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Solar-powered water electrolysis can produce clean hydrogen for sustainable energy
systems. Accurate solar energy generation forecasts are necessary for system
operation and planning. Al-Biruni Earth Radius (BER) and Particle Swarm
Optimization (PSO) are used in this paper to ensemble forecast solar hydrogen
generation. The suggested method optimizes the dynamic hyperparameters of the
deep learning model of recurrent neural network (RNN) using the BER metaheuristic
search optimization algorithm and PSO algorithm. We used data from the HI-SEAS
weather station in Hawaii for 4months (September throughDecember 2016). Wewill
forecast the level of solar energy production next season in our simulations and
compare our results to those of other forecasting approaches. Regarding accuracy,
resilience, and computational economy, the results show that the BER-PSO-RNN
algorithm has great potential as a useful tool for ensemble forecasting of solar
hydrogen generation, which has important ramifications for the planning and
execution of such systems. The accuracy of the proposed algorithm is confirmed
by two statistical analysis tests, such as Wilcoxon’s rank-sum and one-way analysis of
variance (ANOVA).With the use of the proposed BER-PSO-RNN algorithm that excels
in processing and forecasting time-series data, we discovered that with the proposed
algorithm, the Solar System could produce, on average, 0.622 kg/day of hydrogen
during the season in comparison with other algorithms.
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1 Introduction

There have been significant shifts in both politics and industry as
a result of growing environmental concerns related to climate
change, shifting consumer preferences towards eco-friendly
products, rising use of renewable energy, and falling prices
associated with renewable technology. To limit warming to far
below 2°C over preindustrial levels, the Paris Agreement of
2016 has been put into effect (United Nation, 2015). The
Intergovernmental Panel on Climate Change (IPCC) of the
United Nations published its seminal report in 2018, in which it
concluded that reductions in emissions of greenhouse gases were
necessary to maintain the rate of global warming below 2°C
(Intergovernmental Panel on Climate Change, 2018).

Using renewable energy sources is one way to combat climate
change and the greenhouse effect, neither of which are mitigated by
the combustion of fossil fuels. However, the greatest obstacle is the
expensive price of generating electricity. The recent tipping point in
the price of wind and solar energy has rekindled interest in clean
energy technology to produce green hydrogen, and this global trend
indicates a future trend toward net-zero emissions (Aydin and
Dincer, 2022). Demand for hydrogen reached 94 million tons
(Mt) in 2021, recovering to levels above those seen before the
pandemic (91 Mt in 2019). Hydrogen contains an amount of
energy that is equivalent to around 2.5% of the world’s total final
energy consumption (International Energy Agency, 2022).

Clean hydrogen production is important because it has the
potential to reduce carbon emissions in several different fields.
Hydrogen produced through electrolysis using renewable energy
sources like solar or wind power is a versatile energy storage medium
and direct fuel alternative for applications that are challenging to
electrify. However, producing green hydrogen from solar energy has
many obstacles (Israa Jasim Mohammed et al., 2022); weather
uncertainty, variability and intermittency, spatial variations, and
complex modeling as the development of accurate solar energy
forecasting models needs the application of sophisticated
mathematical and computational approaches in order to take
into consideration some variables and their interconnections
(Oubelaid et al., 2022).

Hydrogen can be produced from a wide variety of resources, the
most common of which are water, biomass, and even hydrocarbons.
Several different methods, including water electrolysis, gasification,
and steam reforming, are utilized in the production of hydrogen
from these sources. In addition, the production process needs a
source of power, which can be derived from either renewable
resources, nuclear energy, or fossil fuel (Acar and Dincer, 2019).
As a result, the process of water electrolysis powered by RE is
attracting interest all over the world since it can bring the world to a
worldwide economy with zero emissions (Armijo and Philibert,
2020). Even though this method of producing hydrogen is
environmentally friendly, there are some challenges related to
hydrogen production; electrolysis is an expensive process for
producing hydrogen compared to more traditional approaches.
The conversion process during electrolysis still has room for
improvement, especially in terms of lowering energy losses.
Hydrogen has a lower energy density than fossil fuels, thus it
needs to be stored and transported efficiently.

