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The growing need for balancing power combined with the shutdown of
conventional power plants requires new balancing-power providers. In this
context, industrial energy systems are particularly promising. However, the main
task of industrial energy systems is to provide various energy forms. For this
purpose, they operate interconnected units to maximize efficiency, but the
interconnected operation also increases complexity, limiting flexibility due to
the need to supply fixed demands. Energy storage can increase the flexibility
of current and future industrial energy systems, thus enhancing the potential
for sector coupling within the overall energy system at a low cost. To improve
the flexibility of industrial energy systems, we propose a design optimization
framework that accounts for investment in energy storage and for the provision
of balancing power. Since the request of balancing power is uncertain, we
present a stochastic program for the balancing-power market and propose two
ways to model storage that both derive feasible storage operations while being
computationally efficient. In a case study of a multi-energy system, cost savings
between 6% and 17% can be achieved by increasing flexibility for participation
in the balancing-power market with investment in heat storage. The sensitivity
analysis identifies heat storage as particularly advantageous for heat-driven
energy systems. Our method combines long-term investment decisions with
short-term operational uncertainties to identify optimal investment decisions,
which enhance the energy system’s flexibility for the provision of balancing
power.
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1 Introduction

Renewable energies have become a major energy source globally in recent years (IEA,
2021). However, energy supply by renewable energies depends on weather conditions and
seasons.The resulting variability renders balancing supply and demand in the electricity grid
increasingly challenging (Brouwer et al., 2014).

Short-term imbalances between supply and demand are settled by balancing power.
Balancing power is an ancillary service offered by electricity providers or consumers
to support grid stability: positive balancing power is provided by increasing supply or
decreasing demand; negative balancing power works vice versa (Ocker and Ehrhart, 2017).
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Traditionally, balancing power is mainly supplied by
conventional power plants (Rancilio et al., 2022). Due to political,
environmental, and economic reasons, these power plants are
increasingly shut down and, therefore, no longer provide balancing
power. Thus, new balancing-power providers are needed. For this
purpose, multi-energy systems that supply industrial sites are
particularly suited since they handle large amounts of energy and
power.

These multi-energy systems are complex as they commonly
produce several energy forms (e.g., heat, cooling, and electricity)
by operating a set of interconnected units (Bischi et al., 2014).
This complexity limits the flexibility required for the provision of
balancing power since the energy demands need to be supplied
at all times and are not flexible in general. In this case, flexibility
has to be found within the multi-energy system. One solution to
enhance flexibility is energy storage to decouple heat supply and
demand (Guelpa et al., 2019). Therein, energy storage has been
recently discussed for the flexibilization of industrial energy systems
(Prenzel et al., 2023). Here, energy storage can already provide
flexibility in the short term without changing the entire industrial
energy system. Employing sector coupling can make these storage
solutions an essential first step toward reducing carbon emissions in
energy-intensive industries (Baumgärtner et al., 2019b) while being
less costly than batteries. In the long term, storage supports the
flexibility of industrial energy systems that are either electrified
or operated using green fuels. Therefore, the storage can remain
valuable in low-carbon multi-energy systems.

In recent years, participation in balancing-power markets
has been extensively studied for industrial applications. The
studies reveal significant operational savings in terms of costs,
e.g., for an air separation unit with cryogenic energy storage
(Zhang et al., 2015), for a combined heat-and-power plant with
heat storage (Kumbartzky et al., 2017), for a batch production
system with a utility system (Leenders et al., 2020), for combined
cycles (Zhang et al., 2023), for electrified district-heating networks
(Javanshir et al., 2023), and for energy-intense processes, such as
an aluminum mill (Schäfer et al., 2019; Varelmann et al., 2022),
a cement plant (Bohlayer et al., 2020), and a chlor-alkali process
(Lahrsen et al., 2022).

Since the request of balancing power is uncertain, the balancing-
power market model needs to consider uncertainty. For this
purpose, the cited studies mainly use stochastic programming
(Birge and Louveaux, 2011). In the stochastic program, market
participation and system operation are commonly modeled in
several stages. The resulting optimization problems, however, tend
to be difficult to solve, resulting in prohibitive solution times. Thus,
solving these problems commonly requires specialized solution
techniques, such as Benders decomposition (Varelmann et al., 2022)
or customized approaches (Schäfer et al., 2019).

The complexity of energy system optimization increases
further when design decisions are included since design decisions
couple all the time steps within the operation. For multi-energy
systems, the design optimization is proven to be strongly NP-
hard (Goderbauer et al., 2019) even without considering balancing
power. Early approaches to considering balancing power during
design, therefore, avoid solving this decision-making problem
within a single optimization problem. In contrast, the operation
and investment decisions are evaluated in two consecutive steps:

the participation in the balancing-power market is studied
as operational optimization (Muche et al., 2016) or in market
simulations (Angenendt et al., 2020; Schlachter et al., 2020).
Therein, the investment decision is analyzed through a sensitivity
analysis concerning component sizing, storage properties, and
investment cost. However, this consecutive approach may lead to
suboptimal investment decisions, such as to storage systems that
are too small. However, providing flexibility requires oversizing
(Schäfer et al., 2020), making optimal investment decisions
necessary.

Thus, investment decisions in storage units lead to a complex
decision-making problem if the balancing-power market is
included in design optimization. The consequence of providing
balancing power is uncertainty within the energy system
operation since the request for balancing power is uncertain.
In contrast, price uncertainties in electricity and gas markets
influence the system costs but not necessarily the operation.
Thus, uncertainties from the balancing-power market should be
considered in design optimization to ensure a feasible operation
in case of request. Recent approaches integrate uncertainties
into the design optimization, such as short-term operational
uncertainties (Mavromatidis et al., 2018; Teichgraeber and Brandt,
2020), long-term trends (Hoettecke et al., 2022), and transition
pathways (Bohlayer et al., 2021). In this context, Roh et al. (2019),
Teichgraeber and Brandt (2020), and Schäfer et al. (2020) highlight
the possible benefits of including the provision of ancillary
services in design optimization. Therefore, a recent approach
by Srinivasan et al. (2023) integrates the provision of balancing-
power capacity in the design optimization of multi-energy systems.
However, the request of balancing power and its associated revenues
are not considered within the design optimization model.

Here, we fill this gap and include the provision of balancing
power in the design optimization for multi-energy systems.
Therefore, the design optimization considers the energy system’s
flexibility by explicitly modeling the request of balancing power.
The proposed design optimization model combines long-term
investment decisions with short-term uncertainties of participation
in the balancing-power market. The study aims to establish a model
that is computationally tractable for practical applications. Thus, we
introduce a simplified model of the balancing-power market. This
model is a two-stage stochastic program that considers the most
important market features and uncertainties. However, the time-
coupling of the storage unit makes the optimization intractable.
We, therefore, propose two storage formulations, namely, same and
flexible, that both derive feasible storage operations while being
computationally efficient.

The proposed method of flexibility-expansion planning helps
identify trade-offs between the energy system design and flexible
operation in balancing-power markets. While the method is
generally applicable to energy storage, our focus is on heat storage
as a promising technology for the flexibilization of multi-energy
systems.

The proposed method extends on our previous conference
contribution (Nolzen et al., 2021). Here, the method is adapted and
presented in more detail, followed by a detailed analysis of heat
storage as an option for increasing the flexibility of the multi-energy
system. For this purpose, the method is adapted by disregarding
the bidding problem, allowing for more efficient integration of the
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balancing-powermarket into the design optimization. Subsequently,
we elaborate more on the case study to explore the benefits of heat
storage for flexibilizing multi-energy systems.

