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The northern regions of China face the challenges of the mismatch of the power
supply and demand, as well as serious wind curtailment issues, caused mainly by
the limitation of the “with heat to determine electricity” mode for combined heat
and power generation during the winter season. To further absorb the surplus
wind power and alleviate restrictions, a comprehensive energy system
optimization method for parks based on coordinated scheduling between
sources and loads is proposed in this paper. First, the implementation of a
heat-storage electric boiler on the source side further achieves the decoupling
of heat and power. Second, an optimized scheduling method for electric vehicles
combining incentive scheduling and orderly scheduling is proposed on the load
side, which helps flatten the load curve. Finally, a tiered carbon tradingmechanism
is introduced and a community integrated energy system (CIES) optimization
scheduling model is established with the aim of minimizing the total cost of the
CIES, and the problem is solved using the CPLEX commercial solver. The
simulation results indicate that the overall system efficiency is significantly
improved through the coordinated scheduling of power sources and loads.
Specifically, the integration rate of wind power increases by 3.91% when
compared to the sole consideration of the integrated demand response.
Furthermore, the peak shaving and off-peak filling effect is considerably
enhanced compared to the utilization of only thermal-storage electric boilers.
Additionally, the implementation of coordinated scheduling leads to a reduction in
the total system cost by 2764.32 yuan and a decrease in total carbon emissions by
3515.4 kg. These findings provide compelling evidence that the coordinated
scheduling of power sources and loads surpasses the limitations of thermal
power units, strengthens the demand response capability of electric vehicles,
and enhances the economic benefits of the CIES.
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1 Introduction

In northern China, wind power during winter exhibits the
characteristic of an anti-peak load with low generation and
high generation at night (Zhao et al., 2021). Additionally, the
“with heat to determine electricity” model restricts many
combined heat and power (CHP) units (Liu et al., 2023),
leading to significant wind curtailment. To improve wind
power accommodation and reduce carbon emissions, heat-
storage electric boilers, as a type of electric-to-heat conversion
devices with time-shifting properties, have been widely
studied.

Heat-storage electric boilers are a type of clean and efficient
energy conversion equipment that can effectively solve the
problem of mismatch between the new energy and the load in
time and space, supporting the safe, stable, and economic
operation of the power grid. Therefore, many scholars have
proposed the utilization of abandoned wind power for heat
dispatching strategies. Li et al. (2023) proposed a coordinated
economic dispatch model for primary and secondary heating
systems that incorporates boiler-supplied heating. The
effectiveness and optimality of the method were analyzed and
verified using the P6S12 system. Fan et al. (2022) proposed a
distributed thermal-storage electric boiler scheduling framework
based on deep reinforcement learning and responsive user
presence. The adaptability and generalization of the proposed
method under different conditions were verified. Yang et al.
(2018) made improvements to the heating system based on
the work of Li, decoupled heat-storage electric boilers from
the operation mode of thermoelectric units, reduced coal
consumption by abandoning wind heating, and improved the
load regulation ability of the units while enhancing the economic
performance of the system. Chen et al., (2015) made
improvements to the operating method and proposed a
flexible operation mode for electric boilers and heat storage
tanks, which significantly reduced the abandonment rate of
wind. Zhang (2022) developed a wind power curtailment
scheduling model that coordinates the use of heat-storage
(CHP) and electric boilers for heating. This effectively
expands the capacity of wind power accommodation into the
grid and helps reduce scheduling costs. On this basis, Tan
responded to price-type demands and the impact of rural
biogas digesters on the district heating network. Tan et al.
(2022) proposed a robust dispatch model for integrated
electricity and heat networks based on the price-based
integrated demand response to accommodate wind power
integration. The model further resolved the problem of
asynchrony between the electric load and the thermal load.
Tan et al. (2023) introduced a cooperative operation
framework for an integrated rural energy system with
greenhouses. The framework utilizes a rural biogas digester to
supply fuel to CHP. Additionally, it enhances biogas production
by injecting hot water into the digester through a heat circulation
process. This approach enables efficient management and
scheduling of energy resources. The aforementioned literature
only considers the effect of accommodating wind power and
reducing carbon emissions on the source side. However, the
energy saving and emission reduction capacity on the source

side is limited, and with the large-scale integration of electric
vehicles into the grid, their participation in the demand response
needs to be further developed, while the load-side regulation
space is significantly increased. Therefore, the joint
accommodation of renewable energy and the reduction of
carbon emissions by the source and load sides requires further
research.

Currently, electric vehicles (EVs) serve as an important demand
response on the supply side, with characteristics such as large
quantity and strong dispatch ability (Li et al., 2015). Therefore,
many scholars have conducted research on the following two
aspects: first, the price-type demand response, which guides users
and adjusts electricity consumption behavior through flexible
electricity price policies (Hou et al., 2022a); second, the
incentive-type demand response, which motivates users to
participate in load adjustment by adopting economic
compensation electricity prices based on signed contracts or
agreements (Hou et al., 2022b; Liu and Wang, 2021). Yu et al.
(2022) proposed a dynamic updating strategy for regional dispatch
pricing that integrates the spatial and temporal information of the
power grid. The results verified that the proposed strategy can
effectively reduce the load deviation of each regional power grid,
reduce the operating cost of the electric vehicle aggregator, and
reduce the charging cost of electric vehicle users. Cui et al. (2018)
described the classification basis of current EV charging and
discharging pricing and analyzed the ordered charging and
discharging pricing models of EVs from various perspectives.
Chen et al. (2017) made improvements to the charging station
based on the word of Cui, who proposed an automatic demand
response strategy for photovoltaic-assisted charging stations based
on real-time prices, which improves the economic viability and
effectively promotes renewable energy consumption. Ginigeme and
Wang (2020) conducted an extensive study on vehicle-to-grid
(V2G), proposed an optimal V2G model based on real-time
electricity prices, and validated the economic feasibility and
universality of the proposed model.