The generation of hydrogen from renewable sources is a clean
process; however, the availability of renewable energy is a critical
factor in hydrogen production as well as the cost of producing
hydrogen. Consistent solar power generation is highly reliant on
favorable weather conditions that provide a constant and copious
supply of solar energy for Photovoltaic (PV) solar modules to
absorb. Because these optimum weather conditions are
unpredictable and fleeting, solar electricity output is also
unpredictable. Forecasting the amount of electricity that can be
generated from renewable sources like solar energy based on
machine learning has been a primary focus for many researchers
in the scientific community. The idea is to predict the PV solar
power output in advance using machine learning at available
weather data to reduce uncertainty towards the availability of
solar power at a given time (Khandakar et al., 2019). Accurate
predictions have been made in investigations of PV solar power
output utilizing a single method, such as artificial neural network
(ANN) or random forest (RF) (Erduman, 2020). Creates an
intelligent prediction model for the output of solar electricity,
which can contribute to the effective management of solar power
systems by delivering accurate forecasts via ANN (Massaoudi et al.,
2021). Use a random forest model to enhance the reliability of short-
term predictions of photovoltaic power. The authors suggest a
modified random forest model that takes into account
meteorological measurements (Meng and Song, 2020). Proposed
a model that can predict daily photovoltaic electricity generation in
North China during the winter season. The authors propose a model
based on the random forest algorithm to increase the accuracy of PV
power generation forecasts, likely with the intention of addressing
the difficulties of PV power generation in winter due to reduced
sunlight and adverse weather conditions (Kalogirou, 2001).
Concluded that ANN solar prediction results were better than
those of conventional statistical approaches. The long short-term
memory networks (LSTM) model outperforms the autoregressive
integrated moving average (ARIMA) model in terms of prediction
accuracy when dealing with noisy data (Elsaraiti andMerabet, 2021).
In comparison to SVM-based models, LSTMs perform better
because of their capacity to analyze vast amounts of data and
their ability to generalize; that is, they adapt to unknown data
(Xiaoyun et al., 2016). In order to make accurate predictions
regarding solar power panels and wind power over the medium
and long term, LSTM neural networks were utilized. The errors
found were far smaller than those predicted by either the SVM
model or the persistence model (Han et al., 2019). It has been
suggested by (Abdel-Nasser and Mahmoud, 2019) that an LSTM
recurrent neural network may accurately estimate the output power
of solar PV systems by making use of hourly data sets that have been
gathered over a year. For photoelectric prediction, this investigation
has also made a comparison between the outcomes of the suggested
method and those produced through the application of techniques
such as multiple linear regression (MLR), bagged regression trees
(BRT), and neural networks (NNs). By contrasting it to other
methods, the authors show that their proposed algorithm has a
lower prediction error rate than the others. The multilayer
perceptron structure, often known as MLP, is an alternative to
the conventional artificial neural network (ANN) methodologies
that have been proposed in order to estimate solar radiation over the
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next 24 h using current data of mean solar radiation and air
temperature for a location in Italy (Mellit and Pavan, 2010).

Multiple-algorithm research on PV solar power production
forecasting has led to the development of numerous tried-and-
true algorithms such as adaptive neuro-fuzzy inference system
(ANFIS), support vector regression (SVR), k-nearest neighbors
(KNN), etc. (Jawaid and NazirJunejo, 2016) used machine
learning regression approaches to improve forecasts of daily
mean solar power. They created a model that can estimate the
daily mean solar power output given certain variables and
parameters, such as weather and solar radiation. Another study
proposed a model for forecasting solar photovoltaic power
generation over extended time horizons. With univariate
machine learning models and data resampling techniques, the
authors likely hope to present a system that can predict PV
power generation not just for the current time step, but also for
future time steps (Rana and Rahman, 2020).

This paper proposes a hybrid dynamic optimization algorithm
using An Al-Biruni Earth Radius- Particle Swarm Optimization to
forecast solar energy production in the form of hydrogen as a
reasonable alternative. Additionally, we propose the use of
artificial intelligence and machine learning as a tool to analyze
the potential of the proposed solution. Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Root Mean Squared
Error (RMSE), and Coefficient of Correlation (r) are the
statistical tools that are utilized in the analysis of the data. A first
investigation of the data was carried out in order to locate trends and
implement various modifications, such as removing any missing
data by process averaging the numbers from the previous
10 minutes.

The remaining parts of the paper are divided into the following
sections: the next section explains the hydrogen production system
from water electrolysis and its mathematical modeling; Section 3,
contains an explanation of the material and various methods and
techniques used in the paper; Section 4, which presents the case
studies simulation and discusses the results and comparisons with
other algorithms; and Section 5, which concludes the paper with a
discussion of potential future directions.

2 Hydrogen production from water
electrolysis

In electrolysis, electricity is used to break a compound apart into
its molecules. To do this, a power source is connected to two
electrodes, called an anode and a cathode. Figure 1 shows that
the blue-colored anode and cathode were submerged in the grey-
colored electrolyte (Wappler et al., 2022). The oxidation happens on
the anode’s positively charged catalytic surface, and the electrons
that are made are sent to the cathode to finish the circuit. During the
reduction process, electrons are used on the cathode’s negatively
charged catalytic surface. From this process, the products of the split
molecules can be kept or let go, depending on what they are used for.

After turning on the power supply and forming the anode and
cathode, electrolysis can commence. The hydrogen proton has a
+1 charge and is attracted to the cathode, as given in Eq. 1:

2H+ l( ) + 2e− → H2 g( ) (1)
Since oxygen ions have a negative charge of −2, they are attracted

to the anode and undergo oxidation to release electrons.

2H2O l( ) → O2 g( ) + 4H+ g( ) + 4e− (2)
Solid oxide electrolysis (SOE), polymer electrolyte membrane

electrolysis (PEM), and alkaline water electrolysis (AWE) are all
ways to do electrolysis. The main difference between each method of
electrolysis is the type of electrolyte they use. At present, electrolysis
of water to produce hydrogen is very expensive, hence just 4% of the
world’s industrial hydrogen comes from this source (Kumar and
Himabindu, 2019). However, by 2030 this share is anticipated to
grow as there will be rising interest in renewable power and falling
costs for hydrogen-production equipment. The most popular types
of electrolyzers are broken down and compared in Table 1, which
provides a summary of the most important specifications and
operation principles for them (Kumar and Himabindu, 2019),
(Omran et al., 2021).

2.1 Mathematical model for the proposed
system components

To achieve the main goal of the paper, A proposed electrolysis
system, which involves separating water into hydrogen and oxygen
molecules, can be powered by solar energy in a system that is called a
solar-powered water electrolysis system. This can be accomplished
by employing photovoltaic, also known as PV, cells to create
electricity from sunshine. This electricity can then be utilized to
operate the electrolysis cell. As indicated in Figure 2, the proposed
system consists of four major parts. In the power generation module,
PV Solar System will be used to generate electricity. The second
module is the water electrolyzer which is responsible for the
separation of water into hydrogen and oxygen. A storage tank is
required for storing the hydrogen output from the electrolyzer after
compression using the compressor. Power conditioner units (DC-
DC controllers) are responsible for regulating the required DC
power for the electrolyzer.

