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Electricity theft damages power grid infrastructure and is also responsible for
huge revenue losses for electric utilities. Integrating smart meters in traditional
power grids enables real-time monitoring and collection of consumers’
electricity consumption (EC) data. Based on the collected data, it is possible to
identify the normal and malicious behavior of consumers by analyzing the data
using machine learning (ML) and deep learning methods. This paper proposes
a deep learning-based meta-learner model to distinguish between normal and
malicious patterns in EC data. The proposed model consists of two stages.
In Fold-0, the ML classifiers extract diverse knowledge and learns based on
EC data. In Fold-1, a multilayer perceptron is used as a meta-learner, which
takes the prediction results of Fold-0 classifiers as input, automatically learns
non-linear relationships among them, and extracts hidden complicated features
to classify normal and malicious behaviors. Therefore, the proposed model
controls the overfitting problemand achieves high accuracy.Moreover, extensive
experiments are conducted to compare its performance with boosting, bagging,
standalone conventional ML classifiers, and baseline models published in top-
tier outlets. The proposed model is evaluated using a real EC dataset, which is
provided by the Energy Informatics Group in Pakistan. The model achieves 0.910
ROC-AUC and 0.988 PR-AUC values on the test dataset, which are higher than
those of the compared models.

KEYWORDS

power system, advanced metering infrastructure, deep learning, metaheuristics, smart
grids

1 Introduction

Non-technical losses (NTLs) are a major concern nowadays, defined as the energy
consumed by clients without paying bills to electric utilities. These losses occur due to
physical tempering of smartmeters, energy fraud, installation error, inappropriate parameter
settings of smart meters, etc., (Aslam et al., 2021; León et al., 2011; Glauner et al., 2016;
Chen et al., 2023; Shehzad et al., 2022). Moreover, these losses are only not accountable
for high revenue losses for power providers but also negatively impact smart grid
reliability. Electricity theft is a primary reason for NTLs that are performed through meter
tempering, bypassing smart meters, direct connections to distribution lines, changing meter
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readings over communication links, double tapping attacks, etc.,
(Shehzad et al., 2022; McLaughlin et al., 2013; Khattak et al., 2022).

A recent report indicates that NTLs cause a revenue loss of 96
billion Canadian dollars yearly; this amount is enough to supply
energy to 77,000 homes for 1 year (Zheng et al., 2017; Haq et al.,
2023). According to the latest World Bank report, India, China,
and Brazil bear losses of 25%, 16%, and 6%, respectively, on their
total electric supply (Aryanezhad, 2019). These losses are not only
limited to developing countries; it is estimated that developed
countries such as the United Kingdom bear £173 million, while
the United States has to pay $6 billion every year (Jokar et al.,
2015; Saraiva et al., 2015). Another report estimated that power
companies pay more than 20 billion dollars annually for electricity
theft. In addition, electricity theft creates many issues in smart
grids like a high load on a grid that may create fire shocks and
affects public safety. From the aforestated discussion, it is concluded
that an accurate electricity theft detection (ETD) model is required
to reduce financial loss and save the infrastructure of electric
utilities.

Substantial research work has been performed for accurate
ETD. Conventional theft detection methods include manually
checking the unauthorized line diversions, comparing the tempered
meters with benign ones, and human verification of faulty
and problematic meters. However, these methods have low
detection accuracy, are expensive, time-consuming, and lead to
unreliable results. The introduction of the smart grid brings
new opportunities for detecting electricity theft. It consists of
a traditional grid system, communications technologies, smart
meters, and sensors for collecting data and computing facilities
to manage the self-healing mechanism (Jiang et al., 2016; Ahir
and Chakraborty, 2022). So, smart meters and sensors collect
information about voltage level, power factor, electricity price at
the current moment, status of grid infrastructure, and consumption
behavior of consumers. Moreover, they help maintain energy
and information flow between consumers and electric utilities
(Batalla-Bejerano et al., 2020; Zidi et al., 2023). These collected data
help design advanced algorithms, which control demand and
response (Langendahl et al., 2019; Ahmed et al., 2019) and predict
the electricity prices (Chang et al., 2019; Peng et al., 2018; Qiao
and Yang, 2020). Some studies (Jokar et al., 2015; Punmiya and
Choe, 2019; Buzau et al., 2018; Zheng et al., 2017; Ramos et al., 2016;
Huang and Xu, 2021; Gunturi and Sarkar, 2021; Li S. et al. 2019;
Ibrahim et al., 2021) show that it is possible to detect malicious
patterns in electricity consumption (EC) data by performing an
analysis using machine learning (ML)/deep learning (DL) methods.
However, most of the studies which are scrutinized for ETDhave the
following drawbacks:

• The false-positive rate is very high, which is not bearable by
electric utilities,
• Most of the existing methods are based on specific hardware
devices or sensors, which are very expensive,
• Individual classifiers like support vector machine (SVM),
decision tree (DT), and naive Bayes (NB) have low accuracy,
• The class imbalance problem is tackled using under- and
over-sampling methods, which create information loss and
duplication of data, leading to underfitting and overfitting
issues,

TABLE 1 Theft cases.