Compared to price-based demand response, which cannot
fully utilize the demand response potential of EVs, the incentive-
based demand response can fully utilize the demand response
potential by signing agreements with EV owners. For example,
Chen and Chang. (2018) propose a cloud-based energy
management service for the fair demand response of EVs.
Zhou et al. (2019) developed a demand response mechanism
compatible with distributed systems, privacy protection, and
incentives for connected vehicles. Chen and Zhang (2019)
proposed a new secure power trading and incentive contract
model. Al-Ghussain et al. (2022) analyzed the influence of EV
penetration percentages and charging rates on optimal system
sizing and found that higher EV penetration requires an increase
in the battery energy storage system capacity and the renewable
energy system capacity, with an optimal charging period in the
morning. However, relevant research has only analyzed the EV
aggregation scheduling strategy from the perspective of a single
price or incentive type, and few have considered it from the
perspective of the combination of the price and incentive demand
response. Therefore, how to fully tap into its demand response
potential and help with peak shaving and valley filling in the CIES
system has become the key to EV scheduling research.
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To address the aforementioned issues, this paper proposes an
optimized scheduling strategy for energy saving and emission
reduction by combining heat-storage electric boilers and electric
vehicles. First, the scenario reduction method is used to process the
uncertainty of renewable energy and to obtain periods of abandoned
wind. Then, the impact of different operation modes of the thermal-
storage electric boiler, the demand response dispatching strategy,
and the compensation price of electric vehicles on the
comprehensive benefits of the CIES is studied, respectively;
subsequently, a stepped carbon trading mechanism containing
positive and negative carbon is introduced to limit the carbon
emissions of the system. Finally, an optimal scheduling model for
the CIES is established with the goal of minimizing the operating
cost during the previous day’s dispatch cycle. The CPLEX
commercial solver is used to validate the effectiveness of the
proposed method.

The main contributions of this paper are as follows:

(1) Further analysis was conducted on the operation mode of the
heat-storage electric boiler, with a focus on addressing the issue
of wind power curtailment. A novel operational strategy was
proposed, which involves tracking wind power curtailment to
maximize the integration of wind energy while overcoming the
constraints associated with “heat-driven electricity generation.”

(2) In order to further enhance the responsiveness of electric vehicle
demand, a revised scheduling strategy combining orderly
dispatch and incentive dispatch was proposed for load
aggregation aggregators. The combination of these two
scheduling strategies significantly reduced the charging load
of EVs during peak electricity price periods and increased the
load demand during off-peak periods.

(3) In order to enhance the flexibility of the system’s dispatch
capabilities, an integrated energy system optimization

scheduling method is proposed, which considers the source
and load coordinated scheduling of thermal-storage electric
boilers and electric vehicles. The introduction of thermal-
storage electric boilers on the supply side promotes the
decoupling of heat and electricity by utilizing excess wind
power for heating. On the demand side, the introduction of
the electric vehicle demand response helps in peak shaving and
valley filling. The combined dispatch of the sources and loads
optimizes the overall efficiency of the system.

2 CIES model of the park

Against the background of the green and low-carbon
transformation of the energy structure, changing the development
structure of traditional energy systems and striving to construct clean
and efficient integrated energy systems has become an important way
to achieve low-carbon emission goals. The community integrated
energy system structure proposed in this paper is shown in Figure 1.

The CIES consists of four major components: energy generation,
conversion, storage equipment, and loads. The energy subsystems are
planned and coordinated, with a focus on integrating renewable energy
sources, while meeting user energy demands as much as possible.

Herein, wind and solar energy provide energy for the system’s
wind turbines (WTs) and photovoltaic (PV) power generation
and only consider the operational and maintenance costs; the
heat-storage electric boiler (HSB) uses electricity for heat storage
during periods of abandoned wind at night; micro-gas turbines
(MTs) generate electricity using natural gas as fuel, and waste
heat is recovered using a lithium bromide absorption chiller
(LBAR); the power-to-gas equipment (P2G) absorbs carbon
dioxide and hydrogen to form methane; electric refrigeration
machines (ECs) form thermocouple pairs for refrigeration;

FIGURE 1
Community integrated energy system energy flow diagram.

Frontiers in Energy Research frontiersin.org03

Yang et al. 10.3389/fenrg.2023.1237781

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1237781


absorption refrigeration machines (ARs) recover waste heat to
meet cooling load (CL) demands; the electricity load is divided
into residential electricity loads (ELs) and electric vehicle
charging loads; and electric vehicles participate in the demand
response by using a load aggregator (LA), considering that the
role of V2G is not currently being considered.

2.1 Combined heat and power generation

The combined heat and power generation unit consists of a gas
turbine and a bromine chiller. The bromine chiller is responsible for
heat recovery. Themathematical models for the waste heat discharge
of the gas turbine QMT and the thermal power of the bromine chiller
QLBAR are given as follows:

QMT t( ) � PMT t( ) 1 − ηMT − ηloss( )/ηMT, (1)

QLBAR t( ) � QMT t( )ηretCLBAR, (2)
where PMT(t) represents the power generation of the micro-gas
turbine in time t; ηMT, ηloss, and ηret represent the power generation
efficiency, heat dissipation loss coefficient, and waste heat recovery
rate of the micro-gas turbine, respectively; and CLBAR denotes the
thermal efficiency of the LiBr absorption chiller.

2.2 Battery

Energy storage (ES) equipment is an important component of
the integrated energy system, which can alleviate the pressure of
uncertain system load fluctuations to a certain extent and
promote peak shaving and valley filling and wind power
accommodation. Equations 3, 4 represent the constraint
equations for the battery state of the charge and charge/
discharge, respectively.

FIGURE 2
CIES overall dispatch diagram.
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SOC t + 1( ) � SOC t( ) + ηes,chrPes,chr t + 1( )
−Pes,dis t + 1( )/ηes,dis

SOC min#SOC t( )#SOC max

⎧⎪⎨⎪⎩ (3)

Ues,chr t( )Pes,chr
min #Pes,chr t( )#Ues,chr t( )Pes,chr

max

Ues,dis t( )Pes,dis
min#Pes,dis t( )#Ues,dis t( )Pes,dis

max{ (4)

where SOC(t) represents the state of charge of the battery;
Pes,chr(t) and Pes,dis(t) correspond to the charging and
discharging power of the battery, respectively; ηes,chr and
ηes,dis represent the charging and discharging efficiency of
the battery, respectively; and Ues,chr(t) and Ues,dis(t) represent

FIGURE 3
Renewable energy output curve diagram for each scenario before reduction.