The remainder of this paper is organized as follows: in Section 2,
we propose a method to model the balancing-power market,
including storage units, into a design optimization. In Section 3, our
method is applied to a case study of a multi-energy system. Finally,
Section 4 describes our conclusions.

2 Optimized storage investments in
flexibility for balancing-power markets

The flexibility-expansion planning method is proposed for
optimal investments in flexibility for balancing-power markets.
The proposed method optimizes long-term investment decisions,
considering the short-term flexibility required for the balancing-
power market.

Balancing-power market participation introduces uncertainty
to the optimization problem. The uncertainty is modeled with
stochastic optimization. However, in stochastic optimization, the
operation of storage units is challenging since their time-coupling
causes the optimization problem to grow exponentially.

Thus, we propose two formulations to model storage: same
and flexible. Both formulations avoid exponential growth of the
optimization problem. The optimization problem still allows for the
analysis of trade-offs between long-term investment decisions in
storage and short-term operation to provide balancing power.

In Section 2.1, a stochastic program is introduced for balancing-
power market participation. This approach considers a wide range
of different market designs, including the most common European
balancing-power markets. Section 2.2 introduces the general energy
system model suitable for greenfield and brownfield optimization.
Here, the model is presented for the retrofit with energy storage.
Finally, Section 2.3 explains the modeling of energy storage units.
We propose two formulations, namely, same and flexible for storage
units that determine the economic benefits of investments in storage
units toward the energy system’s flexibility.

2.1 Balancing-power market participation
as a two-stage stochastic program

Balancing power compensates for imbalances between
electricity supply and demand in the electricity grid. Usually,
transmission system operators deploy balancing power via
the balancing-power market. In the balancing-power market,
participating energy systems can offer positive and/or negative
balancing power. Suppose the transmission systemoperator requests
positive balancing power; energy systems increase the amount
of electricity fed into the electricity grid or reduce the amount
of electricity drawn from the electricity grid. Inversely, if the
transmission system operator requests negative balancing power,
energy systems decrease the amount of electricity fed into the
electricity grid or increase the amount of electricity drawn from
the electricity grid.

Commonly, energy systems receive two types of payments
for the provision of balancing power: the capacity price pcp,+/−

t

FIGURE 1
The two-stage stochastic program considers the balancing-power
market participation, in the first stage, including the most important
market features such as capacity prices, energy prices, and the actual
offer of balancing power. In the second stage, balancing-power
provision is modeled as three request scenarios, ω ∈ Ω per time step
t ∈ T, that consider the operation of the energy system.

(in €/MW) is paid for the provision of balancing-power capacity;
the energy price pep,+/−

t (in €/MWh) compensates the requested
amount of balancing energy. Both prices are specific for positive
and negative balancing power. Thus, four prices are tendered at the
balancing-power market.

Participation in the balancing-power market introduces
uncertainty to the energy system operation due to the uncertain
request of balancing power. To cover this uncertainty, we model
the participation in the balancing-power market as a two-stage
stochastic program following Leenders et al. (2020).

Figure 1 illustrates the two-stage stochastic program, including
the decisions taken at both stages. The first stage of the stochastic
program models the tender at the balancing-power market. The
tender consists of the amount of positive BP+t and negative balancing
power BP−t , the capacity prices pcp,+/−

t , and the energy prices pep,+/−
t .

The second stage of the stochastic program models the scenario-
dependent operation of the energy system. Due to the uncertain
request of balancing power, the second stage considers three request
scenarios ω∈Ω = {none, pos, neg} for the operation of the energy
system in each time step t ∈ T: no request of balancing power (none),
the request of positive balancing power (pos), and the request of
negative balancing power (neg). The three request scenarios are
assigned scenario probabilities πt,ω that sum up to 1.

The method optimizes design decisions considering the
balancing-power market. Therefore, the design optimization
requires a sufficient approximation of the revenues in the balancing-
power market. For optimal investment decisions, the stochastic
program does not explicitly consider the pricing mechanism of
the balancing-power market, such as marginal pricing or pay-as-
bid pricing (Rancilio et al., 2022). As a result, the acceptance and
the request for balancing power take place at fixed pre-defined
prices, which are not optimized in the stochastic program within

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1225564
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Nolzen et al. 10.3389/fenrg.2023.1225564

the design optimization. However, once the design is determined,
an operational optimization with optimized bidding may increase
revenues (Bohlayer et al., 2020) but, at the same time, would require
reliable and accurate price predictions (Bringedal et al., 2021). For
long-term investment decisions, these price predictions are typically
unavailable.

Thus, we neglect optimized bidding and assume price levels such
that the tenders are always accepted in the market. The presented
stochastic program accounts for the operational uncertainty
introduced by the balancing-power market participation. Therefore,
balancing-power market participation is remunerated with capacity
prices for the provision of balancing power and energy prices for
the request of balancing power. Our modeling approach can be used
for balancing-power market designs with both marginal pricing and
pay-as-bid pricing.

2.2 Retrofit optimization of energy systems
with balancing-power market participation

Here, we introduce the optimizationmodel of the energy system.
The presented model focuses on retrofitting with energy storage.
However, the model is also suitable for greenfield optimization
with further components. The optimization model considers long-
term investment decisions for the energy system’s design and
short-term operational decisions associated with participation in
the balancing-power market and energy system’s operation. The
considered energy system model represents a typical industrial
energy system that supplies industrial energy demands for various
products p ∈ P, such as electricity, heat, and cooling, at time steps
t ∈ T.

The objective function is presented in Section 2.2.1, including
all necessary economic constraints for participation in the
balancing-power market. Subsequently, the general product balance
(Section 2.2.2) and electricity balance adapted to the balancing-
power market (Section 2.2.3) are introduced. The constraints for
the operation of the underlying energy systems are presented in
Supplementary Appendix S1.

2.2.1 Objective function and market participation
The objective function minimizes the total annualized cost TAC

as follows:

minTAC = CAPEX+OPEX. (1)

The total annualized costTAC consists of costs for annualized capital
expenditure CAPEX and the yearly operational cost OPEX.

The annualized capital expenditure CAPEX arises from the
investment decision in a storage unit for a product p (e.g., electricity
and heat) as

CAPEX = ∑
p∈P

C stor
p ⋅ cost inv

p . (2)

The capacity of a storage unit Cstor
p is multiplied by the annualized

specific investment cost costinvp . In principle, investment in other
technologies could be included. Here, we focus on energy storage
since the resulting time-coupling requires a particular treatment.

The yearly operational cost

OPEX =∑
t∈T

Δt ⋅ ∑
ω∈Ω

πt,ω ⋅OPEXt,ω (3)

sums up the scenario-based operational cost of all time steps and
scenarios within a year. The OPEX takes into account the operation
of the energy system, including the provision of balancing power.
In Eq. 3, the scenario-based operational cost OPEXt,ω is multiplied
with the respective request probability πt,ω to obtain the expected
cost in each time step t ∈ T. Subsequently, the expected cost in
each time step is multiplied by the weight of each time step Δt
within an entire year since the optimization model considers typical
periods (Baumgärtner et al., 2019a). Conceptually, the method does
not require typical periods. However, the usage of typical periods is
common in the design optimization of multi-energy systems since
computation time can be saved with small losses in the solution
quality (Hoffmann et al., 2020).

