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Precisely identifying the household-transformer relationship is of significant
importance for both the stability of the power system and the quality of
customer electricity consumption. However, the complex network structures
and frequent reconfigurations may lead to inaccurate records of household-
transformer relationships. In this paper, a novel data-driven similarity assessment
solution is proposed to enhance the accuracy and scalability of identifying
household-transformer relationships. Initially, a data processing method based
on dynamic temporal regularization with sliding windows is employed to optimize
dataset quality as well as enhance the efficiency of data processing. Then, a two-
stage solution is proposed for identifying the household-transformer
relationship. The first stage involves initial normalized clustering based on the
basic information of power distribution substations, while the second stage
assesses the similarity between households and transformer operational states
based on Hausdorff distance. The superior performance of the proposed method
is extensively assessed through real historical datasets, compared to benchmarks.

KEYWORDS

household-transformer relationship identification, low-voltage distribution network,
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1 Introduction
1.1 Background

The household-transformer relationship is defined as the link between household meters
and their respective transformers (Zhao et al.,, 2021). In practice, the complexity of the low-
voltage distribution network can easily lead to discrepancies between the actual household-
transformer relationships and the records at the power station due to its large user base,
complex network structure, and regular changes (e.g., relocation, expansion, and
disconnection). These inconsistencies may trigger inaccurate outage notifications, which
may destabilize the system (Liu et al, 2021). Furthermore, the misidentification of
transformers can degrade the quality of electricity (Li et al, 2019) and undermine the
reliability of the power supply for customers (Deng et al., 2021). The incorrect understanding
of the household-transformer relationship can also result in defective line loss analysis (Zhou
etal,, 2022) and compromise the efficiency of network management (Hu et al., 2020a). Thus,
it is crucial to rectify the household-transformer relationship identification issue for
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improving the power supply quality of consumers. In addition,
addressing the issue of identifying the household-transformer
relationship is critical for the efficient and stable operation of the
power system, and protecting public assets (Hu et al., 2020b).
Therefore, the development of a solution to the household-
transformer relationship identification problem is of significance
for both the stability of the power system and the quality of customer
electricity consumption.

1.2 Related work

Identifying relationships between households and transformers
in a low-voltage power distribution network is a critical topic in
electrical data analysis that has received wide attention in the
identifying  household-
transformer relationships in power distribution networks can be
three

home

literature. ~ Current strategies  for

mainly divided into categories: traditional manual

identification = methods, power-line  communication
(HPLC)-based methods, and data-driven power analysis (Chen
et al., 2019).

For the task of identifying the household-transformer
relationship in the low-voltage distribution network, the
traditional manual identification method confirms the household-
transformer relationship in the given transformer by onsite line
inspection (Hu et al., 2021a). Despite its high accuracy, this method
is labor-intensive, time-consuming, and challenging to implement
on a large scale (Chen et al.,, 2022a).

The  HPLC-based
identification method is used to determine any abnormalities in

the household-transformer relationships based on the carrier

household-transformer  relationship

communication outcomes from the transformer to the user-side
households via the power lines. In the literature (Zhang et al., 2021),
the authors analyzed and extracted the characteristic information
correlation between the downlink carrier module of the intelligent
terminal and the carrier module of the intelligent electricity meter, as
well as the correlation between the incoming and outgoing line
characteristic information of the intelligent branch monitoring unit.
Although the application of HPLC technologies has enhanced the
precision of household-transformer relationship identification, the
power carrier is a high-frequency signal that transmits user
identification information coupled to the cable of a low-voltage
distribution network. Thus, the variations in the transformer load
impedance might also obstruct the accurate identification of the
relationships (Liu et al, 2019). Moreover, noise within the
distribution network may distort the carrier signal and hinder
stable long-distance transmission, possibly compromising the
accuracy of the identification of household-transformer
relationships.

In summary, the traditional manual identifying method and the
HPLC-based method are only applicable to the case of a single power
distribution transformer with few subordinate users (Wang et al.,
2020a). traditional methods for identifying the
relationship ~ between and households are

Therefore,
transformers
challenging because of their expensive costs and limited
assurance of accuracy. In this Regard, it is necessary to explore
more efficient solutions for identifying household-transformer
distribution networks with large

relationships in  power
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fluctuations and complex household electrical equipment
configurations.