FIGURE 4
Renewable energy output curve diagram for each scenario after reduction.
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the status indicators of the battery’s charging and discharging
operation, where 0 means inactive and 1 means active,
respectively, and these two values are mutually exclusive.

2.3 Absorption refrigeration machines

CAC t( ) � ηACHAC t( ), (5)
where CAC(t) represents the output cooling power of the absorption
refrigerator; HAC(t) represents the input thermal power of the
absorption refrigerator; and ηAC represents the cooling efficiency
of the absorption refrigerator.

2.4 Electric refrigeration machines

CEC t( ) � ηECPEC t( ), (6)
where CEC(t) represents the output cooling power of electric
refrigeration machines; HEC(t) represents the input electric power
of electric refrigeration machines; and ηEC represents the cooling
efficiency of electric refrigeration machines.

2.5 Heat-storage electric boilers

2.5.1 Operational principle of the storage electric
boiler

The heat-storage electric boiler is composed of two parts, one is the
electric boiler and the other is the storagewater tank, whichwork together
to provide heat to the system. Its mathematical model is given as follows:

Heb t( ) � ηefPeb t( )
Heb t( ) � Hin t( ) +Htrans t( )
Houtput t( ) � Hout t( ) +Htrans t( )
0≤Hin t( )≤Hin,max

0≤Hout t( )≤Hout,max

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(7)

where Peb(t), Heb(t), Htrans(t), and Houtput(t) represent the electric
power, thermal power, heat load, and power delivered to the load of
the electric boiler at time t, respectively.Hin(t) andHout(t) represent the
heat-storage and release power of the storage tank at time t, respectively.
Hin,max and Hout,max represent the maximum heat-storage and release
power of the storage tank, respectively. ηef represents the
electric–thermal conversion efficiency of the electric boiler.

Based on this, we consider the heat capacity constraint of the
storage tank as shown in Eq. 8.

Sh t + 1( ) − Sh t( ) � Hin t( ) −Hout t( ) − μlossSh t( )
Sh 0( ) � Sh T( )
0≤ Sh t( )≤ S max ,

⎧⎪⎨⎪⎩ (8)

where Sh(t) and Smax represent the thermal storage quantity and
thermal storage limit of the storage tank at time t, respectively; Sh(0)
and Sh(T) represent the thermal storage quantity of the storage tank
at the beginning and end, respectively; and μloss represents the heat
loss of the storage tank.

2.5.2 Operating mode of heat-storage electric
boilers

Heat-storage electric boilers can be divided into two operating
modes: full heat storage and semi-heat storage. In the full heat-storage
mode, all the heat generated by the electric boiler at the start-up time is
sent to the heat-storage tank for storage instead of being directly
supplied to the system for heating, and it is released during the peak
period of heat load. In the semi-heat-storage mode, part of the heat
generated by the electric boiler is supplied directly to the system for
heating, while the rest of the heat is stored in the heat-storage tank and
released according to the real-time heat load of the system.

The operational mode of the electric boiler in this article was
improved in the semi-heat-storage mode. Here, we determine the
possible periods of wind power abandonment through wind power
forecasting methods, and the working state variable EB_state of the
heat-storage-type electric boiler is set based on the following periods:

EB state t( ) � 1, Wreal t( )<Wpre t( )
0, Wreal t( ) � Wpre t( ){ (9)

where Wpre(t) represents the predicted wind power output at time t
and Wreal(t) represents the actual wind power output at time t.

During this time period, the heat-storage electric boiler produces
heat as much as possible, while remaining idle during other time
periods, relying only on the heat-storage water tank to release heat,
in order to cooperate with the CHP unit to meet the system’s
thermal load demand.

2.6 Electric vehicle demand response model

2.6.1 Electric vehicle unordered charging model
In recent years, electric vehicles have developed rapidly as a

technology industry, and their load ratio in the power grid has
gradually increased. Due to the randomness of the EV charging and
discharging process in space and time, the traditional statistical
methods make it difficult to grasp the overall data. Therefore, this
article uses the Monte Carlo method, which has strong random
simulation characteristics, to extract the traffic and charging
behavior of each car and then obtain the charging load of the EV.

2.6.1.1 Probability distribution of the starting time for
charging

According to the statistics from the National Highway Traffic
Safety Administration of the United States (NHTS) (Luo et al.,
2011), the end time of a trip follows a segmented normal distribution
(Wu, 2021). Taking the travel patterns of ordinary household
vehicles as the analysis material and assuming that the vehicle
owner will charge their electric vehicle at the end of the trip, that
is, the end time of the trip is the starting time of charging, the
probability density expression is as shown in Eq. 10.

fs x( ) �
1

σs



2π

√ exp − x − μs( )2
2σ2s

[ ], μs − 12( )< x≤ 24

1
σs




2π

√ exp − x + 24 − μs( )2
2σ2s

[ ], 0<x≤ μs − 12( ) ,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(10)
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where μs and σs, respectively, represent the expected value and
standard deviation of the probability density function, with values of
17.6 and 3.4 (Wu, 2021).

Therefore, the typical daily driving probability density curve for
electric vehicles can be plotted as shown in Supplementary
Figure SA1.

2.6.1.2 Probability distribution of daily driving mileage
The power consumed by an electric vehicle in a day is mainly

determined by the daily driving mileage of the owner. The daily
driving mileage of the vehicle is the approximate logarithmic normal
distribution (Wu, 2021), and its probability density function is
shown as follows:

fL x( ) � 1
xσL




2π

√ exp − ln x − μL( )2
2σ2L

[ ], (11)

where μL and σL, respectively, represent the expected value and the
standard deviation of the probability density function mentioned
previously, with values of 3.2 and 0.88, respectively (Wu, 2021).

The curve of the distribution of the traveled mileage was
calculated and is shown in Supplementary Figure SA2.