The mathematical model for the different components of the
proposed production system is illustrated below:

FIGURE 1
Simple electrolyzer model.
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2.1.1 Photovoltaic
The performance of the PV array can be simulated by first

deriving the PV model, which reflects the maximum amount of
power that can be output at any given temperature. The model that
is being utilized is capable of predicting the output power of a PV
panel under a variety of different temperature and radiation
conditions. The following equations can be used to derive the
mathematical model that was proposed for a photovoltaic panel
(Yazdanpanah, 2014):

PPV � V. I V( ) (3)

I V( ) � Ix

1 − e
1
b( ). 1 − eA[ ] (4)

A � V

b.Vx
− 1
b

( ) (5)

Vx � s.
Ei

EiN
.TCV. T − TN( ) + s.Vmax − B (6)

B � s. Vmax − Vmin( ).eC (7)

C � Ei

EiN
. ln

V max − Voc

V max − Vmin
[ ]( ) (8)

TABLE 1 Specifications and operation principles for different types of water electrolyzer.

PEM (proton exchange membrane
electrolyzer)

AWE (alkaline water electrolyzer) SOE (solid oxide electrolyzer)

Maturity Early Commercial Commercial R&D

Charger carrier H+ OH− O2-

Electrolyte Solid polymer Aqueous solution10–40% KOH/NaOH Solid ceramic

Working fluid Distilled water High concentration solution Steam

Anode material Pt; Ir; Ru Ni LSMYSZ; CaTiO3

Cathode material Pt; Pt = C Ni alloys Nicermets

Temperature, °C 20–100 40–90, up to 200 650–1,000

Pressure, bar 15–30 2–10 <30

Efficiency 67%–84% 62%–82% Up to 100%

Cell voltage 1.80–2.40 V 1.80–2.40 V 0.95–1.30 V

Current density 1–2 A/cm2 0.2–0.5 mA/cm2 0.3–1 mA/cm2

Stack lifetime <40,000 h <90,000 h <40,000 h

System Lifetime 10–20 years 20–30 years -

Estimated cost by
2050

~$750/kWh ~$600/kWh ~$200/kWh

Advantages - Compact and simple design - Low capital cost - Can be used as a fuel cell

- Fast response and start-up - Stable and well-established - High efficiency

- High H2 purity (99.999%) - No use of Nobel material - Low capital cost

Disadvantages - High membrane cost - Corrosive electrolyte - Unstable electrodes

- Low durability - Low H2 purity - Safety and sealing problems

- Acidic environment - Slow start-up - Brittle material

- Low current density

Anode reaction H2O → 1/2O2 + 2H+ + 2e− 2OH− → 1
2O2 +H2O + 2e− O2− → 1

2O2 + 2e−

Cathode reaction 2H+ + 2e− → H2 2H2O + 2e− → H2 + 2OH− H2O + 2e− → H2 +O2−

Configuration
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Ix � p.
Ei

EiN
. Isc + TCI. T − TN( )[ ] (9)

Where: PPV is the output power of the PV panel (W), I(V) is the
output current of the PV panel at a specific output voltage (A), V is
the output voltage of the PV panel (V), b is the characteristic
constant based on I-V curve its value ranges from 0.01 to 0.18.,
SRi is the solar radiation impinging the cell (W/m2), SRiN is the solar
radiation at Standard Test Condition (STC) (=1000 W/m2), TN is
the temperature at STC (= 25°C), Isc is the short circuit current at
STC (A), Voc is the open circuit voltage at STC (V), Vmax is the
open circuit voltage at 25 °C and 1200 W/m2 (V), Vmin is the open
circuit voltage at 25 °C and 1200 W/m2 (V), T is the temperature of
PV panel (°C), TCI is the temperature coefficient of Isc (A/°C), TCV

is the temperature coefficient of Voc (V/°C), Ix is the short circuit
current at any solar radiation and panel temperature (A), Vx is the
open circuit voltage at any solar radiation and panel temperature
(V), s is the number of PV panels in series, p is the number of PV
panels in parallel. Table 2 shows the detailed PVmodule parameters.

The following equation is used to calculate the annual energy of
PV arrays at a specific site with a given solar radiation.

EPV � P SRx( ). SW( ). 365( ) (10)
Where EPV refers to the amount of photovoltaic energy

produced in a year. SW represents the total number of hours
during which the Sun shines on the photovoltaic module, with
an average hourly solar radiation. P(SRx) stands for the output

FIGURE 2
Schematic diagram for the proposed green hydrogen production system.

TABLE 2 Specifications and description principles for different parameters of PV module.

Parameter Description Value

p The number of modules in parallel 12

s The number of modules in series 2

ISC Short circuit current at STC. 34.72A

VOC Open circuit voltage at STC. 43.32V

Vmin Minimum module open circuit voltage at 1200 W/m2 28.92V

Vmax Maximum module open circuit voltage at 1200 W/m2 36.69V

TCI Temperature coefficient for the short circuit current 0.02A/℃

TCV Temperature coefficient for the open-circuit voltage −0.079V/℃

SRi Solar radiation for the region under study 545W/m2

TN The temperature at STC. 25+C

T Solar module operating temperature 34+C
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power of the photovoltaic module at an average hourly solar
radiation of SRx.

2.1.2 Electrolyzer
Proton exchange membrane, alkaline, and solid oxide

electrolyzers are the three most common. The nature of the
electrolyte determines how each type of electrolyzer operates.
Hydrogen can be produced by either alkaline or PEM
electrolyzers on-site and on-demand, with either kind producing
hydrogen that is compressed without the need for a compressor and
is also 99.999% clean, dry, and carbon-free. The following equations
discuss the mathematical modeling for the alkaline type (Tijani et al.,
2014).