With the widespread deployment of smart meters in power
systems, a substantial amount of electricity data has become
available. Extensive historical measurement data makes it feasible
to accurately identify household-transformer relationships through
data-driven methods. In recent years, with the development of
artificial intelligence, machine learning methods in power system
application research have become a research hotspot. Many studies
have employed machine learning methods to assess the operational
state similarity of transformers and households in power systems.
Data-driven clustering and similarity assessment methods based on
machine learning have been greatly promoted to identify household-
transformer relationships. According to existing literature, the data-
driven approaches for identifying household-transformer
relationships can be mainly classified into two aspects: 1) the
mining of electrical data features by constructing knowledge
graphs, combing historical outage data of transformers, mining
multi-temporal characteristics of power distribution networks,
etc., to realize household-transformer relationship identification;
and 2) the analysis of similarity of voltage fluctuation curves by
analyzing voltage correlation between nodes to discriminate
connectivity relationships. The studies related to the two aspects
are reviewed in the following:

(1) Mining of electrical data features: To address the issue of

outdated  household-transformer  relationships in  the
marketing system, machine learning algorithms are employed
to categorize transformers and households by analyzing the
measurement and basic information of substations. The power
supply data, line loss rate, and user power consumption are used
as support to calculate the three correlation coefficients of
Pearson, Spearman, and Kendall (Qin et al., 2022). The
machine learning methods may complete the identification of
the household-transformer relationship on a large scale with
automation and high accuracy. Zou et al. (2022) proposed an
identification method for low-voltage transformers and
household meters based on density-based spatial clustering of
applications with noise, which applied a clustering algorithm
based on time series similarity to recognize the household-
transformer relationship. Liu et al. (2022) designed a data-
solution for household-transformer

driven relationship

identification by utilizing adaptive aggregation
approximation, considering the hierarchy structure of the
low-voltage power distribution network. There are also some
distance metrics that can be used to better measure the similarity
between household electricity consumption and transformer
measurements, such as Euclidean distance, Hausdorff distance
(Sendov, 1990), etc. For example, Zaevski and Kyurkchiev
(2023) discussed some properties of a new power-modified
exponential family with an original Kies correction, which
can be used to improve recall and precision in identifying
household-transformer relationships. In summary, numerous
studies have proven that machine learning techniques and data-
driven methods can be effectively used to mine operational
patterns from electrical data.

(2) Analysis of the similarity among the voltage fluctuation curves:

There have also been numerous studies to identify the
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relationship between households and transformers by analyzing
the similarity among the voltage fluctuation curves. For
instance, Wang et al. (2022) proposed a method for
identifying the households and
transformers in low-voltage distribution networks by utilizing

relationship  between

trend similarity and distance measures. Similarly, Gao et al.
(2021) suggested a technique to identify the topological
relationship between households and transformers based on
the K-Nearest Neighbors (KNN) algorithm and the Pearson
correlation coefficient. Zhu et al. (2021) developed a verification
method for low-voltage station topology recognition using the
Dynamic Time Warping (DTW) algorithm. Chen et al. (2021)
employed feature analysis to identify the relationship between
households and transformers within a low-voltage distribution
network. The viability and effectiveness of this approach in real-
world engineering applications were verified through practical
effect analysis in an actual power distribution system.
Furthermore, Hu et al. (2021b) introduced a real-time line
identification of the

relationship between households and transformers based on

loss calculation method for the

the equivalent resistance of a low-voltage distribution network.
Wang et al. (2020b) suggested an innovative method for
identifying the station area-user relationship. The method is
constructed based on multidimensional scale analysis and an
improved K-means algorithm which can maintain a high level
of accuracy even as problem complexity increases. Similarly,
Yong Xiao et al. achieve the identification of the transformer-
user relationship through analyzing topological structure (Gao
et al, 2020). However, existing methods face significant
challenges posed by the dimensional explosion and the
constraints of single-feature recognition in scenarios with
large data volumes and complex network structures, which
limit their application in practice and compromise their
recognition ability and adaptability. Therefore, more research
efforts need to be exploited to overcome these challenges and
develop more accurate and scalable techniques to identify and
analyze household-transformer relationships within low-
voltage distribution networks. To this end, this paper focuses
on enhancing the robustness of clustering algorithms,
improving the quality and quantity of data, refining measures
of similarity and distance, and optimizing model parameters.

1.3 Contribution

This paper addresses a significant research gap in understanding
the interaction between time-series fluctuations in communication
and the identification signal of the common power distribution
substation. The accurate identification of household-transformer
relationships is crucial for various applications such as load
management, fault diagnosis, and energy optimization. However,
existing methods lack a comprehensive approach to capture the
underlying operational patterns within the distribution network
area, which hampers the accuracy of identification. Therefore,
there is a pressing need for a data-driven similarity assessment
solution that can bridge this gap and improve the identification
accuracy. A data-driven similarity assessment method based on
dynamic time regulation is proposed for mining the common
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operational pattern behind the time series variations within the
distribution network area through Hausdorff distance computation.
The key contributions of this study are summarized as follows:

o The proposed Hausdorff distance-based similarity evaluation
bridges the gap between households and transformers for
node voltage similarity analysis, where the identification
accuracy is improved by a two-stage identification
procedure that includes both similarity assessment and
clustering algorithms.

o An auto-completion technique for absent time features and a
sliding window algorithm for time series normalization are
developed. Furthermore, a missing data completion method
focusing on effective voltage selection is implemented to
enhance data processing efficiency.

o The effectiveness of the proposed method is extensively
assessed through practical case studies, compared to

benchmark solutions.