2.6.1.3 Load curve of electric vehicles
The charging load characteristics of EVs mainly depend on the

start time and the duration of the charging process. The statistical
analysis of EV travel patterns can be conducted based on historical
data. Based on the historical data analysis of EV travel patterns, the
start time and the initial state of charge (SOC) of each electric vehicle
can be determined according to its travel characteristics. This can be
used to calculate the time required to charge to the desired battery
level of the vehicle owner and the EV charging load. Finally, the total
EV charging load is obtained by adding up the calculated values.

Due to the close relationship between the required charging time
for EVs and the vehicle’s SOC, which is positively correlated with the
driving distance, the calculation formula for the SOC of an electric
vehicle before and after driving is given as follows:

St2 � St1 − d

dm
× 100%, (12)

where St1 represents the battery level at the end of the previous
charge, the initial SOC, which can generally be set to 1 assuming that
the electric vehicle is charged to full each time; St2 represents the
battery level after driving, which is the battery level of the vehicle at
the end of the last trip by the owner; d represents the distance
traveled by the owner; dm represents the maximum driving range of
the electric vehicle.

The required charging time for electric vehicles refers to the time
interval from the beginning of charging to the point when the
battery is fully charged. It can be calculated using the following
formula:

TEV � 1 − SSOC,KC( )EEV

ηEVCPEVC
, (13)

SSOC,KC � SSOC t2( ), (14)
where TEV represents the required charging time for electric
vehicles; SSOC,KC represent the SOC of the electric vehicle at the

beginning of charging; EEV represents the battery capacity of the
electric vehicle; ηEVC is the charging efficiency of the electric vehicle;
and PEVC is the charging power of the electric vehicle.

Based on this, adding up the charging loads of each electric
vehicle can give the total disordered charging load of the EV:

PEV t( ) � ∑NEV

i�1
PEVC i, t( ), (15)

where PEV(t) represents the total disordered charging load of electric
vehicles at time t and NEV represents the total number of electric
vehicles. PEVC(i,t) represents the charging power of the i-th electric
vehicle at time t.

Based on the aforementioned model, the charging load data of
electric vehicles were subjected to the Monte Carlo simulation, and
the disordered charging load of EVs was obtained as shown in
Supplementary Figure SA3.

As we can see, the charging of electric vehicles mostly begins at
18:00, which is also during the peak of the after-work rush hour, and
the simulation results are consistent with the user behavior.

2.6.2 Demand response scheduling strategy for
electric vehicles

According to the charging pattern of electric vehicles, their peak
charging periods coincide with the peak electricity demand of
residential areas. However, during periods of heavy wind
abandonment at night, the charging load is relatively low. A
single scheduling strategy cannot fully utilize the flexibility of EV
resources. Therefore, this paper proposes an improved scheduling
strategy for load aggregation by combining the orderly scheduling
method with the incentive scheduling method.

The EV scheduling proposed in this paper mainly consists of two
processes: incentive scheduling under fixed signed agreements and
orderly scheduling under time-of-use pricing mechanisms. The
fixed signing strategy uses an LA as the intermediary between EV
users and the CIES, with the LA providing compensatory prices to
EV users based on the CIES’s demand for flexibility resources. EV
users participate in the integrated demand response (IDR) and
upload their own dispatchable information based on
compensatory prices. The LA comprehensively evaluates and
formulates a load transfer agreement that includes compensatory
prices, charging load transfer quantities, transfer periods, and
transferred periods. Electric vehicles that have signed the
agreement will receive an incentive dispatch from the LA
regardless of the starting time and the leaving time period. The
relationship expression between the compensatory price Db(t) and
the load transfer quantity Ptev(t) is shown in Eq. 16.

Db t( ) � Ptev t( )| |Dsell t( )/ Pev t( )δ( ). (16)
Ptev(t) represents the load transfer of electric vehicles after LA

scheduling, with δ being the compensation price elasticity
coefficient; Dsell(t) represents the system selling price of electricity
at time t.

The rest of the users who have not signed an agreement are
charged in an orderly manner. The orderly charging strategy first
needs to determine whether the electric vehicle is transferrable,
that is, tdep-tin >Ti, where tin is the arrival time of the electric
vehicle, tdep is the departure time of the electric vehicle, and Ti is

Frontiers in Energy Research frontiersin.org07

Yang et al. 10.3389/fenrg.2023.1237781

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1237781


the charging duration of electric vehicle i. If satisfied, we determine
whether the transfer is necessary based on the arrival time of the
electric vehicle.

(1) During the electricity price valley period, the electric vehicle will
immediately start charging.

(2) During the electricity price flat period, we determine the next
period’s electricity price. If it is a valley period, we transfer the
charging to the next period. If it is a peak period, charging begins
immediately.

(3) During the electricity price peak period, we determine the next
period’s electricity price. If it is a valley period, we transfer the
charging to the next period; if it is a flat period, we determine the
electricity price for the period after the peak and flat level. If it is
peak pricing, we charge during the flat period; if it is valley
pricing, we transfer the charging to the valley period.

If it is not satisfied and the electric vehicle does not support
scheduling, it will start charging immediately. The scheduling
strategy for electric vehicles is shown in Supplementary
Figure SA4.

The revenue generated from LA scheduling is divided into two
parts: orderly scheduling revenue and incentive scheduling revenue.
The model is shown in the following equations:

Cord t( ) � ∑Nord

i�1
PEVT i( )DIDR , (17)

Cex t( ) � DIDR −Db( )Ptev t( ), (18)
FLA t( ) � Cord t( ) + Cex t( ), (19)

where Cord(t) and Cex(t) represent the orderly scheduling revenue
and incentive scheduling revenue of the LA, respectively. FEVT(i)
represents the charging power of a single electric vehicle at this time
point through orderly scheduling. FLA(t) represents the total revenue
of LA scheduling.

Considering both the total cost of the CIES and the scheduling
revenue of the LA, a comprehensive benefit index is introduced to
evaluate overall benefits, as shown in Eq. 20.

M � αcδcFG t( ) + αinδinFLA t( ), (20)
where αc and αin represent the weighting coefficients for the total
cost of the CIES and the load aggregation merchant revenue,
respectively, while δc and δin represent the conversion coefficients
for the total cost of the CIES and the load aggregation merchant
revenue.