Serial no Mathematical form

1 e1(Xt) = α*Xt , α = rand(0.1, 0.8)

2 e2(Xt) = βt*Xt , βt = [0, 1]

3 e3(Xt) = γt*Xt , γt = (0.1, 0.8)

4 e4(Xt) = γt*mean(Xt), γt = (0.1, 0.8)

5 e5(Xt) =mean(Xt)

6 e6(Xt) = X48−1

• In some cases, class imbalance problems or uneven distribution
of samples is not tackled in a proper way, which pushes the
ML/DL toward the majority class, which leads to biased results,
• Individual classifiers suffer in overfitting, which decreases their
generalization property, and
• Most of the researchers focus on bagging and boosting
methods. They ignore the efficacy of stacking methods for
detecting malicious patterns in EC data.

Therefore, this article aims to develop a new model that
solves the aforementioned concerns. So, a DL-based meta-learner
is proposed, which has two folds. At fold-0, conventional ML
classifiers learn and extract diverse knowledge from EC data.
These multiple classifiers learns based on the same dataset, but
differently. After this, a multilayer perceptron (MLP) is employed,
which is trained and tested using prediction results of fold-
0 classifiers. An MLP model gives different weightage to each
classifier on its prediction capability and establishes a non-linear
relationship among them. This process improves its performance
and helps overcome the overfitting problem of individual classifiers.
Furthermore, the class imbalance problem is a severe issue in ETD.
Due to this, ML/DL models tend toward the majority class and
ignore the minority class samples. Consequently, these classifiers
lead to false alarms and produce biased results.This study developed
a hybrid approach based on Adaptive Synthetic (oversampling)
and TomekLinks (undersampling) to tackle the class imbalance
problem. The main contributions of this study are mentioned
here.

• A deep learning-based meta-learner model is developed to
detect malicious patterns in the EC data. According to the
analyzed literature, this is the first study that utilizes the meta-
learner concept in smart grids.
• Uneven distribution of class samples is a severe issue, handled
through a hybrid approach.
• Extensive experiments are conducted on the real dataset to
evaluate the efficacy of the proposed meta-learner model and
compare its results with those of other boosting, bagging, and
standalone models.

The remaining article is organized as follows. Related work and
description of the proposed model are explained in Section 2 and
Section 3, respectively. The experimental and results discussion is
given in Section 4. The conclusive note on this study is presented
in Section 5.
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2 Related work

In this section, existing ETDmethods that are already proposed
in the literature are comprehensively discussed. These methods
analyze the EC data and differentiate between normal andmalicious
patterns. Jokar et al. (2015) proposed a consumption pattern-based
electricity theft detector based on the SVM classifier. However,
they do not utilize any feature engineering technique to select
and extract optimal attributes from EC data. Moreover, the SVM
classifier has a large execution time and performs poorly on noisy
datasets. Punmiya and Choe (2019) worked on optimal feature
selection using stochastic and built-in modules of gradient boosting
classifiers (GBCs). They proved that fewer features reduce ML
models’ complexity and overfitting issue while increasing their
performance in terms of the detection rate. However, GBCs have a
large number of hyperparameters, which are difficult to be tuned.

In Buzau et al. (2018), a solution for NTL detection is presented.
The different features are derived from EC data and historical
information of smart meters using z-score, K-means clustering, and
local outlier factors.The derived features are fed as input into several
ML algorithms like SVM, LR, K-nearest neighbor, and extreme
gradient boosting (XGB).Thework performed in this study to tackle
the curse of the dimensionality issue is mostly based on manual
feature engineering, which is a very time-consuming and expensive
task. Buzau et al. (2019) proposed a hybrid DL model with a self-
learning ability to extract abstract or latent features from EC data.
Moreover, this is the first study that integrates both sequential and
non-sequential information. However, this study does not tackle the
class imbalance problem, which affects the model’s performance in
real-world scenarios (Qin et al., 2020).

Zheng et al. (2017) developed a hybrid DL model based on a
convolutional neural network and MLP. The former is utilized to
extract latent or abstract patterns, while the latter is employed to
retrieve global knowledge in EC data. Extensive experiments are
conducted to evaluate the performance of the proposed model,
and the authors argue that a hybrid model performs better than
individual ones. However, a DL model requires a huge volume of
data and computation power, which is the main hurdle for its real-
time applications in the smart grid. Another DL-based model is
proposed to detect the losses at the generation and consumption
sides (Nabil et al., 2019; Takiddin et al., 2020). Li W. et al. (2019)
developed a multimodel based on RNN, MLP, and LSTM layers.
Moreover, its performance is measured by employing the simple
moving average. The model is trained on real data collected using
a VeraEdge controller. However, the accuracy is only utilized to
check the model performance, which is not a good measure to
evaluate DL or ML models, where data are unevenly distributed.
The high dimensionality of data is another concern that badly
affects the efficacy of ML or DL models. Ramos et al. (2016) utilized
metaheuristic techniques to select optimal features from EC data.
Huang and Xu (2021) extracted features using a stacked denoising
autoencoder, while Kong et al. (2021) employed the kernel fuzzy
C-means algorithm and a simple autoencoder for this purpose.

Gunturi and Sarkar (2021) proposed an energy theft detector
that is based on ensemble approaches. They argue that bagging
models perform better as compared to boosting ones. Moreover,
near-miss and synthetic minority oversampling techniques
are employed to tackle uneven distribution of data. However,

undersampling methods lose valuable information from data,
while oversampling techniques create an overfitting problem. The
convolutional neural network (Li S. et al., 2019) is employed to
extract the features, which are fed as input to the RF to differentiate
between normal and malicious samples. However, their proposed
model yields a low detection rate and a high false-positive rate
(FPR).