The remainder of this paper is organized as follows: Section 2
formulates the household-transformer relationship identification
task. Section 3 presents the two-stage identification method based
on dynamic similarity assessment and clustering algorithms. Section
4 assesses the proposed solution based on a real historical dataset.
The conclusive remarks and future work are given in Section 5.

2 Problem definition

2.1 Relationship between households and
transformers

Households, in this context, refer to individual residential units
that require electricity to satisfy their daily demands, and
transformers are integral components within power distribution
identification of the
relationships is essential to minimize power loss and guarantee a

networks. The household-transformer
consistent power supply to all households. Consequently, the
accurate relationships between households and transformers are
pivotal for comprehending and optimizing power distribution
networks, given that they constitute the basic power supply unit
and data source within a low-voltage distribution network. Figure 1
illustrates the overall architecture of households and transformers
within the power distribution network.

As shown in Figure 1, the household-transformer architecture in a
low-voltage power distribution network comprises four primary layers:
the physical device layer, a data layer predicated on measurements and
electricity supply facility records, a communication layer incorporating
intelligent fusion terminals, and an application layer for data analysis.
Specifically, the existing low-voltage distribution power network is
primarily tree-structured, featuring four levels of connectivity,
i.e., distribution transformer, line branch box, meter box, and end-
user. The power from the higher-level power grid is channeled to
different substations via the low-voltage distribution transformers,
which distribute electricity to the end-users in the power substation
area through a succession of branch boxes and meter boxes. Hence,
identifying the relationship between households and transformers in
low-voltage distribution areas is crucial to determining the power
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FIGURE 1
Households-transforms architecture in the power distribution network.

supply scope and the end-users serviced by the distribution
transformers. Based on the architecture of the households and
transformers in the power distribution network, these units may
exhibit more similar voltage fluctuation characteristics, which could
hinder the accurate determination of the relationship between
households and transformers based on voltage time series fluctuation
curves. This factor compounds the challenge of establishing the
relationship between households and transformers in a substation
area, given the limited ability to identify single voltage characteristics.

This paper primarily focuses on the task of identifying household-
transformer relationships based on an analysis of the structural
characteristics of the household-transformer architecture. Given the
occasional missing or incorrect real data from measurements and
electricity supply facility records and the potential drift and noise
induced by the communication layer, it becomes crucial to carry out
data cleaning and completion before the identification of household-
transformer relationships. Therefore, this paper eliminates the
influence of the voltage curve time-axis offset on the identification
of household-transformer relationships through the calibration of
data. The key objective in the data calibration process for missing data
is to calibrate the voltage curve offset, which is caused by the clock
error of the meter. Then, to verify the relationships among the end-
users and transformers, the discrete Hausdorff distance is employed to
compare the similarity of voltage curves and cluster the households
and transformers with high voltage similarity, ensuring the accuracy
of the recorded relationship. This method is used in the low-voltage
distribution power network with the consideration of various external
factors that could influence the accuracy of the identification of the
household-transformer relationship.

2.2 Data foundation

At present, smart meters for electrical data collection have
basically been deployed with coverage in the low-voltage power
distribution network with a shorter time interval (e.g., 15 min),
which lays a solid data foundation for realizing the identification of
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household-transformer relationships in the low-voltage distribution
system. The data that can be obtained from the actual project is
described below.

1) Basic information of power distribution areas: the base
information of the power distribution area is also called initial
electricity supply facility records. Electricity supply facility records
of the low-voltage distribution network usually contain the name
of the power distribution network, the number of distribution
transformers, the number of end-user meters, the household
number, the user address, and the subordinate relationship
between the transformer and the users, which is the key
information for the daily maintenance of the low-voltage power
distribution network of the power grid company.