I � PEZ

VEZ
(11)

VEZ � Vcell × nc (12)

Vcell � Vrev + r1+r2TEZ

AEZ
× I( ) + s × log

t1 + t2
TEZ

+ t3
T2
EZ

AEZ
I + 1⎛⎝ ⎞⎠

(13)

ηF �
I

AEZ
( )2

f1 + I
AEZ
( )2 × f2 (14)

_nH2 � 2 _nO2 � ηF
I nc
z F

(15)

Where PEZ represents the power of the electrolyzer. I and VEZ
refer to the input current, measured in amperes, and the electrolyzer
voltage, measured in volts, respectively. Vrev denotes the reversible
cell voltage, while r represents the ohmic resistance. T is the
overvoltage coefficient, s is the electrode overvoltage, TEZ is the
electrolyzer operating temperature, AEZ is the electrode area, ηF is
the Faraday efficiency, F is the Faraday constant, which is equal to
96,485 coulombs per mole, and _n is the molar flow rate, measured in
moles per second. The mathematical equation to calculate the
amount of hydrogen in kg/day from daily solar energy data using

a water electrolysis system is formulated as follows (Nasser et al.,
2022). Table 3 shows the detailed electrolyzer model parameters.

QH2 � E * η * 3600
2*F

(16)

Where E is the forecasted solar energy per day in watts-hours,
and η is the efficiency of the PEM electrolyzer which is 77%.

2.1.3 DC-DC controller
The PV controller’s primary function is to regulate voltage.

Shunt controllers, single-stage series controllers, diversion
controllers, Pulse Width Modulation (PWM) controllers, and
Maximum Power Point Tracking (MPPT) controllers are the five
main varieties of PV controllers. In this section, theMPPT controller
is applied to PV systems. This controller follows the array’s MPP
throughout the day so that it can feed the most solar power into the
system. To determine how many controllers (Ncon) a PV array will
need, consider the following equation.

Pcontroller � NPV× VOC × ISC (17)
Where,NPV is the total number of PV modules, and Pcontroller is

the rated power of the controller for the PV system.

2.1.4 Compressor and storage tank
The compressor is used to compress the hydrogen output from

the electrolyzer to store it in the tank. The mathematical model for
the compressor is given below (Yavuz, 2020).

Pcomp � _nH2 ×∑Wstage

ηc
(18)

Wstage � n

n − 1
RT 1 − rp stage( ) n−1

n[ ] (19)

Where Wstage refers to the work performed by each
compressor stage, measured in watts. rp_stage represents the
pressure ratio per stage (rp_stage = 2.885). R is the universal gas
constant, measured in joules per kelvin mol. T refers to the
temperature of the hydrogen gas, measured in Kelvin. n is the
polytropic index (n = 1.476), and ηc is the efficiency of the
compressor (95%). Pcomp represents the total power consumed
by the compressor, measured in watts. Given that the operating
range of the system is below 200 bars, the pressure of the
hydrogen gas tank is defined as follows:

Ptank � _nH2 RT

Vtank
(20)

Where the Ptank and Vtank are the hydrogen tank pressure in
Pascal and volume in m3.

2.2 Proposed hydrogen production
forecasting algorithm

Forecasting hydrogen production from solar energy often entails
assessing data on solar irradiance, temperature, and other
parameters that impact the efficiency of solar panels. This is
because solar panels are susceptible to being affected by a variety
of environmental conditions. The following is a proposed

TABLE 3 Electrolyzer model parameters.

Parameter Description Value

PEZ Rated power of electrolyzer 7.5 kW

r1 Ohmic parameter No.1 8.05 × 105Ωm2

r2 Ohmic parameter No.2 −2.5 × 10−7Ωm2/℃

s Electrode overvoltage coefficient 0.185V

t1 Overvoltage Coff. No.1 −0.1002m2/A

t2 Overvoltage Coff. No.2 8.424m2℃/A

t3 Overvoltage Coff. No.3 247.3m2℃2/A

nc The number of cells per stack 6

AEZ Area of the electrode 0.25m2

TEZ Electrolyzer operation temperature 80+C

z The number of electrons per reaction 2
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framework for developing a hydrogen production forecasting
algorithm:

1. Data collection: Collect historical data on solar irradiance,
temperature, pressure, and humidity for the specific location
where hydrogen production is planned.

2. Data preprocessing: Clean the data to remove any missing values
or outliers that could skew the analysis.

3. Feature selection: Identify which features (solar irradiance,
temperature) have the greatest impact on hydrogen
production and select them into suitable inputs for the
forecasting model.

4. Model selection: Choose an RNN machine learning algorithm
that is appropriate for the Time-series data.

5. Model training: Train the model on the historical data to identify
patterns and relationships between the features and hydrogen
production.

6. Model evaluation: Evaluate the performance of the model using
different metrics to determine the accuracy of the forecasts.

7. Deployment: Use the trained model to forecast future hydrogen
production from solar energy based on incoming data on solar
irradiance and temperature.

8. Regular updates: Regularly update the model as new data
becomes available and retrain the model if necessary to ensure
the forecasts remain accurate.

3 Materials and methods

This section describes the materials and procedures that were
utilized in the course of carrying out the study. This section’s
objective is to present readers with sufficient information to
enable them to conduct their version of the research and evaluate
the reliability of the findings.