3 Overview of the framework

The diagram of the proposed framework is shown in Figure 1.
The EC dataset is taken from an electric utility and reduced from
1 min to half-hourly because a high sampling rate affects consumers’
privacy and intensive computation resources are required to train
ML and DL models. The acquired dataset only contains normal
samples. So, malicious samples are generated by applying theft cases
and concatenating them with normal samples. The description of
the theft cases is given as follows. After applying theft cases, the
dataset is deemed suitable for applying ML/DL classifiers. However,
the dataset has an imbalanced nature, which tends the ML/DL
toward the majority class and ignores the minority class samples.
Consequently, their performance is affected. So, a newly developed
sampling approach is applied, which generates the samples of
minority classes to solve the class imbalance problem. To avoid data
leakage issues, the sampling approach is only applied to training
data. After performing the data preprocessing steps, it is time
to choose/develop an appropriate classification strategy for the
identification ofmalicious and normal samples. “Unity is strength” is
a well-known quotation that is best utilized by ensemble approaches.
In the current era, stacked ensembles have received considerable
attention, where they have been combined with ML frameworks
to win many Kaggle and Netflix competitions (Olasehinde et al.,
2020). In this article, a stacked-based meta-learner strategy is
adopted, which has two-fold benefits. In the first fold, multiple well-
performing classifiers get diverse knowledge in different ways on the
EC dataset, and in the second fold, an MLP is chosen as a meta-
learner, which takes the diverse knowledge of these classifiers as
input and generates accurate and robust results. The description of
each step is given as follows.

3.1 Dataset description

The PRECON1 dataset is utilized in this study to evaluate the
performance of the proposed meta-learner strategy. It is collected
by students of Lahore University of Management Sciences from
Lahore, Pakistan’s second largest city. The dataset includes EC usage
reports of 42 houses for 1 year, which belonged to people from
different financial and demographic backgrounds. The consumers
who participated in this research agreed to share their EC patterns.
So, it is a reasonable assumption that all consumers are honest
(Nadeem et al., 2019). Moreover, the large number of electricity
usage patterns, long period of measurements, and public availability
of this dataset make it an excellent source for research in the

1 Pakistan Residential Electricity Consumption Dataset.
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FIGURE 1
Proposed model.

smart grid domain. Moreover, the sampling rate is reduced from
1 min to half-hourly by simply taking the mean because a high
data sampling rate requires intensive computational resources for
training ofML/DLmodels and also affects consumer privacy. Now, a
vector, Xt = {xt1,xt2,xt3… xt48}, contains 48 values to represent
1 day.

Theft attacks to generate malicious samples: For supervised
learning methods, a labeled dataset containing both benign and
malicious samples is required. However, the PRECON dataset
only contains normal samples because theft cases rarely happen
in real-world scenarios. The first approach is to apply clustering
algorithms to detect malicious patterns in the EC data. However,
these clustering algorithms do not give optimal results because the
minor changes affect the overall distribution of data. So, a good
approach is to convert the data into a supervised learning problem
where each record has an associated target label as a malicious or
normal sample.

Xm×n =

[[[[[[[

[

x11 x12 ⋯ x1n y1
x21 x22 ⋯ x2n y2
⋮ ⋱ ⋮ ⋮

xm1 xn2 ⋯ xmn ym

]]]]]]]

]

,

where [x11,x12,… x1n] is the record of a consumer and yi is an
associated label. In the index, xmn, m indicates the record number
and n is the associated value. To generate the malicious samples
for conversion of data into a supervised learning problem, six theft
attacks are applied to the normal records, and their descriptions

are given as follows in Table 1. e1(⋅) multiplies meter readings
with the same random number and reports less consumption as
compared to actual usage. e2(⋅) sends zero or complete consumption
to an electric utility. In the case of e3(⋅), a meter reading is
multiplied with a different random number after each interval. e4(⋅)
and e5(⋅) report mean consumption or random factor of mean
consumption to the electric utility. e6(⋅) sends a reverse order of
meter readings. e5(⋅) and e6(⋅) launch attacks against voltage control
mechanisms, shift the EC order from on-peak hours to off-peak
hours, and reduce the electricity bill (Jokar et al., 2015). Figure 2
shows the EC of a consumer before and after applying the theft
attacks.

3.2 Data preprocessing

Data preprocessing is an important step in the analysis of big
data. In the literature, garbage in and garbage out is a well-known
quotation about this step, which indicates that the performance
of ML algorithms completely depends upon the quality of data.
So, analyzing data that are not carefully screened generates poor
results and misleads the decision process. So, in this article, a data
preprocessing module is developed to enhance result quantification
in terms of true positive (TP), true negative (TN), false positive
(FP), and false negative (FN).The data preprocessing steps start with
handling outliers, progresses with data standardization, and finally,
the class imbalance problem is tackled using a newly developed
hybrid sampling approach.
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FIGURE 2
(A, B) EC before and after applying theft attacks.