The scenario-based operational cost

OPEXt,ω = C
GAS
t,ω +C

DAM
t −R

DAM
t −R

BPM,cp
t −RBPM,ep

t,ω

∀ t ∈ T, ω ∈Ω
(4)

considers the costs and revenues formarket participation and energy
system operation. For each time step t ∈ T and scenario ω ∈Ω, the
scenario-based operational cost OPEXt,ω comprises the costs for the
purchase of gas C GAS

t,ω and electricity CDAM
t at the day-ahead market,

the revenues from the sale of electricity RDAM
t at the day-ahead

market, the revenues for the provision of capacity RBPM,cp
t at the

balancing-powermarket, and the actual delivery of balancing power
RBPM,ep

t,ω .
The cost for gas CGAS

t,ω is calculated from the consumed gas
BUYgas,t,ω and the gas price pgas,buy

t :

CGAS
t,ω = BUYgas,t,ω ⋅ p

gas,buy
t ∀ t ∈ T, ω ∈Ω. (5)

Equations 6, 7 model the cost for the purchase and sale of
electricity.

RDAM
t = SELLel,t ⋅ p

el,sell
t ∀ t ∈ T, (6)

CDAM
t = BUYel,t ⋅ p

el,buy
t ∀ t ∈ T. (7)

Equation 6 computes the revenues from the sale of electricity by
multiplying the sold amount of electricity SELLel,t with the electricity
price pel,sell

t . Similarly, Eq. 7 calculates the cost of purchasing
electricity. Regardless of the request for balancing power, the same
amount of electricity needs to be purchased or sold on the day-ahead
market.

Note that the variables SELLel,t and BUYel,t are not dependent on
the request scenario ω ∈Ω for the purchase and sale of electricity.
Thus, these variables are missing the index ω in contrast to the
remaining variables for purchasing and selling products.

Equations 8, 9 consider the revenues for the provision of
balancing power from the capacity price pcp,+/−

t and the energy price
pep,+/−
t .

RBPM,cp
t = BP+t ⋅ p

cp,+
t +BP−t ⋅ p

cp,−
t ∀ t ∈ T, (8)

RBPM,ep
ω,t = α

+
ω ⋅BP+t ⋅ p

ep,+
t + α

−
ω ⋅BP−t ⋅ p

ep,−
t ∀ t ∈ T, ω ∈Ω. (9)
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Equation 8 computes the provision of capacity for positive balancing
power BP+t and negative balancing power BP−t . Therein, the
provision of capacity is remunerated with the capacity price
pcp,+/−
t , thus assuming that tenders in the balancing-power market

are always accepted with the deterministic capacity price. As
discussed in Section 2.1, the idea is to approximate the revenues in
the balancing-power market sufficiently. Therefore, this modeling
approach assumes the selection of pre-defined capacity prices that
are sufficiently low to be accepted in the balancing-power market. If
relatively high capacity prices are chosen for the optimization, the
acceptance probability decreases such that acceptance and rejection
need to be considered in the model.

In Eq. 9, the energy price pep,+/−
t remunerates the request of

positive and negative balancing power. Since the request is only
compensated in the respective request scenario, we introduce the
binary parameters α+ω and α−ω. The binary parameters α+ω and α−ω
model the scenario-dependent remuneration and are set to 1 if
balancing power is requested and 0 otherwise. Therefore, α+/−ω
has different values for the three request scenarios described in
Section 2.1: both parameters α+ω and α−ω are 0 if no balancing power
is offered (ω = none); α+ω is set to 1 for the scenario in which
positive balancing power is supplied (ω = pos); and α−ω is set to
1 for the scenario in which negative balancing power is supplied
(ω = neg).

Commonly, balancing power is offered in time slices, e.g., each
time slice is 4 hours for the German market. However, the temporal
resolution within the optimization model is usually higher than
the length of the time slices, e.g., 1 hour. That means a time slice
comprises N time steps. Following this, Eqs 10, 11 ensure that the
same amount of positive and negative balancing power is offered
within each time slice:

BP+t = BP+t+a ∀ t ∈ T: (t− 1) ∣ N = 0, a ∈ {1,2,…,N− 1} , (10)

BP−t = BP−t+a ∀ t ∈ T: (t− 1) ∣ N = 0, a ∈ {1,2,…,N− 1} . (11)

The time steps are represented by integers starting from 1, 2 …
T. Thus, time step t indicates the beginning of a new time slice if
t− 1 is divisible by N with no remainder. Subsequently, the amount
of positive balancing power (Eq. 10) and negative balancing power
(Eq. 11) that the energy system can supply is the same in the next N
time steps.

2.2.2 General product balance
The energy system supplies or demands products p ∈ P, e.g.,

heat or natural gas. Due to the provision of balancing power,
the electricity balance is adjusted and presented separately in
Section 2.2.3. Thus, the general product balance is formulated for
all products except for electricity p ∈ P \{el}, time steps t ∈ T, and
request scenarios ω ∈Ω:

demp,t = ∑
u∈U

Pu,p,t,ω +BUYp,t,ω +OUT stor
p,t,ω − IN

stor
p,t,ω

∀ p ∈ P\{el} , t ∈ T, ω ∈Ω.
(12)

In Eq. 12, the product demand demp,t has to be fulfilled
independently from the request scenarioω ∈Ω.Therein, the product
demand demp,t is covered by supply or additional demand of
production units Pu,p,t,ω and by buying products BUYp,t,ω. Here,
Pu,p,t,ω is negative if the production unit u demands a product

(e.g., natural gas) and positive if the production unit u supplies
a product (e.g., heat). In addition, charging IN stor

p,t,ω or discharging
OUT stor

p,t,ω of the storage unit for product p adjusts the product
balance.

Note that commonly, certain products, e.g., heat, cannot be
purchased. In this case, the variable BUYp,t,ω is set to 0. As a result,
only storage and production units cover the demand demp,t for such
a product p.

2.2.3 Electricity balance including
balancing-power provision

The electricity balance differs from the general product balance
since the electricity balance considers the possibility to exchange
electricity with the grid via the day-aheadmarket and the balancing-
power market. For each time step t ∈ T and scenario ω ∈Ω, the
electricity balance thus results in

∑
u∈U

Pu,el,t,ω +BUYel,t + α−ω ⋅BP−t +OUT stor
el,t,ω − IN

stor
el,t,ω

= demel,t + α+ω ⋅BP+t + SELLel,t ∀ t ∈ T, ω ∈Ω. (13)

The electricity demand demel,t is satisfied by the sum of the energy
system’s electricity production Pu,el,t,ω as well as the sale SELLel,t or
purchase BUYel,t of electricity on the day-ahead market. If available,
battery storage can be used to cover the electricity balance by
charging IN stor

el,t,ω or discharging OUT stor
el,t,ω.

Equation 13 also considers the provision of positive BP+t and
negative balancing power BP−t by the binary parameters α+ω and α−ω.
The binary parameters α+ω and α−ω take values of 0 or 1 depending on
the request of balancing power.

Overall, the demands of the industrial energy system are pre-
defined and deterministic, i.e., within each time step t ∈ T, the
demands are the same for each request scenario ω ∈Ω. Therefore,
these pre-defined demandsmust be covered independently from the
provision of balancing power. Thus, the flexibility for the provision
of balancing power is realized by adjusting the operation of the
industrial energy system by either switching between production
units (e.g., from combined heat-and-power units to boilers) or by
using storage.

2.3 Modeling of storage units in the
balancing-power market

Storage units store products in a certain time step and withdraw
the products at a later time step. In contrast to quasi-steady state
formulations of energy conversion technologies, storage models
introduce state variables at the storage level (Sass and Mitsos,
2019). Thus, the time-coupling of all time steps resulting from
the investment decision additionally leads to a time-coupling at
the operational level, as the state variables introduce a temporal
path dependency. Since storage units couple the time steps t ∈ T
in an optimization problem, modeling storage units substantially
increases complexity within the stochastic program described in
Section 2.1.