3.1 Datasets

The datasets are meteorological data from the HI-SEAS weather
station in Hawaii (Latitude: 19.5336° N Longitude: 155.5761° W) for
4 months (September through December 2016). We will forecast the
level of solar radiation next season. For each dataset, the fields are
Solar radiation: watts/m2, Temperature: degrees Fahrenheit,
Humidity: percent, Barometric pressure: Hg, Wind direction:
degrees, Wind speed: miles per hour, and Sunrise/sunset: Hawaii
time. The dataset is published on Kaggle as solar radiation prediction
(Kaggle, 2017).

3.2 Data preprocessing

Data preprocessing is used to modify raw data so that it can be
used in further analysis, modeling, and decision-making
(Abdelhamid, et al., 2022). Errors, inconsistencies, and missing
numbers are eliminated throughout the data-cleaning process
using outlier analysis and data imputation (Alhussan, et al., 2022).

Data points that are extremely out of the norm are identified
using outlier detection and eliminated from further analysis. The

z-score method is used for outlier detection because it uses a distance
metric to eliminate data points that are too far from the mean
(Khafaga D. S. et al., 2022). We reconstruct the missing data points
using median imputation to guarantee that the proposed algorithm
acts effectively with full datasets (El-Kenawy et al., 2022a).

3.3 Recurrent neural network (RNN)

RNN is a specific kind of artificial neural network that was
developed specifically to handle sequential input. RNNs have the
ability to process sequences of inputs by retaining a “hidden state”
that captures information about the previous inputs. This is in
contrast to standard feedforward neural networks, which process
inputs individually and do not have any recollection of past inputs.
RNNs are able to do this because they do not process inputs
independently (Shams, 2022). An RNN’s hidden state is changed
at each time step by a combination of the most recent input and the
state that was hidden before it, with the weights for this combination
being learned beforehand. This enables the network to make
predictions based on the history of the inputs while also
capturing temporal dependencies in the data. RNN offers a wide
variety of tools that can be used to solve problems with time series.

Because RNNs can interpret input sequences of varying lengths,
they are particularly useful for a variety of applications, including
natural language processing, speech recognition, and time series
prediction, amongst others. This is one of the most significant
advantages of RNNs. There are a few different varieties of RNNs,
the most notable of which are the LSTM networks and the Gated
Recurrent Unit (GRU) networks. Both of these types of RNNs have
been demonstrated to be particularly successful in identifying long-
term dependencies in sequential data.

The basic RNN with an input sequence x is a model that
attempts to predict a state st at time t, taking into account the

FIGURE 3
(A) RNN unit (B) Unfolded RNN unit showing the different time-
steps state.
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prior state st-1 by employing a differentiable function f. The prior
state does not only include information from the previous time step;
rather, it can be interpreted as a condensed version of all the states
that have come before it. As shown in Figure 3, the weight
parameters in RNN design, which are referred to as U, V, and W
are shared across all layers (Aggarwal, 2018).

The next formulas are used to illustrate the corresponding
relationships between them.

st � f st−1*W + xt*U( ) (21)
Where, st is the current hidden state at time step t, st-1 is the

previous hidden state at time step t-1, xt is the current input at time
step t, W is the weight matrix that governs the influence of the
previous hidden state, U is the weight matrix that governs the
influence of the current input, f is the activation function that applies
a non-linear transformation to the weighted sum of the inputs and
previous hidden state, to produce the current hidden state.

yt � f st*V( ) (22)
Where yt is the output at time step t, V is the weight matrix that

governs the mapping between the hidden state and the output.
RNN models are trained to minimize a loss function, which is

the amount of error in the predictions made in comparison to the
values that occurred. During training, the RNN model is initially
broken down into its constituent recurrent steps, as illustrated in
Figure 3B. After that, the value of the gradient of the loss function
concerning the output state at any instant. The estimated gradient is
sent backward through the network at many time steps in order to
complete the process. The formulas that follow represent,
respectively, the recurring relationships and the accumulated
gradients of parameters.

zJ

zst−1
� zJ

zst
*W (23)

Where: zJ/zst is the gradient of the loss function concerning the
current hidden state at time step t, zJ/zst-1 is the gradient of the loss
function for the previous hidden state at time step t-1 which is
computed by back propagating the gradient through the current
hidden state at time step t using the chain rule of differentiation.

zJ

zU
� ∑n

t�0

zJ

zst
*xt (24)

Where: xt is the current input at time step t, n is the length of the
input vector, zJ/zU is the gradient of the loss function with respect to
the weight matrix U that governs the influence of the current input
on the current hidden state, which is computed by summing the
product of the gradient with respect to the current hidden state and
the current input over all time steps.

zJ

zW
� ∑n

t�0

zJ

zst
*st−1 (25)

Where: zJ/zW is the gradient of the loss function with respect to
the weight matrix W that governs the influence of the previous
hidden state on the current hidden state, which is computed by
summing the product of the gradient with respect to the current
hidden state and the previous hidden state over all time steps.

3.4 Particle Swarm Optimization (PSO)

In 1995, Kennedy and Eberhart were the ones who came up with
the idea for the population-based optimization technique known as
Particle Swarm Optimization, or PSO for short. The social behavior
of birds flocking together and fish schooling, in which individuals
coordinate their motions to pursue a shared goal, served as an
inspiration for the development of the algorithm. PSO is a
derivative-free optimization technique, which implies that it does
not require any gradient information and may be used for solving
non-linear and non-convex optimization problems. Because of this,
PSO can be used to find optimal solutions to non-convex
optimization problems.