The distribution and number of transformers and households: if
the power supply of a substation is determined, the number of

o
~

distribution substations and subscribers in the area can also be
determined. Suppose there are m transformers in the distribution
substation and # households of end-users in the power supply
area, and the sets of transformers in the distribution substation

and the households of end-users are M = {1,2,...,m} and N =
{1,2,...,n} respectively.
3) Transformers’ historical measurement: the distribution

substation electricity data matrix PM = [P%]Txm, and voltage
data matrix VM = [V%]Txm are derived from the electricity
consumption information data collection system, respectively.
Among them, [P%]Txm and [Vf‘f} Iwm represent the active power
and voltage measurement data of the jth (jeM) low-voltage
distribution substation at time t (t€[1, T]), respectively. M is the
number of transformers, and T is the total length of measurement.
4) End-user historical measurement: The electricity information
data collection system can also obtain the power, active power,
and voltage data of users, and its data matrixes. Among them,
the time period selected for user measurement data should be
the same as the time period of the corresponding data for the
power distribution substation. PN = [Pﬁ-]—pxn and VN =
[Vf;]Txn represent the voltage

active  power, and
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measurement data of the ith low-voltage terminal user at time ¢,
respectively.

2.3 Clustering based on basic information

The main inconsistencies in the practical household-transformer
relationship associated with the recorded relationship in the low-
voltage distribution network encompass the following aspects:

(1) There are discrepancies between the recorded household-
transformer relationships in the initial information records
and the actual on-site conditions. The discrepancies may
arise from many aspects, such as manual entry errors, load
shifts during substation maintenance, users privately modifying
the connection line between their equipment and the grid, etc.
There are uncertainties about the location of the households after

—
58
~

the renovation or expansion of the low-voltage distribution
network. In recent years, the structure of the distribution
network has
construction of new power equipment, such as electric vehicle

become increasingly complex due to the
charging stations, which adds intricacy to the relationship between
households and transformers. Even if the initial relationship is
accurate, deviations in the actual relationship between users and
transformers may emerge as the network expands. Thus, it is
imperative to conduct regular inspections and reviews by
identifying the relationship between households and transformers.
The task of identifying relationships between users and

—~
(SS)
~

transformers is both complex and extensive in scale. Given
the vast number of end-users managed by power distribution
network operators and maintenance staff, tens of thousands of
household-to-transformer relationships need to be clarified
within a basic urban community.

Considering the aforementioned issue, by fully utilizing the
geographic location information of users in the electricity supply
facility record, it is possible to reduce the number of input data
dimensions, thereby lessening the computational burden. This can be
achieved by initially clustering users with similar geographic locations.
The end-user addresses in the electricity supply facility record are
manually entered and maintained and are typically in the
“province-city-district/county-street-
community/road-subdivision-block-room”. As the urban districts

standardized ~ format  of
have clearly defined boundaries and the power supply areas of
power supply stations generally do not overlap, the identification
of the household-transformer relationship is usually organized on a
neighborhood basis. These features are utilized in this study to initially
merge neighboring users, with the specific steps detailed below.

Step 1: Normalize the customer’s address according to the
standardized form.

Step 2: Extract the subscribers of the same block and the same unit
in the cell to form a subscriber collection.

Step 3: Aggregate the neighboring users and keep only one central
user to replace them. The objective function is defined as the
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minimum sum of the squares of the distances from each cluster
member to its cluster head, as follows:

K
argmin] (c) — argminzux - Ci”i M
i1

where c; is the ith set of cluster heads (cluster centers), and there are
k cluster heads in total.

Step 4: Form a sequence of central user active power and
voltage data.

3 Methods
3.1 Overview of method

The flow chart of the two-stage identification method of the
household-transformer relationship is shown in Figure 2, which
comprises an initial clustering algorithm and a similarity
assessment. The first stage mainly consists of five steps: data
collection, data normalization, rule-based initial user set formation,
feature extraction, and data amalgamation. In the second stage, the
data matrix is linearly normalized after completeness checking.
Subsequently, the Hausdorff distance between the household
measurement and the transformer measurement is calculated to
assess the curve similarity. Households of end-users with high
similarity are then clustered and verified by the power balance of
the transformer. Finally, the relationships between households and

transformers are marked based on the clustering result.

3.2 Data processing for households and
transformers

To address the issue of meter clock drift leading to
inconsistencies in the voltage data time axis, this study adopts
the 96-point daily measurement of the transformer as the
referenced standard time axis. Subsequently, the 96-point voltage
value is calculated using linear interpolation on the primary time
axis, which yields the customer meter’s 96-point voltage estimate on
this time axis. This process facilitates the calibration of the voltage
curve on the time axis, thereby minimizing the impact of clock drift
on the identification of the household-transformer relationship.

Suppose that the voltage curve of the meter has » distinct points
in the interval [c, d], the interpolation points are {x1, x2, ..., x,,}, the
interpolated function is f (x), and the measurement vector V with
interpolation can be expressed as (2):

V= f(x) (2)

To complete a time series with missing segments in order to have
a complete sequence of measurements, missing value interpolation
should be performed on the measurement vector. Let the
interpolation function be ¢ (x), then the interpolation error p (x)
can be expressed as (3):

p(x) = f(x)—¢(x) 3)
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Smaller interpolation errors lead to more precise results in the
identification of similarity clusters of measurement. Let v; and v,
denote the values of voltage curves at x; and x,, and then the voltage
curve is (4).