Based on the scheduling method and historical data analyzed in
this paper, with αc = 0.7, αin = 0.3, δc = 0.00775, and δin = −0.21749,
the overall benefits are obtained to verify the effectiveness of the
electric vehicle dispatching strategy proposed in this paper.

2.7 P2G

The technology of electricity to gas refers to the conversion of
electrical energy into hydrogen gas through water electrolysis,
followed by the Sabatier reaction that further combines hydrogen
gas with carbon dioxide to produce natural gas. The mathematical
model is represented by the following equations:

QP2G t( ) � σPP2G t( )ηP2G/fHHV, (21)
ΔPP2G

min ≤PP2G t + 1( ) − PP2G t( )≤ΔPP2G
max, (22)

where σ represents the energy conversion factor, with a value of
3.4MBtu/(MW.h); fHHV refers to the high heating value, with a value
of 1.026 MBtu/kcf; ηP2G refers to the conversion efficiency; and
ΔPmin P2G and ΔPmax P2G, respectively, indicate the uphill and
downhill limits of P2G.

3 CIES-optimized scheduling model

3.1 CIES-optimized scheduling overall
strategy

For the scheduling optimization problem in complex integrated
energy systems for electricity, heating, and cooling, considering the
large number of different state variables and control variables in the
system, the resulting strategy space is huge and cannot be solved
using traditional numerical methods. Drawing on the hierarchical
coordinated solution method for large systems, the optimization
dispatch problem is divided into upper and lower layers for solution.
As the operating mode of the heat-storage electric boiler is related to
the heat–electric decoupling effect of the system and the dispatch
strategy for electric vehicles affects its demand response capability,
therefore, the upper layer analyzes the two parts separately. Due to
the limited wind power accommodation capacity and insufficient
improvement in the economic level of the system on a single source
side or load side, a source–load coordinated scheduling strategy is
proposed in lower-level scheduling. Improving the wind power grid
space by decoupling heat peak CHP operation constraints of “with
heat to determine electricity,” considering electric vehicles on the
load side as a dispatchable value of flexible loads, the demand
response is used to guide the orderly transfer of charging loads
to assist in the accommodation of wind power in the grid. The
specific scheduling process is shown in Figure 2.

The solution process for the CIES coordinated scheduling
between sources and loads is as follows:

(1) We use the Latin hypercube method to handle the uncertainty of
renewable energy and incorporate it into day-ahead scheduling
to identify periods of wind power curtailment.

(2) The heat-storage electric boiler is scheduled separately and is
involved in different operating modes to solve the output power
of the CHP under different operation modes of the heat-storage
electric boiler.

(3) The electric vehicle is scheduled separately and involved in three
scheduling strategies. Under the improved scheduling strategy
for the electric vehicle, the LA compensation electricity price is
cyclically changed and the cost of the CIES and the revenue of
the LA are solved. A comprehensive index is introduced to
analyze the optimal scheduling strategy for the EV and the
optimal compensation electricity price for the LA.

(4) In lower-level scheduling, source–load devices are jointly
scheduled based on the scheduling strategy provided by the
upper level. First, the heat-storage electric boiler uses a portion
of the abandoned wind power to generate an output power X to
further decouple the power and heat. The electric vehicle uses
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the remaining abandoned wind power to respond to the
demand and transfer the charging load Y to the abandoned
wind power period. Then, by iteratively solving for X and Y, the
globally optimal output power X for the heat-storage electric
boiler and the optimal transfer load Y for the electric vehicle’s
demand response are obtained.

(5) For introducing a tiered carbon trading mechanism, we carry
out CIES day-ahead scheduling and solve the output and
comprehensive data of each unit in CIES day-ahead scheduling.

3.2 Utilizing multi-scenario generation and
curtailment techniques to manage
renewable energy sources

Wind speed and solar irradiance exhibit characteristics such as
randomness and intermittency. This makes it difficult to accurately
forecast the renewable energy output, resulting in output uncertainty for
wind turbines and solar panels in grid scheduling. As the difficulty in
grid scheduling increases, the capacity to consume renewable energy
decreases, resulting in the system generating redundant output power.
In order to provide an accurate description of the random fluctuations
of wind speed and light intensity in a microgrid, this paper employs the
scenario analysis method to analyze and address the uncertainties of
renewable energy sources in the optimization and scheduling of
integrated energy systems. Based on historical data of wind speed
and light intensity, the corresponding probability density functions are
established. It is assumed that wind power follows a normal distribution
N (μ; σ2), where μ represents the predicted expected value of wind power

and σ is expressed as a percentage of the fluctuation (Wang et al., 2008).
The Latin hypercube samplingmethod is used to sample the cumulative
distribution functions of wind speed and light intensity and to generate
a representative set of scenarios for wind speed and light intensity, as
shown in Figure 3.

Then, we utilize the fast descendant elimination algorithm based
on the probability distance to achieve scenario reduction, reducing
the number of sample scenarios and ultimately obtaining
10 representative scenarios of wind and solar power generation
and their corresponding probabilities, Ps,s = 1,2, . . . ,10. The
distribution diagram of the reduced scenarios is shown in Figure 4.

3.3 Staircase carbon trading mechanism
model

The carbon trading mechanism establishes and trades carbon
emission permits in a legitimate manner, allowing producers to
trade carbon emission permits in the market to achieve the goal of
controlling carbon emissions. Regulatory authorities use cost incentives
to encourage producers to participate in the carbon emission permit
market and distribute carbon trading quotas to each producer. If the
actual carbon emissions of a producer exceed the carbon emission
quota, they must purchase the required carbon emission permits in the
carbon trading market. Conversely, they can sell the surplus carbon
emission permits to the carbon trading market to earn profits. The
staircase carbon trading mechanism model mainly consists of three
parts: the carbon emission quota model, the actual carbon emission
model, and the staircase carbon emission trading model.

FIGURE 5
CHP output diagram of the heat-storage electric boiler under various operating modes.
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3.3.1 Free carbon trading quotas
Carbon emissions from sources in the CIES can be divided into

emissions from gas-fired units and emissions from coal-fired units.
This paper suggests that the carbon emissions generated by the CHP

equipment’s energy supply come from gas-fired units, while the
carbon emissions generated from purchasing electricity at the
system level come from coal-fired units. The model for free
carbon emission trading quotas is shown in Eq. 23.