The PSO algorithm creates a simulation of the behavior of a set
of particles as they move across a multi-dimensional search space.
Each particle in the simulation represents a potential solution to the
optimization issue being solved by the algorithm. The algorithm
keeps track of a population of particles, where each particle is
distinguished from the others in the search space by its position
and velocity over that space. In the context of the optimization
problem, the position of a particle stands for a possible solution,
while the velocity of a particle stands for the direction and speed at
which it is moving. The method in which the particles move around
in the search space is affected not only by their own experiences but
also by the experiences of the particles around them (Mercangöz,
2021).

The PSOmethod kicks off by seeding a population of particles in
the search space with a random distribution to get things started.
The value of each particle’s goal function is determined so that the
algorithm can determine how fit each particle is. The value of the
objective function reflects the degree to which the potential solution
embodied by the particle satisfies the requirements of the problem.
The fitness of each particle is continually updated based on the value
that it contributes to the objective function; a greater fitness value
denotes a more promising candidate solution (Guo and Abdul,
2021).

After that, the PSO algorithm will make adjustments to the
position Xi and velocity Vi of every particle that is currently present
in the search space. Each particle’s velocity is updated depending on
its current velocity, the distance it is from the best position it has
found up to this point, as well as the distance it is from the best
position found by its neighbors. The position of each particle is
modified to reflect its most recent state by taking into account both
its most recent velocity and its most recent position. This procedure
is repeated by the algorithm for a predetermined number of times or
until a stopping criterion is satisfied, whichever comes first (Khafaga,
2022b).

The velocity update equation for each particle i is given by:

vt+1i � vti + c1r1 Pbestti + xt
i( ) + c2r2 gbest − xt

i( ) (26)
Where w is the inertia weight, c1 and c2 are the acceleration

coefficients, r1 and r2 are random number between 0 and 1, Pbestti is
the best position found by particle i, and gbest is the best position
found by the neighbors of particle i. The position update equation
for each particle i is given by:

xt+1
i � xt

i + vt+1i (27)
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The velocity vi of each particle is updated based on its current
velocity, its distance from its best position found so far pi, and its
distance from the best position found by its neighbors’ gj.

In order to attain desirable results with the PSO algorithm, it is
necessary to tune its many adjustable parameters. The population size,
the maximum velocity, the acceleration coefficients, and the topology of
the neighborhood are all examples of these parameters. The maximum
velocity restricts the greatest speed at which the particles can move,
whereas the population size controls the number of particles that are
contained inside the population. The acceleration coefficients govern
the balance between the particle’s own experience and the experience of
its neighbors, while the neighborhood topology dictates which particles
are deemed to be neighbors of the particle in question.

3.5 Adaptive dynamic technique

After initializing the optimization algorithm, a fitness value is
calculated for each solution in the population. The optimization
method will then obtain the most relevant optimal agent in order to
achieve the best possible fitness value (El-Kenawy et al., 2022b). As
shown in Figure 4, the optimization algorithm begins the adaptive
dynamic process by first dividing the population’s agents into two
groups: exploring and exploiting. The primary goal of the exploiters
is to advance toward the best solution, while the primary goal of the
explorers is to probe the immediate vicinity of the leaders. The
update that takes place between the different population groups and
their agents is a dynamic process (El-Kenawy et al., 2022c). The
optimization process starts with a population that is split evenly
between the exploitation group and the exploration group (50/50)
(Samee, et al., 2022). This is done so that the result will be a balanced
relationship between the two groups.

3.6 BER optimization algorithm

The Al-Biruni Earth Radius (BER) optimization algorithm is a
metaheuristic algorithm that is based on the premise of recreating
the process of measuring the radius of the Earth utilizing the method
devised by the Persian scholar Abu Rayhan Al-Biruni in the 11th
century. This approach was used to measure the radius of the Earth.

The technique begins by initially randomizing a collection of
candidate solutions, which are comparable to the measurements of
latitude and longitude that Al-Biruni took. After that, a fitness function
is used to assess how well each candidate solution satisfies the
optimization problem’s constraints. This function is designed to
measure how well a solution satisfies the requirements. The possible
solutions are then updated iteratively by the algorithm, imitating the
procedure that Al-Biruni used to further hone the measurements (El-
kenawy et al., 2023). During each iteration of the algorithm, a subset of
the candidate solutions is chosen to serve as the “parents,” and a new set
of candidate solutions, referred to as the “offspring,” is generated by
employing genetic operators such asmutation and crossover. After that,
the progeny is put through a fitness test, and the offspring with the best
solutions are chosen to move on to the next-generation of candidate
solutions. When a stopping requirement, such as a maximum number
of iterations or a certain level of convergence, has been satisfied, the
algorithm will come to an end.

The BER algorithm has been effectively utilized in the solution of
a broad variety of optimization issues, such as function optimization,
parameter tuning (Khafaga, 2022c), and feature selection. It is
especially helpful for problems that involve a large number of
variables and complex constraints, which are difficulties that
other optimization techniques might have difficulty solving
(Hamzah et al., 2022).

The proposed hybrid adaptive dynamic optimization based BER
and PSO is discussed in Algorithm 1.

Set BERPSO population Xi (i = 1, 2, . . ., n), size n

objective function Fn.

Collection configuration parameters

Function (Solution s) Fitness

Calculate fitness.

End Function While t < iter_Num

Calculate objective function Fn for each agent Xi
Set Z = best agent position

r � h cos(x)
1−cos(x)

D � r1(S(t) − 1)
S(t + 1) � S(t) + D(2r2 − 1)
In each group, Update the number of solutions.

If the best fitness did not improve,

Increase in the exploration group solutions number.

end if

for each solution in the exploration group

update r, D and Z

The best solutions were elitism.