V= $(x) = (n +v)x @

Here ¢ (x) is subject to the following conditions in (5) and then
(4) can be equated to (6).

¢(x1) ="
{M&Fw )
V=g =t o (- (6)

Let xo be the center of x| and x,, and thus x = *5™. Therefore,
the interpolation series ¢ (x) can be expressed as (7):

¢(x) = f(x1)+ (2 — x1) (x = x0) (7)

Utilizing the linear interpolation method efficiently mitigates the
effect of the 96-point voltage measurement time axis offset in meters
on the identification of the household-transformer relationship.

3.3 Hausdorff distance-based similarity
assessment

The Hausdorff distance is a metric for measuring the similarity

between two sets of points, typically in Euclidean space. It has been
widely used in various fields, such as computer vision, pattern

Frontiers in Energy Research

recognition, and geometry. The Hausdorff distance is applied to
assess the fluctuating measurement similarity between the historical
measurements of households and transformers in the given areas. A
smaller Harsdorff distance means a higher similarity between the
household and the transformer. Therefore, by calculating and
comparing the historical Hausdorff distance between the
household and different transformers, the transformer with the
smallest Hausdorff distance is used as the matching transformer
for the household.

To augment the dataset while increasing the representativeness
of the computational results and mitigating the negative impact of
interference on classification results, the historical measurements
are divided into several historical measurement sequences based on
a sliding time window. To obtain the historical Hausdorff distance
between the household and the transformer, the historical
measurements were cut into measurement segments based on the
sliding time window. Then, the Hausdorff distances between the
household and the transformer at the corresponding time of the
measurement segments are calculated and clustered. The cluster
center is obtained using the K-means algorithm, and the cluster
center is a metric of the average similarity between the household
and the transformer.

Let X and Y be two non-empty sets of points in a Euclidean
space, representing the locations of households and transformers,
respectively. The Hausdorff distance of X and Y is denoted as
dy (X,Y) which can be defined as follows:

dy(X,Y) = max{supd(x,Y),supd(X,y)} (8)

xeX yey
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where sup (-) represents the supremum, inf the infimum, and
d(a,B) = inf d (a,b) quantifies the distance from a point a € X
to the subszt B ¢ X. In this way, (9) can be derived.

dy(X,Y)=inf{e>0; X cY,andY € X,} 9)

where X,: = Ux {z € M;d(z,x) <¢} is the set of all points within ¢
of the set X. §§), the Hausdorff distance dy (X,Y) can be denoted
as (10).

dy (X,Y) = sup

inf d (w, x) — inf d (w, y)‘
yeYy

weM|¥€X
= inf d (w, x) — inf d (w, 10
s -faten)] a0

Given that voltages across various households typically exhibit
a distinct similarity on the same transformer phase in substations,
clustering based on voltage similarity can aid in identifying both
the household-transformer and phase relationships. Numerous
exist to calculate

algorithms similarity using distance

computation, including the Hausdorff distance, Pearson
correlation coefficient, and others. The Hausdorff distance, in
particular, is employed as a measure to maximize differentiation
in voltage profile similarities within the same distribution area.
Compared to traditional similarity measurement methods like the
Pearson correlation coefficient, the Hausdroff distance offers
superior advantages in addressing clock desynchronization
issues. Hence, this study employs the Hausdorff distance to
contrast two voltage profiles by gauging the distance between
each point on one curve and its nearest counterpart on the
other curve. The clustering algorithm groups users with a high
degree of similarity in voltage profile to the distribution
transformer.

3.4 Power balance verifying

To ensure the conservation of power within the circuits, it is
essential to verify whether the power balance between transformers
and end-users adheres to Kirchhoff’s law. This means that the total
power supplied by all sources in a circuit must be equal to the total
power consumed by all loads in the circuit. A sufficient condition for
the correct household-transformer relationship is that the power
input to the distribution transformer is equal to the sum of the
network loss of the power system and the power consumption of the
users, as shown in (11),

wo (1+ x0) = 2 w; (1 + %) + f (wo, wi, X Xi> €OS Py, €OSP,),

(11)

where wy and w; represent the active power of transformer and
household, respectively; x( and x; represent the measurement errors
of transformer and household, respectively; cos¢, and cos ¢,
represent the power factors of transformer and household,
respectively; f(-) represent the calculation functions of network
loss of the power system. Ignoring the network loss of the power
system and measurement errors, the household-transformer
relationship can be described as:

Awy; = min{[wy (1 + x0) = ZL, w; (1 + x;) — ¢;]} (12)
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Under the condition of power balance, if a set of data enables
(12) to hold, then the relationship between the transformer and
households corresponding to this data set is the correct household-
transformer relationships for this power distribution substation.