Due to the three request scenarios ω ∈Ω, our problem yields
three possible operations of the storage unit for each time step t ∈ T.
Thus, the number of possible storage levels increases with 3|T|, and
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FIGURE 2
Modeling the participation in the balancing-power market leads to an exponential growth of the scenarios (left). To keep the problem tractable, we
restrict the information, i.e., storage level, passed to the next time step. For all three proposed scenarios, same, flexible, and graph (right), the number
of scenarios increases linearly.

the problem gets computationally intractable with only a few time
steps.

Hence, we present two formulations to restrict the possible
storage level in each time step. Figure 2 provides an overview of
the two proposed formulations: same and flexible. The storage
formulation same considers the same storage level across all request
scenarios regardless of the request for balancing power. In contrast,
the storage formulation flexible considers the lowest storage level
across all request scenarios for the next time step. Both formulations
same and flexible pass only one distinct storage level to the next
time step.Therefore, the problems remain computationally tractable
since the number of scenarios increases with 3 ⋅ |T| instead of 3|T|.
However, both proposed storage formulations restrict recourse in
the optimization problem, i.e., the information that is passed to the
next time step is restricted.

As a further idea, we present the storage formulation graph based
on a recombining trinomial tree in Supplementary Appendix S2.
The recombining trinomial tree allows for recourse and uses
the advantage of recombination: the number of possible storage
levels still grows linearly with 3 ⋅ |T|. However, compared to our
other approaches, the model is computationally expensive, while
extensive preliminary studies have shown only a small benefit (cf.
Supplementary Appendix S2). Thus, the approach is not pursued
any further.

Both formulations same and flexible ensure a feasible operation
since the storage level is always at a sufficient level. In this
context, sufficient means that the energy stored in the storage
unit is available and ready for use when required for the energy
system’s operation, even under a potential request of balancing
power. Therefore, both formulations allow us to assess the economic
benefit that storage provides for the flexibilization of the energy
system.

In Section 2.3.1, we present general modeling equations to
model storage units. Subsequently, we present the additional

equations for formulation same in Section 2.3.2 and formulation
flexible in Section 2.3.3.

2.3.1 General storage equations
This section presents the general storage equations Eqs 14–22

that are used both in formulation same and formulation flexible. The
general formulation can be used for storing an arbitrary product p.

In case an investment is made in the storage unit, Eqs 14, 15
model the capacity limits as

C stor
p ≤ cap

stor,max
p ⋅ γ stor

p ∀ p ∈ P, (14)

C stor
p ≥ cap

stor,min
p ⋅ γ stor

p ∀ p ∈ P. (15)

The binary variable γ stor
p equals one if an investment in a storage

unit for product p is made. In this case, the newly installed
storage capacity C stor

p is restricted between minimum capstor,min
p and

maximum potential storage capacity capstor,max
p .

Since the newly installed storage unit is used in all time steps
t ∈ T, the variableC stor

p couples all time stepswithin the optimization
problem. Subsequently, Eq. 16 ensures that the storage level is always
greater than 0 and limits the storage level STL stor

p,t,ω to the installed
storage capacity C stor

p :

0 ≤ STL stor
p,t,ω ≤ C

stor
p ∀ p ∈ P, t ∈ T, ω ∈Ω. (16)

Similar to Baumgärtner et al. (2019b), we assume a limit of the
storage power for charging IN stor

p,t,ω and dischargingOUT stor
p,t,ω as a fixed

fraction of the storage capacity by the factor pcr stor
p that is multiplied

by the storage capacity C stor
p :

OUT stor
p,t,ω ≤ pcr

stor
p ⋅C stor

p ∀ p ∈ P, t ∈ T, ω ∈Ω, (17)

IN stor
p,t,ω ≤ pcr

stor
p ⋅C stor

p ∀ p ∈ P, t ∈ T, ω ∈Ω. (18)

Thus, Eqs 17, 18 limit the amount of product p to discharge OUT stor
p,t,ω

and charge the storage unit IN stor
p,t,ω depending on the storage capacity

C stor
p .
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In each time step t ∈ T and scenario ω ∈Ω, either charging or
discharging of the storage unit is allowed. Equations 19–21 restricts
the operation of the storage unit accordingly:

ϵstor,inp,t,ω + ϵ
stor,out
p,t,ω ≤ 1 ∀ p ∈ P, t ∈ T, ω ∈Ω, (19)

OUT stor
p,t,ω ≤ pcr

stor
p ⋅ cap

stor,max
p ⋅ ϵstor,outp,t,ω ∀ p ∈ P, t ∈ T, ω ∈Ω,

(20)
IN stor

p,t,ω ≤ pcr
stor
p ⋅ cap

stor,max
p ⋅ ϵstor,inp,t,ω ∀ p ∈ P, t ∈ T, ω ∈Ω.

(21)

The binary variables ϵstor,inp,t,ω and ϵstor,outp,t,ω indicate if the storage unit
is charged or discharged in time step t ∈ T and scenario ω ∈Ω.
Equation 19 ensures that either ϵstor,inp,t,ω or ϵstor,outp,t,ω equal one in each
time step and scenario to either allow charging or discharging.
Subsequently, Eqs 20, 21 restrict either the maximum power for
discharging OUT stor

p,t,ω or charging IN stor
p,t,ω the storage unit to 0 if

one of the binary variables ϵstor,inp,t,ω and ϵstor,outp,t,ω equals 0. Overall,
Eqs 17–21 constrain the storage operation: Eqs 17, 18 limit the
maximum power of the storage; Eqs 19–21 restrict the charging and
discharging per time step.

A key step to keep the optimization problem tractable is to
reduce the information passed to the next time step. Here, the
storage level needs to be passed on to the next time step. In principle,
each scenario ω ∈Ω = {none, pos, neg} could lead to a different
storage level, and, thus, to 3|T| storage levels. To avoid this growth
of the scenario tree, we propose to forward only one storage level
per time step. Equation 22 ensures the same storage levels for all
scenarios ω ∈Ω, in each time step t ∈ T, with a non-anticipativity
constraint:

STL stor
p,t,pos = STL stor

p,t,none = STL stor
p,t,neg ∀ p ∈ P, t ∈ T. (22)

Therefore, Eq. 22 avoids exponentially growing amounts of possible
storage levels. However, Eq. 22 also restricts the use of the storage
unit and, thus, its potential value. We, therefore, propose two
formulations to model the operation of the storage unit, i.e., for
charging and discarging. The formulations same and flexible are
introduced in the following sections.

The design optimization considers repeating typical periods.
Within typical periods, the storage level at the end of the
period equals the storage level at the beginning of the period.
Note that this cyclic condition in Eq. 23 leads to an implicit
coupling of all time steps within the considered typical
periods. In Eq. 23, we take into account repeating periods
with:

STL stor
p,t0,ω = STL stor

p,tend,ω ∀ p ∈ P, ω ∈Ω, (23)

by setting the last time step of each typical period tend equal to the
first time step t0. The cyclic condition in Eq. 23 limits the use of the
storage to the respective typical periods, e.g., to typical days. Thus,
seasonal storage is not considered within optimization since this
method considers short-term balancing-power markets with daily
participation.

In the following Sections 2.3.2 and 2.3.3, we present the
formulations same and flexible. Both formulations restrict the
operation of the storage unit to different degrees, thusmodifying the
flexibility potential of an additional storage unit.

2.3.2 Formulation same
In the formulation same, we consider that the storage is not

adapted to the request of balancing power but is operated the same
regardless of the request of balancing power. Thus, flexibilization
in the energy system resulting from storage is limited to shifting
the demands between individual time steps, rather than reacting
to requests for balancing power within the same time step. Hence,
the formulation same neglects the potential for flexibilization within
a time step. The formulation same represents a lower limit for the
economic benefits of flexibilization by storage.