3.2.1 Outlier detection
During data analysis, some erroneous values (i.e., outliers) are

found in the PRECON data that mislead the training process
of a model. Because of this, it takes longer training time, and
ultimately generates mediocre results. So, outliers are restored using
the following Eq. 1.

f(xi) = {
O i f xi > O,

xi otherwise
(1)

Here, O shows μ(xi) + 2⋆ σ(xi), while μ and σ indicate the average
and standard deviation, respectively.

3.2.2 Data normalization
ML or DL models learn the mapping among the input features

(with different scales and values) and a target variable. If a model is
trained on the features with larger values, it will learn the weights
of larger values and ignore the smaller ones. Consequently, it will
produce unstable results with high generalization errors. So, after
removing the outliers, min–max normalization is applied to handle
the scaling issue, and its mathematical form is elaborated in Eq. 2.

xi =
xi −min(Xi)

max(Xi) −min(Xi)
, (2)

wheremin (Xi) andmax(Xj) are minimum and maximum values in
the record of consumer i, respectively.

3.2.3 Class imbalance problem
Class imbalance is a major issue in ETD in which the sample

of honest consumers (majority class samples) is higher than the
sample of malicious consumers (minority class samples). It creates
an uneven distribution of target variables, and data are skewed
toward the majority class. So, ML or DL models are biased toward
majority class samples and ignore minority ones. If they are trained
on imbalanced data, they give biased results, which are unacceptable
in the ETDdomain because electric utilities have a limited budget for
onsite inspection (Batista et al., 2003). Furthermore, for the efficient
and unbiased performance of supervised learning models, it is
necessary to extract and learn valuable patterns from balanced data.
Although the considered dataset in this study has an imbalanced
nature, and this case occurs inmore ETD scenarios, it is necessary to
balance the EC data before extracting features and patterns. Hence,
to solve the declared issue, a new sampling approach is proposed
that holds the characteristics of undersampling and oversampling
approaches to reduce the misclassification rate. This approach is
based on Adaptive Synthetic (ADASYN) and TomekLinks, is named
AST, and is used for the first time in the smart grid domain to handle
uneven data distribution.

In AST, ADASYN is a sampling approach that generates the
minority class samples by leveraging the concept of adaptive
learning, which overcomes the bias issue and focuses on those
samples that are hard to learn. The generation of minority class
samples starts by counting the number of majority class samples
around the minority samples and then calculating the density
distribution ri…m. Here, m is the total number of samples of
the minority class. r decides how many new samples will be
generated around each minority class sample xi. After that, a
random xzi sample is chosen from K-nearest neighbors of xi, and
a new sample is created by using ai = xi + (xi − xzi) × λ and added
into the data. λ is a random number whose value lies between
0 and 1. This process continues until the desired distribution
of both classes is not achieved. More information about the
working mechanism of ADASYN can be found here (He et al.,
2008).

Although oversampling approaches solve the class imbalance
problem, they still have some issues like blindness of neighbor
selection, sample overlapping, and noise inference (Jiang et al., 2021;
Khan et al., 2021). As in the case of sample overlapping, some newly
generated data points may be invaded into majority class data due
to undefined clusters. Another concern is that noise inference may
introduce some noisy data points near the decision boundary and
confuse the learning algorithm. To address the mentioned issues,
TomekLinks is introduced, which magically removes those samples
that are hard to learn.

It creates a pair of samples and measures the Euclidean
distance d(xi,xj) between them. xi belongs to the majority class,
while xj is part of the minority class. The generated pair is
declared as a Tomeklink if no sample xk follows the following
conditions d(xi,xk) < d(xi,xj) or d(xj,xk) < d(xi,xj). So, in this
way, the unwanted samples from the majority class are removed
to equalize the class distribution. Further information about
TomekLinks can be found here (Tomek, 1976).

To develop the AST method, ADASYN and TomekLinks
methods are combined by exploiting the Python imbalanced library.
This library has been developed by experts to perform sampling
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A

B

FIGURE 3
Data distribution of PRECON. (A) Before Sampling, (B) After Sampling.

tasks. It has built-in sampling approaches (Lemaître et al., 2017).
First, TomekLinks is applied to remove the unwanted samples
near the decision boundary, which are hard to learn. After that,
ADASYN is utilized to equalize the distribution of both classes. It is
possible that excellent results can be achieved with undersampling
and oversampling approaches. However, the former may discard
valuable information that is critical for making a robust decision
boundary, while the latter synthesizes or duplicates the samples
that increase the generalization error (bias) on the test data. The
literature work indicates that interesting results can be achieved by
combining both strategies, where a modest amount of oversampling
of theminority class increases biases toward theminority class while
a modest amount of undersampling of the majority class reduces
bias toward majority samples. In the case of the PRECON dataset, it
contains 1 (minority): 8 (majority) class samples. First, TomekLinks
is applied, which removes redundant samples fromPRECONdata by
utilizing link concepts. Next, ADASYN is exploited, which produces
a ratio for both classes of 1:1 by synthesizing or generating the
samples of minority classes. This phenomenon can be observed in
Figures 3A, B, where green and red samples represent majority and
minority class samples before and after handling uneven distribution
of data, respectively.