If Z < any of the best solutions mutate the solution by

D � r3(L(t) − S(t))
S(t + 1) � r2(S(t) + D)
k decreases exponentially from 2 to 0 throughout

iterations,

else

Search around current solution

S′(t + 1) � r(S*(t) + k)
k exponentially decreases from 2 to 0.

end if

end for

for each solution in the exploitation group

The best solutions

update r, D, and Z

If Z < any of the best solutions

move towards the best solution.

D � r3(L(t) − S(t))
S(t + 1) � kr2 − h cosx

1−cosx

else

search around the best solution

vk+1
i � vk

i + c1r1 (Pbestk
i + xk

i) + c2r2 (gbest − xk
i)

xk+1
i � xk

i + vk+1
i

end if

end for

solutions

update fitness

end while

return best agent positionZ.

Algorithm 1 Proposed BER-PSO Algorithm
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4 Simulation results

Green hydrogen production forecasting utilizing the provided
AD-BER-PSO-RNN method is discussed, along with the
experimental parameters and results. The simulation tests are
broken up into two categories: ensemble forecasting and scenario
comparison. The best accuracy of the proposed algorithm is tested

against other algorithms in the literature by applying it to a variety of
scenarios. In addition, the evaluated dataset undergoes a statistical
examination of several tests to demonstrate the efficacy of the
algorithm. Figure 5 depicts the actual values from the dataset as
well as the values forecasted by the proposed AD-BER-PSO-RNN
algorithm.

When working with some datasets that do not make ideal
candidates for feature selection, the residual values and plots can
be of assistance (Saber, and Abotaleb, 2022). These datasets also
contain the ones that are missing data. In order to achieve the
optimal state, it is strongly suggested that the residual values be
distributed uniformly over the horizontal axis. This will allow for the
most accurate representation of the data. When calculating the value
of the residual, the difference between the anticipated and actual
values is used, and it is important to keep in mind that the sum of the
residuals and their mean both equal zero. The plot of the residuals is
shown in Figure 6, which may be found below. The patterns that are
noticed in the plots of the residual data are used to select a non-linear
model, a linear model, and finally, the best model is chosen from
those two models. Figure 6 presents a plot of heteroscedasticity,
which demonstrates the relationship between the two variables.

Homoscedasticity is a notion in statistics that indicates whether
or not the error term is consistent across the values of the
independent variables. Homoscedasticity can be defined as
“whether or not the error term is consistent across the values of
independent variables.” Figure 6 also includes a heat map, as well as
quantile-quantile (QQ) plots, probability plots, and a representation
of the probability of an event occurring. Because the point
distributions in the QQ plot are so closely aligned with the preset
line, it has come to our attention that the actual residuals and the
forecasted residuals are related to one another in a way that can be

FIGURE 5
The actual (blue color) and forecasted (red color) values are based on the AD-BER-PSO-RNN algorithm.

FIGURE 4
Adaptive dynamic algorithm group balance between exploring
and exploiting.
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described as a linear relationship. This provides further evidence
that the AD-BER-PSO-RNN technique, which was demonstrated to
be effective before, is indeed effective.

4.1 Ensemble forecasting

RNN ensemble-based models and an optimal ensemble
model based on the AD-BER-PSO-RNN algorithm are used
to construct this scenario. The training instances are used by
some of the ensemble models. The Root Mean Squared Error
(RMSE), as well as its relative counterpart, the Relative Root
Mean Squared Error (RRMSE), the Mean Absolute Error
(MAE), and the Mean Absolute Percentage Error (MAPE)
which is comparable to MAE but is standardized using actual
observations, and the correlation coefficient (r) are the
assessment metrics that will be used in this scenario. The
following equations discuss the mathematical formulas for
the assessment metrics (Liu et al., 2019).

RMSE �
������������∑n

i�1 zp,i − zi( )2
n

√
(28)

RRMSE � RMSE∑n
i�1zp,i

× 100 (29)

MAE � 1
n
∑n

i�1 zp,i − zi
∣∣∣∣ ∣∣∣∣ (30)

MAPE � 100
n

∑n

i�1
zp,i − zi
∣∣∣∣ ∣∣∣∣

zp,i
(31)

r � ∑n
i�1 xi − �x( ) yi − �y( )������������������∑n
i�1 xi − �x( )2 yi − �y( )2√ (32)

Where n is the number of the total value, zp,i is the forecasted
value, zi is the actual value, xi, yi are the individual data points in
the sample, and �x, �y are the sample means of the individual
values. Table 4 shows the results for the different assessment
metrics of the proposed AD-BER-PSO-RNN algorithm. The
comparative descriptive statistics of the provided optimal
ensemble model with those of other models are described and
presented in Table 5.

4.2 Stability analysis

The RMSE distribution is shown in Figure 7, and the
histogram of RMSE is shown in Figure 8. These two figures
are utilized to determine the stability of the suggested
optimizing ensemble approach concerning the models that
are compared.

In this scenario, the analysis of variance (ANOVA) and the
Wilcoxon rank-sum test (Wilcoxon test) is used to investigate the

FIGURE 6
The Residual, heteroscedasticity, QQ plots, and heat map of the presented and compared algorithm for feature selection.

TABLE 4 Results of different assessment metrics of the proposed AD-BER-PSO-
RNN algorithm.

RMSE RRMSE MAE MAPE r

0.004539877 0.018703808 0.002801511 0.005790398 0.994156428
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statistical discrepancies between the presented and compared
models. Results from the ANOVA are shown in Table 6. Table 7
contains the results of a Wilcoxon rank-sum test used to determine
whether or not the results of the different models differ significantly.
In cases when the p-value is less than 0.05, significant superiority is
shown.