In formulation same, the storage unit is thus operated in the
same way regardless of the request for balancing power. Therefore,
the operational variables for the storage operation are the same for
each scenario. Following this, Eqs 24–27 model the operation of the
storage unit via non-anticipativity constraints:

IN stor
p,t,pos = IN

stor
p,t,none = IN

stor
p,t,neg ∀ p ∈ P, t ∈ T, (24)

OUT stor
p,t,pos = OUT stor

p,t,none = OUT stor
p,t,neg ∀ p ∈ P, t ∈ T, (25)

ϵstor,inp,t,pos = ϵ
stor,in
p,t,none = ϵ

stor,in
p,t,neg ∀ p ∈ P, t ∈ T, (26)

ϵstor,outp,t,pos = ϵ
stor,out
p,t,none = ϵ

stor,out
p,t,neg ∀ p ∈ P, t ∈ T. (27)

The storage level at the next time step t+ 1 is then determined
using Eq. 28:

STLstor
p,t+1,ω = STLstor

p,t,ω ⋅ (1− η
loss
p ) +Δt ⋅ (ηout

p ⋅OUT stor
p,t,ω

+ηin
p ⋅ IN

stor
p,t,ω) ∀ p ∈ P, t ∈ T, ω ∈Ω. (28)

Starting from the storage level STLstor
p,t,ω at time step t, the amount

of charging IN stor
p,t,ω and discharging OUT stor

p,t,ω determines the storage
level STLstor

p,t+1,ω at the next time step t+ 1. In addition, the parameter
η loss
p considers storage losses during a time step t, while the

parameters ηin
p and ηout

p are the charging and discharging efficiencies,
respectively.

Overall, the formulation same models a storage unit that always
ensures feasible storage levels and operations without allowing for
overproduction. Therein, the storage operation cannot be adjusted
to the request of balancing power, since the non-anticipativity
constraints do not allow for recourse in the storage operation.

2.3.3 Formulation flexible
The formulation flexible allows operating the storage unit by

adapting to the scenario, i.e., that the storage unit can react to
the request of balancing power. Therefore, we allow a flexible
operation of the storage unit such that in each scenario the storage
level can be changed. For this purpose, we neglect the non-
anticipativity constraints (Eqs 24–27) to restrict storage operations.
Thus, flexibilization by the storage unit is possible within individual
time steps.

However, this approach would lead to an exponentially growing
number of scenarios with respect to the number of time steps.
To reduce the information, i.e., the number of scenarios that are
considered in the next step, the formulation flexible always considers
the lowest possible storage level for the next time step. Thus, this
formulation guarantees a storage level that always ensures feasible
operation, however, at the cost of potential overproduction.
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Following this, we model the storage level for the next time step
STLstor

p,t+1,ω as inequality constraint:

STL stor
p,t+1,ω ≤ STL stor

p,t,ω ⋅ (1− η
loss
p ) +Δt ⋅ (ηout

p ⋅OUT stor
p,t,ω

+ ηin
p ⋅ IN

stor
p,t,ω) ∀ p ∈ P, t ∈ T, ω ∈Ω. (29)

With formulation flexible, we allow the storage unit to be
operated flexibly since the storage unit can be operated depending
on the request of balancing power. Therefore, Eq. 29 ensures feasible
operation by considering the lowest possible storage level. However,
since only the lowest possible storage level across all request
scenarios is considered in the next time step t+ 1, the formulation
flexible allows for overproduction.

The presented storage formulations same and flexible allow
exploring the benefits of storage for the balancing-power market:
for multi-energy systems that do not allow for overproduction
(same) and for multi-energy systems that allow for overproduction
(flexible). Both storage formulations are easy to implement,
thus avoiding an exponentially growing number of scenarios.
The formulation same yields lower economic benefits than the
formulation flexible since the storage can only shift the demand
between individual time steps but cannot adapt operation within
time steps. Thus, the flexibility for balancing power can only be
provided by adjusting the operation of the multi-energy system. In
contrast, the formulation flexible yields higher economic benefits.
In this formulation, further flexibilization of the energy system is
possible by overproduction. However, overproduction, as, e.g., in
Bauer et al. (2022), may not always be possible for multi-energy
systems, thus underlining the need for both formulations. Hence,
we analyze based on both presented storage formulations in the
following case study how a retrofit with the storage unit makes a
multi-energy system more flexible.

3 Case study of flexibility-expansion
planning for a multi-energy system

The flexibility-expansion planning method, as described in
Section 2, is applied to a case study of a multi-energy system
that covers time-varying electricity and heat demands to supply
an industrial site. The multi-energy system has the ability to
offer flexibility on the balancing-power market, in addition to
participation in the day-ahead market.

The goal of the case study is to assess the benefits of storage
investments for participation in the balancing-power market. To
analyze investment in flexibility, we consider the retrofit of the
multi-energy system with heat storage. The investment decision
in the heat storage unit is either based on formulation same or
formulation flexible. Therefore, we examine the trade-off between
investment costs for a heat storage unit to enlarge flexibility during
operation.

Section 3.1 presents the case study, including the main
parameters. In Section 3.2, we analyze the flexibilization of the
multi-energy system with additional investment in the heat storage
unit. In addition to investment in the heat storage unit, we
consider different market options for flexibility, such as the day-
ahead market and balancing-power market. Finally, we examine
the effect of increasing/decreasing heat demand on the optimal

investment in the heat storage unit. Section 3.3 thus investigates
optimal investments in both heat-driven and electricity-driven
multi-energy systems. The multi-energy system is defined as heat-
driven if its operation is restricted by the heat demand and as
electricity-driven if its operation is restricted by the electricity
demand.

3.1 Case study description

In the case study, themulti-energy systemneeds to supply hourly
varying electricity and heat demands. For this purpose, the multi-
energy system comprises several interconnected combined-heat-
and-power units (CHP) units and gas-driven boilers (B) (Table 1).
In addition, part-load behavior is taken into account for all units, in
accordance with Voll (2014). Thereby, we use realistic component
models based on an established model that is benchmarked in
Sass et al. (2020).

The case study aims to show how the proposed method can
be used to decide on storage investments while accounting for
the balancing-power market. Based on the investment decisions,
we investigate the operational implications of heat storage for
providing flexibility in the balancing-power market. Furthermore,
the additional economic benefit of storage for providing flexibility is
quantified for the studied multi-energy system.

To examine the benefit of investing in heat storage, we model
a typical day with time steps of hourly resolution. This typical
day approximates the market opportunities on the day-ahead
market and balancing-power market, as well as the operational
requirements for the multi-energy system.The typical day takes into
account an hourly time series of electricity and heat demands. To
select a typical day from the yearly time series by Baumgärtner et al.
(2019b), we use hierarchical clustering based on the TSAM
tool (Kotzur et al., 2018). The hourly demands for electricity and
heat show a typical night and day pattern with low demands
during nighttime and high demands during business hours (cf.
Supplementary Appendix S3; Supplementary Appendix Figure S2).

The multi-energy system is able to offer flexibility to the
balancing-power market. In our case study, we consider the
German market for minute reserve as of August 2019. The

TABLE 1 Overview of the components of themulti-energy system, the
installed capacities, and their thermal (th) and electricity (el) output. CHP:
combined heat-and-power units; B: gas-driven boilers.

Component Capacity
[MWth]

Capacity
[MWel]

Output

CHP 1 3.0 3.33

CHP 2 2.5 2.78

CHP 3 2.25 2.5 Heat and electricity

CHP 4 2.0 2.22

CHP 5 1.0 1.11

B 1 5.0

B 2 2.0 Heat

B 3 1.0
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studied market design incorporates all features of the stochastic
process, such as capacity prices, energy prices, and separate
marketing of positive and negative balancing power. In addition,
we assume that the multi-energy system can provide balancing
power within the required activation time of 15 min. We assume
that in each hourly time step, either no request or a request of
positive or negative balancing power occurs. Thus, the case study
uses an hourly resolution to resolve operations. Since balancing
power needs to be offered in time slices of 4 hours, we derive
constant capacity prices, energy prices, and request probabilities
for each time slice of 4 hours (cf. Supplementary Appendix S3;
Supplementary Appendix Table S2).