3.2.4 First stage (fold-0) machine learning models
Support vector machine: The SVM is a supervised learning

method, which is mostly used for classification and regression tasks.
It was developed in the well-known AT&T Bell Laboratories by
Vladimir Vapnik. As mentioned in the literature, it is mostly used
for anomaly detection in electric utilities (Jokar et al., 2015). The
SVM algorithm moves the input features into high-dimensional
data space and draws a decision boundary between samples
of both classes with the help of support vectors. The support
vectors are data points, which are taken from the training
dataset.

In this study, C and radial basis function (RBF) hyperparameters
are utilized to achieve good results. The C controls the
misclassification rate, while the RBF converts the complex and non-
linear patterns into linear ones. However, the noise factor cannot
be discarded in real-world scenarios. So, a small change in testing
data suddenly decreases its performance. That is why it is very
difficult to find the right kernel function. Moreover, its computation
and memory complexity is increased in the case of large datasets
because it draws a large number of support vectors in high-
dimensional data space, which are stored in memory (Jokar et al.,
2015).

Gradient boosting classifiers: They are well-known in the
research and data science community. They are utilized for both
classification and regression tasks. These methods are based on
ensemble trees, which learn specific rules to classify between normal
and anomalous data points, and these are called gradient boosting
methods because they use gradient loss function to reduce the
wrong predictions of weak learners and convert them into strong
ones. XGB and categorical boosting (CatB) are the most regularized
versions of gradient boosting methods. XGB is a popular algorithm
in the Kaggle community, and it won 17 competitions out of 29 in
2015. It utilizes the Gini index, similarity score, and regularization
parameters to improve the predictive performance of weak
learners.

On the other hand, CatB utilizes order boosting and oblivious
decision trees to learn decision rules from EC data. These trees have
equal splitting criteria on each node, which makes CatBoost less
prone to overfitting and increases its prediction performance on
testing data. Although experimental results indicate that gradient
boosting classifiers give good results, they continuously minimize
the loss function value, which overemphasizes outliers and has a
high chance of overfitting. In most cases, they require more than
1,000 trees, which increases computational andmemory complexity.
Moreover, they have a large number of hyperparameters that are
difficult to tune (Punmiya and Choe, 2019).

Random forest (RF) is an ensemble algorithm that first builds
a forest of decision trees and then uses the wisdom of majority
to decide about anomalous or non-anomalous EC patterns. RF
eradicates the limitations of the decision tree algorithm and controls
its overfitting problem. It also gives better prediction results than
a decision tree algorithm. However, it gives lower performance
than gradient-boosting algorithms and is computationally expensive
because it builds a large number of decision trees to overcome the
overfitting issue (Qiao and Yang, 2020).

Decision tree: It is a simple supervised machine learning
algorithm that is utilized for both classification and regression
problems. It draws a simple tree-like structure where decision rules
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FIGURE 4
Flowchart of the proposed framework.

are learned from root nodes to leaf nodes to differentiate between
normal andmalicious theft patterns. It is simple, easy to understand,
and easy to implement. However, it has a high chance of overfitting
because, in the case of large datasets, it creates a complex decision
structure.Moreover, it has an unstable nature because a small change
in data leads to a completely different tree structure. DT follows a
greedy search strategy, which cannot guarantee to return an optimal
solution.

Logistic regression: It is a basic model in binary classification,
where input features are multiplied with a weight matrix, which is
learned during the training process. It is also known as a one-layer
neural network. However, it is unable to learn complex and non-
linear patterns in EC data because it considers the linear relationship
between input and output variables.

3.2.5 Meta-learner (level-1 learning)
In previous studies, a large number of multiple classifiers, either

DL or ML, were applied to smart grid data to detect the anomalies;
however, none generated fully accurate results, and mistakes were
noted in different aspects. In the current era, ensemble approaches,
especially stacking, have wonmany Kaggle competitions and proven
their own worth. Stacking (stacked) is an ensemble approach that
is mostly adopted to reduce the generalization error by combining
the predictions of multiple classifiers. It is based on a meta-learner
which is responsible for merging the predictions of ML classifiers
and getting skills or knowledge from EC data in a diverse way. In
the first phase, multiple ML classifiers Ci(1−6) are applied to EC data,
which get independently diverse knowledge in a parallel fashion
and provide a vector of their predictions. After that, the prediction
of the three best classifiers C1−3 is utilized to build a new dataset
X = [c1,c2,c3]. This new dataset is fed into a meta-learner classifier
for its training. Once the meta-learner is trained, its performance is
analyzed on the test data. The complete working of the framework
can be seen in the form of a flowchart in Figure 4. In this article,
the MLP model is used as a meta-learner to stack prediction of
multiple classifiers. An MLP is inspired by the working mechanism

of the human brain and used in diverse applications. From input to
output prediction, it learns the non-linear approximation functions
between input and output layers. There are many layers among
them, which are called hidden layers. These layers are stacked in
a hierarchical manner, which endows characteristics to learn or
extract non-linear relationships from high-dimensional EC data
with little guidance.

The architecture of the MLP is shown in Figure 1, where the
leftmost layer is the input layer and the rightmost one is the
output layer with one neuron. The middle layers are known as
hidden layers that are made up of neurons, activation functions,
and dropout layers, which are used to establish mapping between
input and output layers, control overfitting issues, and help generate
accurate results. To classify the samples, an objective function is
defined that measures the error between actual scores and predicted
scores. In addition, the MLP model modifies the hyperparameters
to adjust the weights and biases of hidden layers and utilizes
optimizers, especially stochastic gradient descent (SGD), to reduce
the objective function error. However, in this study, the Adam
optimizer is adopted to tune the weights and biases of middle layers
because it adopts the characteristics of both SGD and RMSprop
(Khozeimeh et al., 2022; Kingma and Ba, 2014). Additionally, it
leverages the concepts of moving the average to update the
hyperparameters.