In general, the power residuals Awy; in (12) can be considered to
obey the normal distribution, as shown in (13). The residuals of the
relationship identified by the method proposed in Section 3.4 will be
verified for the power balance to ensure the correction of
identification results.

~N(0,1) (13)

X -
X ~ N(0?),Y = 0”

4 Experiments and results

In this paper, the proposed enhancing similarity assessment
solution is implemented using PyTorch ver. 1.9.1. This solution is
assessed through simulation experiments based on the 64-bit
computing platform consisting of an AMD Ryzen 7 5800H CPU
and an NVIDIA GeForce RTX 3060 Laptop GPU.

4.1 Data description and data processing

The experiments are carried out based on the electricity
production data in the low-voltage distribution network of a city
in China. Since the load and power characteristics of adjacent
stations are close to each other, two power stations that are easily
confused belonging to the same line are selected for testing. The data
contain the measurement data set and an electricity supply facility
record file with basic power supply information. The measurement
data contain the active power and voltage of three-phase from 2022/
1/1-2022/2/28 in 2 transformers of the power distribution network,
110 household end-user meter measurements, and the basic
electricity supply facility records of the power distribution
substation. There are 59 household meters in Station A and
51 household meters in Station B. The measurement and
transformer operation monitoring data are sampled at an interval
of 15min. The illustrations of the measurement and electricity
supply facility record data are shown in Table 1.

Specifically, the measurement dataset includes three-phase
voltage, three-phase active power, and the average active power of
the households and the regional transformers. The measurements of
households have many modes, i.e., three-phase operation, two-phase
operation, and single-phase operation, depending on the customer’s
wiring form. It is necessary to match the transformer with the
corresponding measurement according to the different household
power usage. There are a small number of data errors, omissions, and
transmission failures in the customer-side meters, and the data in the
data set is raw data containing environmental noise.

Data loss and omission can occur during the communication
process of user-side smart terminal measurements, potentially
leading to voltage and power data offset. This paper addresses
such offsets by interpolating the original measurements. Figure 3
presents the raw data, where blanks indicate missing values, Black
blocks represent valid data, and white blocks represent invalid data
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TABLE 1 The measurement data set and electricity supply facility record data.

Measurement data set

Time interval Whether three-phase power Feature

Household meters 15 min depending on the electricity access voltage and active power

Transformer 15 min Yes voltage and active power

Electricity supply facility record illustration
Number of meters

Photovoltaic Number of users

Associated groups

Station A Yes 57 59 Dynl1

Stadion B No 49 51 Dynl1

Valid
values
Invalid
values
I |] Missing
value

FIGURE 3

Raw data with data loss.
Valid
values
Invalid
values
ﬂ Missing
value

FIGURE 4
Completed data after data processing.

(such as the data of the phase that is not running in the single-phase
operation state). Figure 4 visualizes the data post-completion of
missing values. Importantly, in instances of severe data loss,
i.e., more than 30% of continuous data missing, interpolation is
eschewed to circumvent exacerbating errors.

Frontiers in Energy Research

By comparing Figures 3, 4, it can be observed that the
interpolated measurements exhibit completeness, thereby
minimizing the effect of the meter’s 96-point (with a data length
of 1 day) voltage measurement daily time axis offset on identifying
the relationship between households and transformers.
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TABLE 2 Comparison of hausdorff distances-based similarity computation with different sizes of sliding windows.

Hausdorff distance Index of household measurement set Index of station transformer set
4-h sliding-window 0.800 4 10
6-h sliding-window 1.052 5 5
16-h sliding-window 2.039 2 2
24-h sliding-window 2.471 1 1
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TABLE 3 Accuracy and recall comparison.

Method Accuracy Recall
Proposed method 91.25% 86.5%
k-means 80.5% 82.2%
DTW 85% 77.7%
Logistic Regression 57.80% 81%
Random Forest Classifier 71.92% 86.17%
K-Neighbors Classifier 66.83% 82.33%
Support Vector Machine 58.70% 82.17%
Gradient Boosting Classifier 60.26% 76.33%

4.2 Relationship identification

After data alignment and completion, each meter has 60 days of
historical data. Subsequently, 2-day samples with time axis
alignment are used as the unit of household-transformer
similarity calculation. The historical measurement of each meter
can be split into 58 2-day measurement segments and thus the
historical measurement can be divided into 58 samples. 85% of the
samples are selected for algorithm training while the remaining 15%
are for testing.