FIGURE 6
Electric vehicle load for each scheduling strategy after the demand response.

FIGURE 7
CIES total cost and LA scheduling revenue curve.
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EIES � Ee,buy + ECHP

Ee,buy � Ke∑T
t�1
Pe,buy t( )

ECHP � Kg∑T
t�1

PMT t( ) + φe,hQLBAR t( )( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(23)

where EIES, Ee,buy, and ECHP represent the carbon emission quota
allocations for the CIES, the purchased electricity at the system level,
and CHP, respectively. Ke and Kg correspond to the carbon emission
quota allocations for coal-fired units per unit of electricity
consumption and gas-fired units per unit of natural gas
consumption, respectively. Pe,buy(t) represents the amount of
electricity purchased at the system level during time period t. φe,h
represents the conversion factor from the conversion coefficient
from power generation to heat generation of CHP, and T represents
the scheduling cycle.

3.3.2 Actual carbon emission model
The actual carbon emissions in this article refer to the net

emissions after subtracting the amount of CO2 consumed by
P2G equipment during the operation from the amount of CO2

generated by the system. The actual carbon emission model for the
system is as follows:

EIES
′ � Ee,buy

′ + ECHP
′ − EP2G

′ , (24)

EP2G
′ � KP∑T

t�1
PP2G t( ), (25)

where E′IES, E′e,buy, E′CHP, and E′P2G represent the actual carbon
emissions (absorption) of the CIES, electricity purchased from
the upper level of the system, CHP, and P2G, respectively. The
calculation methods for E′e,buy and E′CHP are basically the same
as those in the previous section, but with different carbon
emission factors (Ke for electricity and Kg for heat). E’P2G
represents the amount of CO2 captured by P2G, and KP

represents the amount of CO2 required to convert one unit of
electricity.

3.3.3 Stepwise carbon emission trading model
Based on the aforementioned information, after obtaining free

carbon emission quotas and actual system carbon emissions, the
formula for calculating the actual carbon emission rights involved in
the carbon trading market is as follows:

EIES
″ � EIES

′ − EIES, (26)
where E″IES represents the carbon emission trading quotas of IES.

Compared to traditional carbon trading mechanisms, in order to
more strictly control carbon emissions, a tiered carbon trading cost is
adopted on the basis of traditional carbon emission trading by
calculating carbon trading costs based on the difference between
carbon emissions and carbon quotas. When the difference between
carbon emissions and carbon quotas exceeds a given range, the excess
amount increases the unit price of carbon trading; when carbon
emissions are below the carbon quota, the surplus carbon emission
quota is sold for a profit, and a compensation coefficient is introduced
to increase the incentive for emission reduction. The tiered carbon
trading cost calculation model is shown in formula (27).

CCO2 �

λ 1 + 2β( ) EIES
″ + c( ) − λ 1 + β( )c

λ 1 + β( )EIES
″

λEIES
″

−2c#EIES
″ # − c

−c#EIES
″ #0

0#EIES
″ #c

λ 1 + β( ) EIES
″ − c( ) + λc c#EIES

″ #2c

λ 1 + 2β( ) EIES
″ − 2c( ) + λ 2 + β( )c 2c#EIES

″ #3c

λ 1 + 3β( ) EIES
″ − 3c( ) + λ 3 + 3β( )c 3c#EIES

″ #4c

λ 1 + 4β( ) EIES
″ − 4c( ) + λ 4 + 6β( )c EIES

″ P4c

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(27)

where CCO2 represents the tiered carbon trading cost; λ represents
the base carbon trading price; c represents the length of the carbon
emissions interval; and β represents the rate of price growth.

3.4 CIES objective function

minFG � ∑T
t�1

CFC t( ) + CMT t( ) + CEX t( )+( CWA t( ) + CIDR t( ))

+ CCO2, (28)
where FG represents the operational cost of the system within the
scheduling period T. CFC(t), CMT(t), CWA(t), and CIDR(t) represent
the fuel cost, unit maintenance cost, wind power abandonment
penalty cost, and purchased cost of IDR for the system at time t.
CEX(t) represents the cost incurred by the system for purchasing
electricity from the main grid at time t.

(1) Fuel cost.

WFC t( ) � PMT t( )
ηMT

DCH4

LCH4
, (29)

where DCH4 and LCH4 refer to the natural gas price and its lower
heating value, respectively.

(2) Equipment maintenance cost.

CMT t( ) � ∑n
i�1
ciPi t( ) + ces Pes t( )| |, (30)

where ci represents the maintenance cost per unit of power for a
device. Pi(t) represents the output power of unit i in time period t. ces
represents the maintenance cost per unit of power for an energy
storage device. Pes(t) represents the power dispatched by the energy
storage device during time period t.

(3) Purchase cost of electricity.

CEX t( ) � cbuyPbuy t( ), (31)
where cbuy represents the unit purchase cost of electricity, while
Pbuy(t) represents the purchased electricity power during time
period t.

(4) Resource purchase cost.

WIDR t( ) � Ptev t( )DIDR, (32)
where DIDR represents the cost of purchasing a unit of demand
resources.
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(5) The cost of the wind abandonment penalty.

CWA t( ) � Pw,pre t( ) − PW t( )( )δW, (33)
where Pw,pre(t) represents the predicted wind power output for
period t, PW(t) represents the actual wind power output for
period t, and δW represents the wind abandonment penalty
coefficient.

3.5 CIES constraint conditions

(1) Energy balance constraint.

Pload t( ) � PW t( ) + PPV t( ) + PMT t( ) + Pbug t( ) + Pes,dis t( ) − Peb t( )
− PP2G t( ) − PEC t( ) − Prev t( ) − Pes,chr t( ),

(34)
Hload t( ) � Houtput t( ) + QLBAR t( ) −HAC t( ), (35)

Cload t( ) � CAC t( ) + CEC t( ), (36)
where PPV(t) represents the photovoltaic output during time period
t; PEC(t) represents the electrical power consumed by the electric
refrigeration machine; Prev(t) represents the total charging power of
electric vehicles after the demand response during time period t;
Pload(t), Hload(t), and Cload(t) represent the electricity demand, heat
demand, and cooling demand during time period t; HAC(t)
represents the heat power absorbed by the absorption chiller;
CAC(t) represents the cooling capacity of the absorption chiller;
and CEC(t) represents the cooling capacity of the electric
refrigeration machine.