Furthermore, each layer consists of multiple neurons, which
have activation functions, which are a key part of the MLP. In
literature, multiple activation functions are studied to enhance
the performance of DL models like tanh, sigmoid, and softmax;
however, recent work shows that rectified linear unit (ReLU)
outperforms other ones and prevents the model from falling into
vanishing and exploding gradient problems. The experimental
results show that ReLU performs better at hidden layers, while
softmax and sigmoid give good results at the output layer.
More details about the MLP can be found at Xiao et al. (2018),
where the authors use it for binary classification in the medical
domain.
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4 Experimental and result analysis

4.1 Implementation environment

Due to the large size of the PRECON dataset, all preprocessing
and model-building steps are performed in Google Colaboratory
and Kaggle platforms by taking the power of distributed computing.
The DL models are built-in TensorFlow, while ML models are
deployedwith the help of the Scikit-learn library. Data preprocessing
and exploration steps are performed using NumPy, Pandas,
Matplotlib, and Scikit-learn libraries.

4.2 Evaluation

To evaluate the performance of the proposed framework, the
PRECON dataset is reduced into training data, validation data,
and testing data. Training and validation parts are exploited to
tune the hyperparameters, while the testing part is exploited to
check the ML models’ performance. In the literature, it is seen
that the error obtained on the validation part is reported as the
final error (Krstajic et al., 2014). This procedure leads to a poor
generalization in which the ML models suffer from overfitting
problems (Buzau et al., 2018; Varma and Simon, 2006).

4.3 Performance metrics

One of the most commonly used metrics for evaluating the
performance of ML/DL models is accuracy. However, it does not
give a real assessment of their prediction capability. A naïve classifier
would achieve 90% accuracy on imbalanced data because it becomes
biased towardmajority class samples.The literature work shows that
ROC-AUC has proved to be an excellent performance measure for
imbalanced datasets. It is a ratio between the TPR and FPR, the
value of which can be changed by varying decision thresholds on the
curve. However, this metric is only focused on positive class samples
and ignores negative ones. In the real-world scenario, both classes
have equal importance, which is why the PR curve and F1-score
are also considered. Moreover, electric utilities have a low budget
for onsite inspections. So, the FPR is also taken into consideration
because it tells how many positive samples are misclassified by the
predictor.

4.4 Results

In this section, we compare the performance of the proposed
meta-learner strategy with baseline models and existing state-of-
the-art models in the smart grid domain.

Comparison with the state-of-the-art models: the performance
of the proposed meta-learner strategy is compared with the WD-
CNN (Zheng et al., 2017) and MLP-LSTM (Buzau et al., 2019)
models. Both models were recently published in top-tier journals.
The WD-CNN model is developed to classify the normal and
malicious samples in electricity consumption. The model contains
MLP and CNN layers. The MLP layers are utilized to capture global
knowledge, while CNN layers are considered to retrieve temporal

FIGURE 5
Performance analysis with imbalanced data. (A) 48 features, (B) 3
features.

patterns from data. In theMLP-LSTMmodel, the authors developed
a hybrid algorithm, which leverages the advantages of MLP and
LSTM layers. The EC data are fed into the LSTM model to capture
periodic patterns, while the metadata of the smart meter is passed
into MLP models to learn local features. In this article, the authors
conducted extensive experiments and proved that the hybrid model
gives better results than simple models. In addition, in this study,
the manual procedure is considered to tune the hyperparameters of
WD-CNN and MLP-LSTMmodels.

In case study 1, the six ML classifiers, XGB, CatB, RF, DT,
LR, and SVM, are introduced. These classifiers are trained on
the PRECON dataset that is provided by the Energy Informatics
group in Pakistan. After this, the meta-ensemble learning strategy
is proposed for integrating the predictions of base models into
the MLP model. This process significantly reduces the number of
features, which overcomes the overfitting issue and provides better
data for accurate predictions. As shown in Figure 5A, EC data are
directly fed into the MLP model, where it can be observed that the
model faces the overfitting issue and gives a high loss value on the
testing data as compared to the training data. Now, training data
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FIGURE 6
Performance analysis with imbalanced data. (A) ROC Curves, (B) PR
Curves.

are prepared from predictions of base models and fed as input into
the MLPmodel. The process reduces the dimensionality of data and
overcomes the overfitting issue, which can be seen in Figure 5B.
In the first case, data have an imbalanced nature, which is why
models give biased results and are attracted toward the majority

class and ignore the minority class. So, the ROC curve is employed
to evaluate the true effectiveness of all implemented models. The
meta-ensemble strategy achieves a 0.919 ROC-AUC value that is
more than its counterparts, which is shown in Figure 6A. Although
it is a good performance indicator, it focuses only on positive class
samples and ignores the negative ones. So, the PR curve is taken into
consideration because it gives equal weightage to both samples. The
meta-learner strategy obtains 0.987 PR-AUC values. It is more than
its base models or counterparts, which can be viewed in Figure 6B.
Other important performance metrics are also considered, such as
accuracy, precision, recall, F1-score, and FPR. The models attain
different values on base andmeta-ensemble strategy, which indicates
that each basemodel has different skills on the trained data. So, this is
an ideal situation, where stacking strategies achieve optimal results.
In addition, the performance of the proposed meta-learner strategy
is compared with that of existing state-of-the-art models: MLP-
LSTM and WDCNN. In Table 2, it can be seen that the proposed
meta-learner strategy gives better results than both models.

