EVs,
rationally allocate EV traffic, reduce the peak-to-valley difference
of the distribution network load, block the further propagation of
coupled faults, and ensure the safe and stable operation of the
distribution network and traffic network after the failure.
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