We use market data for the period of August 2019–July 2020
for the day-ahead market and balancing-power market. The data
of the balancing-power market are prepared similar to those in
Muche et al. (2016) and Leenders et al. (2019) to obtain capacity
prices pcp,+/−

t , energy prices pep,+/−
t , and request probabilities πpos/neg.

For this purpose, the mean capacity prices from Regelleistung.net
(2021) are averaged by time slices. For each time slice, the energy
price is calculated as the mean energy price of all quarter hours
with the request of balancing power. The request probability is
derived as quarter hours with the request of positive/negative
balancing power divided by all quarter hours within a time slice.
Additionally, we assume a maximum amount of 10 MW of positive
and negative balancing power that can be offered to the balancing-
power market. Since the German market for balancing-power
capacity allows balancing power to be offered at time slices of
4 hours, we assume that balancing power must be offered for 4-hour
time slices.

The multi-energy system sells and purchases electricity on
the day-ahead market. The day-ahead market is represented by
hourly varying electricity prices. We choose the electricity prices
from Bundesnetzagentur (2021) for the same period (August
2019–July 2020) and select a typical day with hierarchical clustering
using the TSAM package (Kotzur et al., 2018). Furthermore, we
assume a difference between the electricity prices for selling and
purchasing to account for carbon taxes (Bauer et al., 2022) and
levies (Bundesnetzagentur, 2021) within the prices. Ultimately,
Table 2 contains the overview of the case study parameters with
average values and the respective data sources. We model the
case study using the SecMOD MILP framework (Reinert et al.,
2023).

Following this, we consider the flexibilization of the multi-
energy systemusing one typical day.The results based on four typical
days are shown in Supplementary Appendix S4, yielding similar
results. While the optimization problems with one typical day take
a maximum of a few minutes to solve, four typical days already take
more than 1 hour computational time. Flexibilization is achieved by
a retrofit with a heat storage unit. Thus, in the following section,
we examine the benefits of investment in the heat storage unit.
Therefore, we consider five cases: the case (DAM) represents the base
case with sole participation in the day-ahead market, while the case
(DAM, BPM) takes into account the additional participation in the
balancing-power market. Both cases (DAM) and (DAM, BPM) do
not consider additional investment in the heat storage unit. The case
(DAM, STOR) allows for investment in the storage unit but only
considers participation in the day-aheadmarket. Since participation

TABLE 2 Average input parameters for the case study, including data
sources.

Parameter Value Data source

Electricity demand demel 5.5 MWh
h

Baumgärtner et al.
(2019b)

Heat demand demheat 3.2 MWh
h

Baumgärtner et al.
(2019b)

Electricity price sell pel,sell 39.3 €
MWh

Bundesnetzagentur |
SMARD.de (2021b)

Electricity price buy pel,buy 76.5 €
MWh

Bundesnetzagentur |
SMARD.de (2021b);
Bundesnetzagentur
(2021); Bauer et al.
(2022)

Gas price pgas,buy 33.6 €
MWh

Bundesnetzagentur
(2021); Bauer et al.
(2022)

Capacity price pcp,+ 13.1 €
MW⋅4h

Regelleistung.net
(2021)

Capacity price pcp,− 8.2 €
MW⋅4h

Regelleistung.net
(2021)

Energy price pep,+ 208.2 €
MWh

Regelleistung.net
(2021)

Energy price pep,− 170.9 €
MWh

Regelleistung.net
(2021)

Request probability πpos 1.7 % Regelleistung.net
(2021)

Request probability πneg 1.1 % Regelleistung.net
(2021)

Investment cost heat storage unit costinvheat 5651 €
MW⋅a

Baumgärtner et al.
(2019b)

Storage power-to-capacity limit pcrstor 1 Baumgärtner et al.
(2019b)

(Dis)Charging efficiencies ηin∕out 0.95 Baumgärtner et al.
(2019b)

Storage loss ηloss
p 0.01 h−1 Baumgärtner et al.

(2019b)

in the balancing-power market introduces inherent uncertainty, we
examine the range of the additional advantages to market flexibility
with the cases (SAME) and (FLEXIBLE). The case (SAME) allows
for investment in the heat storage unit with formulation same; the
case (FLEXIBLE) allows for investment in the heat storage unit with
formulation flexible.

3.2 Flexibilization of the multi-energy
system with the heat storage unit

Investment in a heat storage unit with participation in the
balancing-power market leads to the largest cost savings. In the case
(SAME), savings of 5.5% are expected, while the case (FLEXIBLE)
indicates a cost reduction of 16.9% compared to the base case (DAM)
(Figure 3). The additional participation in the balancing-power
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FIGURE 3
Annual costs and revenues with investment in the heat storage unit and/or additional participation in the balancing-power market. The relative total
annualized costs, shown as a number above the bar, are referenced to the base case (DAM) with sole participation in the day-ahead market. At each
bar, the red line indicates the total costs as the sum of costs and
revenues.

market in case (DAM, BPM) saves 3.0%, whereas the additional heat
storage unit in case (DAM, STOR) enables savings of 1.7% compared
to the base case (DAM). Thus, the heat storage unit enhances the
flexibility of the multi-energy system with major benefits from the
participation in the balancing-power market.

In the case (SAME), costs are saved in the day-ahead market
and in the balancing-powermarket. In the balancing-powermarket,
investment in the heat storage unit facilitates the utilization of
negative flexibility. Compared to the case (DAM, BPM), the
additional heat storage unit of 11.0 MWh increases the provision
of negative balancing power (Table 3): 3.5 MW negative balancing
power is offered on average in case (SAME), while only 2.7 MW
negative balancing power is offered on average in case (DAM, BPM).
However, no positive balancing power is provided in both cases
(SAME) and (DAM, BPM). Thus, the heat storage unit shifts the
heat demands such that the operation of the CHP units is no more
fixed to the heat demands. This shift enables the provision of more
negative balancing power: if no balancing power is requested, the
CHP units run at higher loads, thus having more negative flexibility.
At the same time, the additional heat production from co-generation
charges the heat storage (Figure 4). Both cases (SAME) and (DAM,
BPM) offer no positive balancing power, since self-production of
electricity is economically attractive in both cases. Thus, the CHP
units cover electricity and heat demands rather than being utilized
for the provision of positive balancing power.

The case (FLEXIBLE) with participation in the balancing-power
market and investments in the flexible heat storage unit enables the
largest cost savings of almost 16.9%. In this case, almost no electricity
is purchased or sold on the day-aheadmarket. Since overproduction
via the heat storage unit is possible, the CHP units of the multi-
energy system are even more flexibilized. Therefore, the storage
unit enables the electricity-driven operation of the CHP units: the

electricity demand determines the operation of the CHP units.
Subsequently, the CHP units are not restricted to strictly follow
the heat demand (Figure 5). Electricity-driven operation enables
the provision of positive balancing power: on average, 4.5 MW
of positive balancing power and 7.5 MW of negative balancing
power are provided (Table 3). Since the provision of balancing
power corresponds nearly to the entire capacity of the multi-energy
system’s electricity output, the flexibility of the multi-energy system
is, therefore, entirelymarketed on the balancing-powermarket in the
case (FLEXIBLE). Overall, the case study indicates that in both cases
(SAME) and (FLEXIBLE) the investment in a heat storage unit is
beneficial. However, in the case (SAME), a larger heat storage unit of
11 MWh is built compared to the case (FLEXIBLE) with 8.8 MWh,
as the case (FLEXIBLE) allows for overproduction.Here, we can thus
observe a trade-off between overproduction and storage for the cases
(SAME) and (FLEXIBLE): In case (SAME), excess heat needs to be
stored, whereas storing excess heat is only partially beneficial in case
(FLEXIBLE) due to the possibility of overproduction. As a result,
less excess heat is stored in case (FLEXIBLE), and thus, a smaller
heat storage unit is built.