In case study 2, the class imbalance problem is solved using
AST because ML/DL models give biased results on imbalanced
datasets, where they tend toward majority class samples and ignore
the minority ones. Balanced data with all features and prediction
of base models (fold-0 learners) are fed into the MLP. As shown in
Figure 7A, it can be observed that MLP suffers from the overfitting
problem with all 48 features. Figure 7B proves that MLP gives
good results with the ensemble strategy and does not suffer from
overfitting problems, which indicates that ensemble strategies are a
good option for real-world applications.

As shown in Figure 8A, the performance of base models and
meta-learner ensemble strategy on balanced data is evaluated
through PR curves, which indicate that the meta-learner performs
better as compared to base models. Moreover, the DT, LR, and
SVM achieve 0.507, 0.481, and 0.486 ROC-AUC on balanced data,
respectively, which are low as compared to values that they attain
on imbalanced data. DT is a fundamental classifier. However, its
performance decreased as the number of samples increased. It
also suffered from overfitting problems. LR is a one-layer neural
network, which is unable to learn optimal patterns from complex
data like EC data, while the SVM does not give good performance
on noisy datasets. Due to the aforementioned reasons, these three
base models do not give good performance even after solving

TABLE 2 Performance analysis of themeta-learner with imbalanced data.

Measures ROC-AUC PR-AUC Recall Precision Accuracy F1-score FPR

DT 0.621 0.914 0.943 0.873 0.834 0.907 0.126

SVM (rbf) 0.603 0.911 1.000 0.857 0.857 0.923 0.143

LR 0.616 0.894 0.994 0.857 0.853 0.921 0.142

XGB 0.888 0.977 0.990 0.900 0.897 0.942 0.100

CatB (Punmiya and Choe, 2019) 0.874 0.973 0.997 0.884 0.886 0.937 0.115

RF 0.824 0.962 0.996 0.875 0.875 0.932 0.124

MLP-LSTM (Buzau et al., 2019) 0.85 0.90 0.85 0.80 0.820 0.87 0.14

WDCNN (Zheng et al., 2017) 0.89 0.88 0.91 0.90 0.80 0.86 0.15

Meta-learner 0.914 0.987 0.999 0.923 0.929 0.960 0.139
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FIGURE 7
Performance analysis with balanced data. (A) 48 features, (B) 3
features.

the class imbalance problem. Furthermore, boosting and bagging
models perform well on both balanced and imbalanced data. RF
attains 0.856, while XGB and CatB achieve 0.896 and 0.901 ROC-
AUC values on balanced data, respectively. RF is a bagging strategy
classifier, which gives good results on large datasets. However, it
is computationally expensive because it requires high resources
to train multiple DTs. XGB and CatB are boosting classifiers
whose performance will be improved with an increasing number of
learners. The deep learning-based meta-learner strategy achieves a
value of 0.910 ROC-AUC, which is more than the ROC-AUC values
of all base models. The PR curves of all classifiers are shown in
Figure 8B, which indicates that the meta-learner ensemble strategy
achieves a 0.988 PR-AUC value, which is more than that of all base
models. As is indicated in the literature, the FPR is an important
performance measure for electric utilities because its high value
directly relates to onsite inspection costs. The proposed strategy
achieves a 0.014 FPR value, which is lower than that of all base
models. So, this strategy has good efficacy for real-world applications
in the smart grid domain because it reduces onsite inspection costs

FIGURE 8
Performance analysis with balanced data. (A) ROC Curves, (B) PR
Curves.

for electric utilities by generating fewer false alarms. Finally, the
performance of the meta-learner strategy is compared with that
of two deep learning models, which were recently published in
top-tier journals, and several other studies used them as baseline
models. Both baseline models are trained on the balanced dataset.
In Table 3, it can be seen that the proposed meta-learner strategy
gives better results than both models and also achieves a lower FPR
value. However, the performance of deep learning models largely
depends on the selection of hyperparameter ranges. Due to the
limited availability of computational resources, the hyperparameters
aremanually tuned, whichmay be another valid reason for the lower
performance of WD-CNN and MLP-LSTM models. Table 3 shows
the f1-score, accuracy, precision, and recall values of all baseline
models and the proposed ensemble strategy on balanced data.

Scalability: here, we measure the running time of each ML and
DL model for the selected dataset, which is mentioned in Table 3.
The running time is measured for a single train–test split where it
can be seen that, as usual, the running time of the DL models is
more than that of the ML models. However, the running time of
the proposed meta-learner strategy is less than that of baselines and
other compared algorithms because the proposed strategy takes the
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TABLE 3 Performance analysis of themeta-learner with balanced data.