From an economical point of view, the proposed forecasting
model plays a vital role in directing decision-making linked to
investments in renewable energy, infrastructure design, and
activities to minimize greenhouse gas emissions. Stakeholders
can anticipate the future supply of hydrogen amount produced
from solar energy using the proposed reliable forecasting model.
So, investment decisions in renewable energy projects, such as
solar and hydrogen production facilities, can benefit greatly from
this data. Potential profits, project sustainability, and return on
investment can all be evaluated. To further ensure that the
produced hydrogen is put to good use, an accurate forecasting
model can aid in optimizing the sizing and deployment of
renewable energy systems. The proposed model can be used to
inform the planning of infrastructure by revealing trends in

TABLE 5 Optimizing ensemble model’s descriptive statistics versus other models.

BERPSO-RNN BER-RNN PSO-RNN GWO-RNN FHO-RNN GA-RNN JAYA-RNN

Number of values 10 10 10 10 10 10 10

Minimum 0.00414 0.00787 0.008601 0.0127 0.0103 0.01648 0.02881

Maximum 0.00464 0.00987 0.00999 0.0227 0.0213 0.03648 0.04059

Range 0.0005 0.002 0.001389 0.01 0.011 0.02 0.01178

Mean 0.00451 0.00887 0.009671 0.0138 0.0119 0.02648 0.03151

Std. Deviation 0.0001337 0.0004714 0.0004936 0.003143 0.00334 0.004714 0.00326

Std. Error of Mean 0.0000423 0.0001491 0.0001561 0.0009939 0.001056 0.001491 0.001031

Harmonic mean 0.004506 0.008847 0.009647 0.01339 0.01139 0.02563 0.03126

Skewness −2.8 7.065E-15 −1.844 3.106 3.031 2.65E-15 2.897

Kurtosis 8.642 4.5 1.95 9.722 9.401 4.5 8.892

FIGURE 7
RMSE based on the objective function of the presented
optimizing ensemble model and other models.

FIGURE 8
The Histogram of RMSE of the presented optimizing ensemble model and other models.

Frontiers in Energy Research frontiersin.org12

Alhussan et al. 10.3389/fenrg.2023.1221006

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1221006


hydrogen production and consumption. It helps decision-makers
figure out how much infrastructure for storing, transporting, and
distributing hydrogen will be needed. Infrastructure planners can
make better decisions about the location, size, and configuration
of hydrogen production, storage, and distribution networks if
they have a clear picture of the total amount of hydrogen that will
be available in the future. As a result, this improves the overall
dependability of the hydrogen infrastructure while reducing costs
and maximizing efficiency. Finally, solar-generated hydrogen
offers a sustainable and environmentally friendly replacement
for traditional fossil fuels. The presented model accurately
predicts hydrogen production from solar energy, which helps
in the development of plans and activities to lower GHG
emissions. The anticipated data can be used by policymakers
and environmental agencies to pinpoint potential integration
points for solar hydrogen across sectors like transportation,
industry, and power generation. Policymakers may stimulate
the deployment of solar hydrogen technology and cut carbon
emissions by connecting renewable energy goals with hydrogen
demand estimates.

5 Conclusion

This study utilizes a dataset of solar energy as a case study,
which was obtained from the Kaggle platform. The goal is to

forecast daily solar power generation up to the following season.
This information was gathered by Austin Energy, the local electric
utility provider, for 4 months. The forecasting performance of the
tested dataset is improved by a hybrid adaptive dynamic BER-PSO
method that is proposed along with an optimization technique for
a recurrent neural network. This allows for more accurate
forecasting of the amount of hydrogen that is produced from a
water electrolysis system. The proposed hybrid adaptive dynamic
BER-PSO method chooses the best hyperparameters value of the
RNN deep learning model for solar energy forecasting. The
proposed algorithm is tested and compared to other algorithms,
and it proved its superiority in terms of forecasting accuracy and
computational efficiency through different metrics; RMSE,
RRMSE, MAE, MAPE, and correlation coefficient. These results
have significant ramifications for the creation of sustainable
energy systems and policies, since accurate forecasting models
may guide choices regarding investments in renewable energy,
infrastructure design, and initiatives to reduce greenhouse gas
emissions.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding authors.

TABLE 6 ANOVA results of the base and ensemble models for solar energy forecasting.

SS DF MS F (DFn, DFd) P-Value

Treatment (between columns) 0.005909 6 0.0009849 F (6, 63) = 126.8 p < 0.0001

Residual (within columns) 0.0004893 63 0.000007767 — —

Total 0.006399 69 — — —

TABLE 7 Wilcoxon signed rank test results of the base and ensemble models for solar energy forecasting.

BERPSO-RNN BER-RNN PSO-RNN GWO-RNN FHO-RNN GA-RNN JAYA-RNN

Theoretical median 0 0 0 0 0 0 0

Actual median 0.00454 0.00887 0.00989 0.0127 0.0113 0.02648 0.03059

Number of values 10 10 10 10 10 10 10

The sum of signed ranks (W) 55 55 55 55 55 55 55

The sum of positive ranks 55 55 55 55 55 55 55

The sum of negative ranks 0 0 0 0 0 0 0

P-value (two-tailed) 0.002 0.002 0.002 0.002 0.002 0.002 0.002

Exact or an estimate? Exact Exact Exact Exact Exact Exact Exact

Significant (alpha = 0.05)? Yes Yes Yes Yes Yes Yes Yes

Discrepancy 0.00454 0.00887 0.00989 0.0127 0.0113 0.02648 0.03059

The results prove that the proposed ensemble model based on the AD-BER-PSO-RNN algorithm is superior, and the results also show that the algorithm is statistically significant.
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