The case (DAM, STOR) with investment in the heat storage
unit and sole participation in the day-ahead market leads to
savings of approximately 1.7%. The heat storage unit exploits the
time-dependent electricity prices of the day-ahead market: at
times with high electricity prices, self-production of electricity is
beneficial, and the electricity demand is covered with CHP units,
while heat from co-generation provides the heat demand and
charges the heat storage unit. At times with low electricity prices,
electricity is purchased on the day-ahead market. In these hours,
the heat demand is covered by gas-driven boilers and by discharging
the heat storage unit.Thus, electricity costs are significantly reduced,
while gas costs are modestly higher.
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TABLE 3 Average amount of positive balancing power BP+, negative balancing power BP−, and heat storage capacity Cnew
heat for the cases (DAM), (DAM, STOR),

(DAM, BPM), (SAME), and (FLEXIBLE).

Parameter Unit (DAM) (DAM, STOR) (DAM, BPM) (SAME) (FLEXIBLE)

BP+ MW – – 0.0 0.0 7.5

BP− MW – – 2.7 3.5 4.5

Cnew
heat MWh – 8.8 – 11.0 8.8

FIGURE 4
Operation of the multi-energy system in the case (SAME) in the
no-request scenario for covering the time-varying heat demand (gray
line). A positive value corresponds to a heat supply, and a negative
value corresponds to a heat demand by the units.

Additional participation in the balancing-powermarket without
investment in storage units leads to savings of approximately 3.0%
in case (DAM, BPM). In this case (DAM, BPM), the multi-energy
system is operated in a similar way as in the case (DAM): if no
balancing power is requested, the case (DAM, BPM) purchases the
same amount of electricity on the day-ahead market and consumes
the same amount of gas as the case (DAM). However, the case
(DAM, BPM) also markets negative flexibility on the balancing-
power market if available. Therein, the supply of negative flexibility
is linked to heat demands, since the multi-energy system offers
the lowest amount of balancing power during nighttime hours at
low heat demands (time slice 0–4 h) and the highest amount of
balancing power in the morning at high heat demands (time slice
8–12 h).

The investment in the heat storage unit makes the operation
of the multi-energy system more flexible. Thus, more balancing
power can be provided in more beneficial time slices: in the
case (FLEXIBLE), the heat storage unit allows all flexibility to be
marketed, so the amount of balancing power provided throughout
the day is significantly higher compared to that in the case (DAM,
BPM) (Figure 7).

In the case (SAME), balancing power is provided in different
time slices compared to the case (DAM, BPM) (Figure 6). In this

FIGURE 5
Operation of the multi-energy system in the case (FLEXIBLE) in the
no-request scenario for covering the time-varying heat demand (gray
line). A positive value corresponds to a heat supply, and a negative
value corresponds to a heat demand by the units.

case (DAM, BPM), balancing power is provided relatively evenly
throughout the day. In case (SAME), however, no negative balancing
power is offered in time slice 0–4 h, while more than 6 MW is
offered in time slice 8–12 h and more than 5 MW in time slice
16–20 h (Figure 6). In both time slices, capacity prices, energy
prices, and electricity prices are higher than those in time slice
0–4 h. Thus, the heat storage unit enables offering balancing power
at more economical time slices. The proposed method takes not
only the prices at the balancing-power market into account but
also the opportunity costs from the day-ahead market. Overall, the
heat storage improves, in both cases (SAME) and (FLEXIBLE), the
operation of the multi-energy system to cover the time-varying heat
demands (cf. Figures 4, 5)

Comparing the different cases shows that investment in heat
storage units makes the multi-energy system more flexible. For the
largest savings, flexibility is offered in the balancing-power market.
Therefore, the formulations same and flexible specify a range of
savings through flexibility marketing. Same allows flexibility to be
shifted toward more beneficial time steps, while the overproduction
of heat in formulation flexible facilitates further flexibilization of the
CHP units of the multi-energy system. Note that despite possible
overproduction, a request for balancing power is unlikely (cf. request
probabilities in Table 2).
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FIGURE 6
Positive and negative balancing power provided in the case (SAME)
compared to the case (DAM, BPM).

3.3 Investment in heat storage units for
varying heat demands

The method shows that the heat storage unit facilitates cost
savings in the balancing-power market for the considered multi-
energy system. Since the CHP units couple the electricity supply
with the heat supply, the flexibility of the multi-energy system also
depends on the heat demands. Therefore, this section analyzes the
relative savings by investment in the heat storage unit (Figure 8)
and the optimal size of the storage unit for varying heat demands
(Figure 9). We vary the heat demand for the average day by scaling
the heat demand between 25% and 300% of the initial heat demand.
The size of the heat supply units, i.e., the boilers and CHP units,
remains the same (cf. Table 1). Therefore, we investigate the relative
savings related to the base case (DAM) as the cost difference between
the base case (DAM) and any other case (Figure 8).

For all relative heat demands, the investment in the heat storage
unit, in combination with the provision of balancing power, leads
to the largest savings. For low relative heat demands (25%–150%),
the savings compared to the base case (DAM) range between 4.1%
(SAME) and 20.9% (FLEXIBLE); for high relative heat demands
(175%–300%), the savings range between 4.3% (SAME) and 4.4%
(FLEXIBLE). Higher relative heat demands lead to larger savings
in the case (DAM, BPM) with sole participation in the balancing-
power market, whereas higher relative heat demands diminish the
savings in the case (DAM, STOR). Hence, the advantage of heat
storage decreases as the relative heat demands increase. Therefore,
increasing heat demands no longer restrict themulti-energy system’s
flexibility.

The savings from an investment in the heat storage unit thus
depend on the relative heat demand. If no heat storage is available,
the heat demands limit the flexibility of the CHP units at low relative
heat demands due to the coupling of electricity and heat production.

FIGURE 7
Positive and negative balancing power provided in the case (FLEXIBLE)
compared to the case (DAM, BPM).

Therein, the multi-energy system operates as a heat-driven system:
the maximum electricity output of the CHP units is restricted by
the heat demands. To overcome this restriction, relatively large heat
storage units are built at low relative heat demands (Figure 9) since
the shift of heat among different time steps is highly beneficial.
In case (DAM, STOR), the heat storage unit is used to shift the
heat demand, such that self-production of electricity increases in
hours of high electricity prices. Compared to the case (DAM,
STOR), the case (SAME) builds larger heat storage units to enable
additional flexibility for the provision of balancing power, while the
case (FLEXIBLE) allows for overproduction leading to smaller heat
storage units.

At the threshold of 160% relative heat demand, the ratio of
heat to electricity demand is exactly the same as the ratio of heat
to electricity supply (blue dashed vertical line in Figures 8, 9). For
relative heat demands larger than the threshold of 160%, only small
heat storage units are economically optimal, showing diminishing
additional benefit by investment in the heat storage unit. For these
demands, most flexibility of the CHP units can already be used
without the heat storage unit. The CHP units can be operated
electricity-driven: the heat demands do not limit the operation of
the CHP units, but the electricity supply determines the operation
of the units. In addition, gas-driven boilers supply the heat. Thus,
for larger relative heat demands, small heat storage units are built in
cases (DAM, STOR) and (SAME) since only a small part of the heat
demand needs to be shifted for further flexibility. However, the case
(FLEXIBLE) allows for overproduction. To utilize this additional
flexibility, larger heat storage sizes are necessary compared to the
cases (DAM, STOR) and (SAME).