Measures ROC-AUC PR-AUC Recall Precision Accuracy F1-score FPR T-T (s)

DT 0.628 0.932 0.766 0.899 0.726 0.827 0.140 120

SVM 0.645 0.902 0.645 0.901 0.635 0.751 0.139 900

LR 0.628 0.899 0.735 0.8897 0.694 0.805 0.141 50

XGB 0.900 0.980 0.940 0.930 0.890 0.940 0.073 400

CatB (Punmiya and Choe, 2019) 0.900 0.980 0.930 0.940 0.890 0.930 0.060 540

RF 0.86 0.97 0.910 0.920 0.860 0.920 0.078 480

MLP-LSTM (Buzau et al., 2019) 0.87 0.95 0.90 0.890 0.850 0.90 0.098 1,000

WDCNN (Zheng et al., 2017) 0.89 0.96 0.92 0.910 0.840 0.910 0.088 1,200

Meta-learner 0.910 0.988 0.9994 0.985 0.9768 0.978 0.014 155

output of the best three models as input to differentiate between
normal and abnormal samples, while other models are trained on
a PRECON dataset with 48 features.

4.5 Discussion

Based on the aforementioned results, it is concluded that
the proposed DL-based meta-learner approach yields satisfactory
results and outperforms all individual models, including bagging
and boosting approaches, for the detection of NTLs. Electricity theft
is a primary reason for NTLs.The accurate prediction of these losses
will not only reduce electricity theft cases but also provide direct
benefits to electric utilities and consumers.

In this article, the comparison is conducted between the meta-
learner ensemble approach that is developed in this study and
the traditional six ML classifiers. These traditional classifiers are
advanced ones and are mostly used for ETD in the literature.
In Punmiya and Choe (2019); Jokar et al. (2015), the authors
employ CatB, XGB, LightBoost, and SVM to differentiate between
benign and normal samples. All these classifiers give different
results on the same dataset. So, we believe that the same type of
situation can be seen in other datasets. This is the main motivation
to develop an ensemble model that integrates the advantages
of all classifiers, ignores their shortcomings, and gives accurate
and unbiased classification results. That is why the meta-learner
ensemble approach is proposed, which gives a superior performance
as compared to standalone classifiers. In addition, results in the
literature indicate that single classifiers give an unstable performance
on diverse datasets due to different data distributions, sample sizes,
and redundant features (Xiao et al., 2018). By going deeper into
the output of conventional ML classifiers, the proposed ensemble
strategy gives more weightage to classifiers with high accuracy and
ignores those with lower ones. So, in this way, the meta-learner
strategy fully utilizes the advantages of standalone models and gives
better results with a high accuracy rate.

Moreover, the performance of the proposed meta-learner
ensemble strategy is compared with that of the majority voting
classifier, which has applications in diverse fields and has achieved
tremendous results. In Li S. et al. (2019), the authors utilize an
advanced version of the majority voting classifier to differentiate

between normal and theft samples. Furthermore, it is observed
that the DL-based meta-learner approach gives superior values of
performance indicators than the majority voting algorithm, which
is also proved in Xiao et al. (2018). The results can be formulated
as the majority voting algorithm gives equal weightage to each
classifier and establishes the linear relationship among them. In
addition, in the proposed strategy, MLP is utilized on fold-1,
which gives different weightage to each participating classifier
on its prediction ability and automatically learns hidden intricate
structures, including non-linear relationships. Furthermore, MLP is
aDLmodel, which has complex non-linear functions like hyperbolic
tangent, sigmoid, and rectified linear unit. These functions have the
ability to learn non-linear relationships among predictions of fold-0
classifiers and class labels.

Furthermore, false alarms are a limiting factor that reduces the
efficacy of an ETD system. Once a false alarm is generated, an
on-site inspection is performed for its final verification. However,
electric utilities have a limited budget for this purpose. So, in real-
world applications, a classifier which has a low FPR is preferred
(Jokar et al., 2015). The proposed meta-learner strategy achieves a
low FPR on both balanced and imbalanced datasets as compared
to bagging, boosting, and individual classifiers that are shown in
Tables 2, 3.

5 Conclusion

In this article, the DL-based meta-learner model is proposed
for the detection of non-technical losses. According to the reviewed
literature, this is the firstmodel in the smart grid domain that utilizes
the diverse knowledge of multiple classifiers and automatically
learns hidden intricate features, including non-linear relationships,
among them. It controls the overfitting issue, gives high accuracy,
and surpasses state-of-the-art methods, including bagging and
boosting classifiers. Moreover, the proposed model is evaluated on
a real EC dataset, which is provided by PRECON, the largest energy
informatics group in Pakistan. Furthermore, class imbalance is a
severe issue in ETD, which affects ML/DL models’ performance.
So, a hybrid sampling approach is developed to handle the class
imbalance problem. The meta-learner model achieves 0.914, 0.987,
0.999, 0.923, 0.929, 0.960, and 0.139 ROC-AUC, PR-AUC, recall,
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precision, accuracy, F1-score, and FPR values on imbalanced data,
while it attains 0.910, 0.988, 0.9994, 0.985, 0.9768, 0.978, and 0.014
ROC-AUC, PR-AUC, recall, precision, accuracy, F1-score, and FPR
values on balanced data, respectively. In both cases, the proposed
model outperforms other baseline models, which indicates that the
meta-learner is a good option for the classification of malicious and
normal samples. In the future, we will evaluate the performance of
the proposed model in other domains.
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