The Hausdorff distances are calculated between the transformer
and the user’s historical measurement segments. Subsequently, the
historical Hausdorff distances are clustered for each household,
determining the cluster center of the household measurement
segments according to the method described in Section 3. By
calculating the similarity between the historical cluster center of
households and the transformer, the identification solution becomes
the
computational load for similarity evaluation. In order to visualize

more representative and general, which also reduces
the clustering effect and the similarity of the households and
transformers based on Hausdorff distance, three mean voltage
of household
comparison with the voltage of the distribution transformer, as

curves clustering centers are selected for
shown in Figure 5.

Figure 5 shows that three cluster centers of household voltage
and the mean voltage of the transformer in the substation share the
same trend and some similar details. It can be inferred that the usage
patterns of households are closely tied to the behavior of the
transformer. This similarity in trends and details suggests that
changes in the transformer measurement are likely reflective of
collective changes in household electricity usage.

Given the characteristic of raw measurements, dynamic time
regularization is adopted to perform sparse identification, which is
based on dynamic regularization with sliding windows. Different
sizes of sliding windows may influence the performance of the
proposed solution. Table 2 visually illustrates the impact of varying
sliding window sizes by presenting the distances and indices
between two point sets. Here, the distance signifies the maximum
distance between each point in the initial set and its nearest
counterpart in the second set, while the index corresponds to

each point in the household measurement set relative to the
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closest station transformer set. The experiment employs four
distinct sliding window scales: 4-h, 6-h, 16-h, and 24-h.

It can be observed that a reduction in the size of the sliding window
corresponds to a decrease in the Hausdorff distance. Given the
established correspondences between samples in the household
measurement set and the station transformer set that share identical
indices, it is expected that the calculated Hausdorff distance and the
indices between the two sets of points would be consistent. However,
employing a 4-h sliding window results in a discrepancy between the
index of the household measurement set and that of the station
transformer set. This discrepancy suggests potential matching errors
should the sliding window be set too small, leading to inconsistencies
between the household and transformer measurements. Consequently,
in this study, the width of the sliding window is set at 6 h.

To evaluate the performance of the clustering algorithm, the
magnitude of “saturation” in the Hausdorff distance (Zaevski and
Kyurkchiev, 2023) is calculated. To calculate the saturation in
Hausdorff’s sense, the cumulative distribution function (CDF)
curves of the historical measurements of each household meter
were first calculated. The formula for calculating the saturation is
as (14):

d(g,h) = max{sup inf |A — B||, sup inf ||A - B||} (14)
Aeg Beh Beh A€g

Here, g represents the graph of the completed CDF and h
represents the curve consisting of two lines. The Hausdorff
distance d(g, h) is the maximum value of the distance between
the points on g and h. The saturation of the Hausdorff of different
clusters is shown in Figure 6.

After completing the identification of user-transformer
relationships based on the clustering of users and transformers, it
is necessary to verify the power balance on the household-
transformer relationship identified by the proposed method in
the power distribution substation. The power balance and power
balance residuals calculation of the transformer and the end-user
households in the power distribution substation are shown in
Figure 7.

Figure 7 shows the comparison between the total power
consumption of the household set and transformer (Figure 7A)
the power residual distribution
(Figure 7B). For the correct classification of the household-

and household-transformer
transformer relationship, the expectation of power residuals should
be around zero. Given the objective existence of measurement errors,
the power residuals will obey the normal distribution, as shown in
Figure 7B. The power balance verifies the accuracy of cluster results
thus illustrating the correction of identification.

To verify the computational efficiency of the proposed method
on the dataset, the computation time of the proposed user-
transformer classification algorithm on a dataset of two stations
and hundreds of users is tested and obtained to be 0.889s. The time
consumption is considered acceptable.

4.3 Performance evaluation

The proposed method is extensively verified by two widely used
performance metrics in this method, i.e., Accuracy Paccyracy and
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The Hausdorff distance between the users and transformer curves. (A) The distance between the household set and the corresponding transformer
in the training set; (B) the distance between the household set and the corresponding transformer in the test set; (C) the distance between the household

set and the non-corresponding transformer in the training set.

Recall Rycqii, which are adopted for the evaluation, as shown in (15)
and (16).

p 3 TP+TN (15)
accuray " Tp 4+ FN + FP+ TN
TP
Rrecall Sl — (16)
TP+ FN

where TP is the number of predictions of positive classes into
positive classes; TN is the number of predictions of negative
classes into negative classes; FN is the number of predictions of
positive classes into negative classes; and FP is the number of
predictions of negative classes into positive classes. The proposed
method is further assessed against typical methods for the
identification of household-transformer relationships. Two data-
driven methods are conducted as benchmarks, i.e., Euclidean
distance-based k-means (Chen et al., 2022b) and the DTW (Yang
et al.,, 2022).