In conclusion, the heat-driven and electricity-driven operation
has a substantial impact on the available flexibility of the multi-
energy system. Therefore, the trade-off between overproduction
and storage changes both the storage sizes and the qualitative
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FIGURE 8
Additional relative savings for varying heat demands with investment in
the heat storage unit and/or additional participation in the
balancing-power market for the cases (DAM, BPM), (DAM, STOR),
(SAME), and (FLEXIBLE). In each case, the additional savings are related
to the objective function when solely participating in the day-ahead
market.

relationship of the storage size between the cases (SAME),
(FLEXIBLE), and (DAM, STOR). Consequentially, the heat
demands have a substantial impact on the optimal deployment
of the heat storage unit.

3.4 Discussion

The results of our case study show that the investment in the
heat storage unit makes the multi-energy system more flexible in
all cases. The heat storage unit allows an increase in the offered
amount of balancing power, increasing the economic benefit from
participation in the balancing-power market. The case study, thus,
supports the findings of Srinivasan et al. (2023) that storage is one
key to enhancing the flexibility of multi-energy systems.

However, the additional benefit of the storage units is found
to vary significantly with the relative heat demand: for low relative
heat demands, the studied multi-energy system operates as a heat-
driven system. In this case, larger storage sizes are particularly
valuable to shift heat to gain flexibility. For electricity-driven multi-
energy systems, smaller storage units are found to be sufficient to
utilize the flexibility of the multi-energy system. Thus, the proposed
method is able to consider the complex trade-off between long-
term investment decisions in storage for flexibility in short-term
operation. Therefore, the method is likely a good decision-support
tool also in other cases.

In future work, the method could be studied on a broader set
of multi-energy systems to allow for more general conclusions and
design guidelines. An important aspect is that the present case study
focuses on retrofitting a multi-energy system that relies on natural
gas as a fuel input. However, with the ongoing energy transition,
these systems should increasingly rely on renewable energy sources,

FIGURE 9
Optimal heat storage size for varying relative heat demands for the
cases (DAM, STOR), (SAME), and (FLEXIBLE). With a relative heat
demand of approximately 160%, the ratio of heat to electricity demand
is approximately the same as the ratio of heat to electricity output of
the multi-energy system.

i.e., green fuels or electricity-driven units, as discussed in the
introduction. In addition, for these systems, the flexibility potential
needs to be studied. Still, heat storage is expected to remain a
potentially valuable flexibility option, and thus, our method should
also provide a valuable tool for the optimal system design of
renewable energy systems.

A further shortcoming is that our case study assumes a power-
to-capacity limit of 1. If this limit is reduced, the economic
performance of storage systems may also be worse since the short-
term provision of balancing power may prefer higher storage power.
In addition, for cases with lower power-to-capacity ratios, our
method could help determine whether such storage systems are still
useful.

Overall, the method focuses on the operational uncertainties
from the provision of balancing power. However, other uncertainties
also affect the economic performance of multi-energy systems, such
as forecast uncertainties in electricity markets (Srinivasan et al.,
2023) and demand uncertainties (Mavromatidis et al., 2018). These
uncertainties, therefore, may also significantly impact the optimal
design. Modeling of additional flexibility potentials, e.g., at the
intraday market (Teichgraeber and Brandt, 2020; Nolzen et al.,
2022), could show further opportunities for multi-energysystems.

4 Conclusion

This work presents a method to integrate the balancing-power
market into a design optimization of multi-energy systems. As
design optimization with the balancing-power market yields a
complex stochastic optimization problem, we present a simple
approach for considering the balancing-power market.
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The balancing-power market introduces inherent uncertainty
to the optimization problem. To reflect this uncertainty, we use
stochastic programming. However, the stochastic optimization
would grow exponentially with time-coupling storage. To model
time-coupling storage within the stochastic optimization, we
present two methods that both derive feasible storage levels:
formulation same considers the same storage level regardless
of the request for balancing power. Formulation flexible
considers the lowest storage level for the next time step, thus
allowing for overproduction in this formulation that results in a
loss.

The method is evaluated in a case study of a multi-energy
system participating in the balancing-power market in addition
to the day-ahead market. The multi-energy system comprising
CHP units and gas-driven boilers is retrofitted with a heat storage
unit.

The method indicates that an additional heat storage unit
increases flexibility. More balancing power can be offered, leading
to cost reductions between 5.5% and 16.9% compared to a case
with sole participation in the day-ahead market. As we vary heat
demands in a sensitivity analysis, the benefits and the optimal sizing
of the heat storage vary significantly: at low heat demands, the
multi-energy system operates as a heat-driven system, resulting in
comparatively large storage units. At higher heat demands, small
heat storage units are economically optimal as the multi-energy
system can operate as an electricity-driven system without being
limited by heat demands.

Future research could focus on integrating multiple market
opportunities (e.g., the intraday market) or providers (e.g., energy-
intense processes) to utilize flexibility in design optimization.
Overall, this paper provides a method to optimally design storage
for balancing power market participation and, thus, flexibility
provision by multi-energy systems. This flexibilization supports the
energy transition to integrate more renewables into the energy
system.
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Nomenclature

Sets

Symbol Explanation

P Products

T Time steps

Ω Request scenarios

U Units

S Part-load segments

Variables

Symbol Explanation

TAC Total annualized costs

CAPEX Annualized capital expenditure

OPEX Yearly operational costs

OPEXt,ω Scenario-based operational costs

CGAS
t,ω Costs for purchase of gas

CDAM
t Costs for the purchase of electricity in the day-ahead market

RDAM
t Revenues for the sale of electricity in the day-ahead market

RBPM,cp
t,ω Revenues for the provision of capacity at the balancing-power market

RBPM,ep
t,ω Revenues for the delivery of balancing power

BUYp,t,ω Purchase of products

SELLp,t,ω Sale of products

BP+/−t Offered amount of balancing power

Pu,p,t,ω Output of production units

LOADu,t,ω,s Load of production units

γu,t,ω,s Binary decision for part-load segment

Cstor
p Storage capacity

OUTstor
p,t,ω Storage power for discharging

INstor
p,t,ω Storage power for charging

STLstor
p,t,ω Storage level

γstor
p Binary decision for investment in the storage unit

ϵstor,in/outp,t,ω Binary decision for charging or discharging

Parameters

Symbol Explanation

costinvp Annualized specific investment cost for the storage unit

Δt Yearly weight of the time step

πt,ω Request probability

pgas,buy
t Gas price

pel,sell/buy
t Electricity price for buying and selling

pcp,+/−
t Capacity price for positive and negative balancing power

pep,+/−
t Energy price for positive and negative balancing power

α+/−ω Binary parameter for the request of positive and negative balancing power

demp,t Product demand

capstor,min/max
p Minimum and maximum potential storage capacity

pcrstorp Ratio of storage power to storage capacity

ηloss
p Storage loss

ηin/out
p Charging and discharging efficiencies of the storage unit

bu,p,s Fixed input/output of the production unit

mu,p,s Marginal input/output of the production unit

bndu,s Upper bound of the part-load segment

bndu,s Lower bound of the part-load segment

Superscripts

Symbol Explanation

inv Investment

GAS Natural gas

DAM Day-ahead market

BPM Balancing-power market

cp Capacity price

ep Energy price

stor Storage

in Charging

out Discharging

+/− Positive/negative balancing power

buy Purchase

sell Sale
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