(2) The total charging load of electric vehicles should remain
unchanged after considering IDR.

∑T
t�1
Pev t( ) � ∑T

t�1
Prev t( ). (37)

(3) Power transmission constraints of the interconnection line with
a superior grid.

0≤Pbug t( )≤Pline t( ). (38)

Pline(t) is the upper limit of power transmission for the
interconnection line during time period t.

4 Calculation analysis of samples

4.1 Initial parameter settings for calculation
examples

This article selects a comprehensive park in a city in northern
China as the research object and conducts dispatch analysis
on 200 electric vehicles (Cui et al., 2020). The parameters
of typical equipment are shown in Supplementary Table SA1,
unit parameters are shown in Supplementary Table SA2, and
the time-of-use electricity price information is shown in
Supplementary Table SA3.

4.2 Analysis of the operation mode of heat-
storage electric boilers

Due to the “with heat to determine electricity” characteristic of
CHP units, the overlap between the low power consumption period
at night and the peak heat load period leads to a large amount of
wind abandonment in the system. Therefore, a storage electric boiler
is introduced to work with CHP units for heating. However, the
operation mode of the storage electric boiler is different, which
affects its heating effect. Therefore, the operation mode of the
storage electric boiler needs to be analyzed. The impact of the
operation mode of the storage electric boiler on the operation
results of the CIES and the output of CHP units are shown in
Table 1; Figure 5, respectively.

As shown in Figure 5, during the electricity price valley periods
(24 and 1–8), the CHP output under the full storage heating
operation mode is higher than that under the half storage
heating operation mode, while the CHP output under the wind
abandonment control operation mode is the lowest. During the
normal electricity price period (11–16), the CHP output under half
storage heating and the wind abandonment control operation mode
is basically the same, while the CHP output under the full storage
heating operation mode is the lowest. The reason is that all the heat
generated by the electric boiler operating under the full storage
heating mode is not instantly supplied to the system, but is stored in
the heat-storage tank and then provided to the heating system based
on the comprehensive consideration of price factors and the system
thermal power demand. The heat-storage electric boilers with the
abandoned wind control operation mode adopt the strategy of
tracking abandoned wind start–stop control. During the
abandoned wind period, the output is maximized, and the system
prioritizes the use of storage-type electric boilers for heating,
resulting in a significant reduction in the CHP unit output, and
is freed from the limitation of the “with heat to determine
electricity” mode.

Based on Table 1, it can be seen that among the four operating
modes, the CIES total cost and carbon emissions of the wind power
curtailment control operating mode were the lowest, decreasing by
6.54% and 8.52%, respectively. The wind power absorption level also
increased significantly by 11.26%. This confirms the effectiveness of
the wind power curtailment control operating mode in optimizing
the CIES dispatch.

4.3 Comprehensive analysis of electric
vehicle dispatching

4.3.1 Analysis of the electric vehicle dispatch
strategy

According to the travel habits of car owners, this article proposes
a price incentive dispatch strategy for electric vehicles that cannot
participate in orderly dispatch for a long time. This strategy requires
them to participate in dispatch through a fixed contract agreement,
forming an improved dispatch strategy that combines incentive
dispatch with orderly dispatch. Therefore, this article conducts an
in-depth analysis of three dispatch strategies, and the EV load
transfer volume of each dispatch strategy is shown in Figure 6.
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Analysis shows that the orderly dispatch strategy transfers some
electric vehicles during the peak periods of electricity prices from
9 to 11 h, 17–22 h, and the flat period of 12–16 h to valley periods,
which improves the EV demand response capacity. However, its
ability to regulate the EV charging load during peak periods is
insufficient, and the peak shaving and valley filling effect is not
significant. Therefore, load transfer agreements are provided for
electric vehicles that cannot participate in orderly dispatch during
peak electricity price periods, forcing them to participate in dispatch,
and the two are integrated together to form an improved dispatch
strategy. The improved strategy significantly reduces the EV
charging load, increases the load demand during valley periods,
and greatly enhances the peak shaving and valley filling effect,
further absorbing the abandoned wind power.

Table 2 compares the CIES total cost and LA revenue of different
scheduling strategies for EVs. The comprehensive scheduling results
show that the improved scheduling strategy has a lower CIES total
cost and higher LA revenue, which confirms the effectiveness of the
proposed scheduling strategy.

4.3.2 Analysis of the impact of electric vehicle
compensation electricity price on CIES scheduling

The previous section systematically studied three EV scheduling
strategies and found that the demand response effect for improving
the scheduling strategy is optimal. The LA compensation electricity
price is the core parameter of the improved scheduling strategy. It
needs to be analyzed in detail. The impact of the compensation
electricity price on the CIES and the load aggregator is shown in
Figure 7.

Figure 7 shows the relationship between compensation price,
total system cost, and load aggregator profits. The overall trend of
the CIES total cost decreases with an increase in the incentive
dispatch compensation price. When the compensation price is
0.34 CNY/kWh, the curve has a turning point and the decreasing
trend slows down. Meanwhile, load aggregator scheduling profits
first increase and then decrease with an increase in the incentive
dispatch compensation price. When the compensation price reaches
0.3 CNY/kWh, the scheduling profits no longer increase with an
increase in the compensation price and the curve starts to decrease.

TABLE 1 CIES optimization scheduling results under various operating modes of heat-storage electric boilers.

Operating mode CIES total cost (CNY) Wind power accommodation rate (%) Carbon emission (kg)

1 13,311.35 87.67 10,408.2

2 12,753.57 96.34 9,974.3

3 12,716.03 98.06 9,876.1

4 12,494.23 98.93 9,520.7

FIGURE 8
CIES and LA comprehensive benefit curve.
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This is because in an actual operation, as the compensation price
continues to increase, it causes electric vehicles to overreact,
exceeding the adjustable range of the LA.