The test is conducted on the data set with the household meters
and transformer measurement samples in Table 1, which consists of
the active power of three phases and the voltage of three phases. The
sample of wrong relationship judgment is defined as the negative
sample, and the sample of correct relationship judgment is defined
as the positive sample. The metrics in (15), (16) are used to assess the
effect of the proposed method. There are 472 positive samples and
510 negative samples in the test set.

Table 3 presents the numerical results of the performance
comparisons between two power stations. The two power stations
belong to the same power line and are easily confused. As shown in
Table 3, compared with Euclidean distance-based k-means and
DTW, the proposed method based on the Hausdorff distance
and dynamic time regularization improves accuracy by 11.25%
and 5.50%, and improves recall by 4.30% and 8.80%, respectively.
The comparisons of accuracy and recall show the stable performance
of the proposed method. Since the proposed method fully takes into
account the voltage variation characteristics of each time period, the
feature extraction effect is better, which can improve the clustering
effect and the accuracy of the clustering results at the same time.
However, when compared to the proposed method, several models
show significantly lower accuracy rates, including Logistic
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Regression (57.8%), Support Vector Machine (58.7%), and
Gradient Boosting Classifier (60.26%). Despite lower accuracy,
these methods maintain relatively high recall rates, ranging from
76.33% to 82.17%. Lastly, the Random Forest Classifier and
K-Neighbors Classifier show modest performance, with accuracy
rates of 71.92% and 66.83%, and recall rates of 86.17% and 82.33%,
respectively.

In summary, while other methods achieved acceptable
performance levels, the proposed method outperformed all others
in terms of accuracy, demonstrating its effectiveness.

4.4 Visualization of similarity assessment

This paper constructs a Hausdorff distance-based temporal
clustering algorithm to achieve the identification of household-
transformer relationships for real-time measurement data in a
sliding window on the temporal sequence. In order to verify the
effectiveness of the solution proposed in this paper for the
relationships, the
experimentally extracted user measurements are visualized and

identification of household-transformer
compared with the corresponding transformer measurements.
To verify the effect of the proposed solution, the voltage curves
of different categories of users and their clustering center
transformer curves are plotted, respectively, as shown in
Figure 8. Among them, Figures 8A-C represents the category
user #1 A-phase voltage curve time window curve and
transformer A-phase voltage time window curve; Figures 8D-F
represents the user #2 A-phase voltage curve time window curve
and transformer A-phase voltage time window curve; and Figures
8G-1 represents the user #3 A-phase voltage curve time window
curve and transformer A-phase voltage time window curve. It can
be seen from Figure 8 that the fluctuation characteristics of the
clustering center curve (transformer measurement) and each user
voltage curve under the same category are similar to a high degree,
while the fluctuation trends of the clustering center curve and each
user voltage curve under different categories are significantly
different. From the comparison of user voltage curves under
different categories, it can be seen that the method of clustering
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user voltage curves with similar trend characteristics into one
category and using methods such as line loss rate and power
balance to identify the transformer to which the user belongs for
anomalies has a better effect on identifying the relationship
between households and transformers.

In order to visually demonstrate the classification abilities
based on Hausdorff distance, the Hausdorff distance between
the households and transformer curves is shown in Figure 9.
Specifically, the distance between the household set and the
corresponding transformer in the training set is shown in
Figure 9A; the distance between the household set and the
corresponding transformer in the test set is shown in Figure 9B;
and the distance between the household set and the non-
corresponding transformer in the training set is shown in
Figure 9C.

As can be seen from the Hausdorff distance distribution in
Figures 9A-C, for the distance between the household set and the
corresponding transformer, the distribution of Hausdorff distances
during testing and training is very similar, both in the range of 0-0.8.
As for the distance between the set of households and the non-
corresponding transformer, the distribution of Hausdorff distances
ranges from 1 to 3. This range is notably distinct from the previous
category, suggesting that the proposed method exhibits a strong
classification ability.

5 Conclusion and future work

This paper addresses the issue of the identification of inaccurate
household-transformer relationships within low-voltage distribution
networks. Current methods of identifying household-transformer
including manual
communication technology, and big data analysis of smart meters,

relationships, identification, power carrier
are reviewed. Given the limitations of these methods, this paper adopts
missing data completions and sliding windows of time series to enhance
the data quality and proposes a two-stage approach based on Hausdorff
distance to improve the accuracy and scalability of household-
transformer relationship identification. The superior performance of
the proposed method is demonstrated through extensive tests on real
historical datasets in comparison to existing benchmarks.

The proposed method for improving the performance of
household-transformer relationship identification presents significant
potential for real-world application in low-voltage distribution
networks. The approach acknowledges practical considerations such

as measurement noise, time axis offset, and missing data, which further
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