From the aforementioned analysis, it can be seen that it is
difficult to determine a value of the compensation price that
maximizes the overall benefits of both the CIES and load
aggregators. Therefore, a comprehensive benefit indicator is
introduced to assess the overall interests, and its comprehensive
benefit curve is shown in Figure 8.

From Figure 8, it can be seen that the comprehensive benefit
indicator first decreases and then increases with the increase of the
compensation price. When the compensation price is 0.34 CNY/
kWh, the comprehensive benefit reaches its minimum value. The
trend of the comprehensive benefit indicator is consistent with the
total cost benefit of the CIES and is opposite to the revenue trend of
the load aggregator. That is, as the total cost benefit of the CIES
decreases, the comprehensive benefit indicator decreases, while as
the revenue of the load aggregator increases, the comprehensive
benefit indicator decreases. Therefore, considering both aspects, the
system achieves an optimal overall benefit when the compensation
price is 0.34 CNY/kWh.

4.4 Optimization scheduling analysis of the
source–load coordination

To analyze the economic benefits and wind power curtailment
rate of source–load coordinated CIES scheduling, the operation
mode of heat-storage electric boilers is controlled by wind power
curtailment, with the compensation electricity price set as 0.34 CNY/
kWh in the fixed contract strategy. This article designs five case
studies for comparative analysis:

Case 1.Without considering the role of heat-storage electric boilers,
electric vehicles are charged in a disorderly manner.

Case 2. Considering the role of thermal-storage electric boilers,
electric vehicles are charged in a disorderly manner.

Case 3. Without considering the role of heat-storage electric
boilers, electric vehicles adopt an improved scheduling strategy.

Case 4. Considering the role of heat-storage electric boilers, electric
vehicles adopt an improved scheduling strategy.

FIGURE 9
CIES wind power accommodation under different models.

TABLE 2 Optimization scheduling results under different scheduling strategies for EVs.

EV scheduling strategy CIES total cost (CNY) LA revenue (CNY)

Ordered scheduling 12,713.43 239.02

Incentive scheduling 12,649.56 94.04

Improved scheduling 12,149.87 333.06
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Case 5. Considering the role of heat-storage electric boilers, electric
vehicles adopt an improved scheduling strategy and introduce a
tiered carbon trading mechanism.

Figure 9 shows the wind curtailment situation for each model.
Heat-storage electric boilers make full use of the wind power for

heating during 1–8 and 24 h, alleviating the heating pressure on
CHP units. EVs transfer the charging load during peak electricity
consumption periods to the wind power curtailment period
through ordered charging and the LA contract strategy,
effectively absorbing the curtailed wind power. Through the

FIGURE 10
Electric load balance state diagram.

FIGURE 11
Heat load balance state diagram.
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combined use of heat-storage electric heating and electric
vehicles, the curtailed wind power is basically absorbed. Later,
a tiered carbon trading mechanism was introduced, allowing P2G
to convert CO2 into natural gas for recycling using the curtailed
wind power and reducing the system’s carbon emissions and fully
absorbing the wind power.

Figures 10–12 are the dispatching charts for each unit in case 5.
During the electricity price valley periods (24 and 1–8), wind power
curtailment occurs in the system. Heat-storage electric boilers are
given priority to supply heat and store thermal energy. Any
remaining heat demand is met by CHP, while electric chillers are
utilized to meet the cooling demand. During this period, the ES is
charged and EV charging loads are shifted to this time period
through the demand response. During this time, the carbon
capture and conversion equipment makes full use of wind-
generated electricity with excess CO2 sold to the electricity
market to reduce system costs. P2G equipment makes full use of
the surplus wind power with the absorbed CO2, while any excess

carbon emission quotas are sold to the power market to reduce
overall system costs. During the electricity price peak periods (9–11),
as the electrical load and cooling load gradually increase, the output
of CHP and absorption chillers continues to rise, and ES partially
discharges during this stage, with any electrical load shortfalls being
met by purchasing power from the main grid. During electricity
price flat periods (12–16), the system purchase price is consistently
higher than the unit generation cost of microturbines; during this
time, the CHPmaintains increased generation, with the cooling load
primarily being provided by absorption chillers. During electricity
price peak periods (17–22), the purchased electricity price is
consistently high and the electrical load is greater. In order to
reduce the need for external electricity purchases during this
period, the ES is fully discharged, and the heat load is provided
by CHP and the heat-storage tank. CHP continues to increase
production to meet the peak heat demand, and heat-storage
electric boilers and P2G equipment are shut down. Under the
effect of the demand response, some of the EV charging loads

FIGURE 12
Cool load balance state diagram.

TABLE 3 CIES optimization scheduling results of the CIES under different models.

Case CIES total cost (CNY) Wind power accommodation rate (%) Carbon emission (kg)

1 13,311.35 87.67 10,408.2

2 12,494.23 98.93 9,520.7

3 12,149.87 96.09 9,164.2

4 11,615.18 99.54 8,972.8

5 10,547.03 100 6,892.8
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are shifted to the period of low electricity prices, reducing the
electricity demand during this period. When various power
generation equipment fail to meet the electrical load, the shortage
is supplemented by purchasing electricity from the main grid.

As shown in Table 3, compared with single-angle optimization,
the system achieved optimal performance in all indicators under the
combined effect of a tiered carbon trading mechanism and
source–load coordination. The wind power was fully consumed
during the dispatch cycle, and the wind power consumption rate
increased by 4.07% compared with only considering IDR, which
significantly improved the peak shaving effect compared to only
allocating heat-storage electric boilers. The total cost decreased by
2764.32 CNY, and the total carbon emissions decreased by
3515.4 kg, thus verifying the effectiveness of the dispatch method
proposed in this paper.

5 Conclusion

This article proposes a CIES optimization scheduling
method for combining heat-storage electric boilers and
electric vehicles, in response to the limitations of “with heat
to determine electricity” in cogeneration units, large-scale wind
abandonment at night, and greenhouse effect issues. The article
also introduces a tiered carbon trading mechanism and draws
the following conclusions:

(1) The operating mode of the heat-storage electric boiler is closely
related to the CIES overall efficiency improvement. When the
heat-storage electric boiler is in operating mode 4, the system
has the lowest total cost, the lowest carbon emissions, and the
highest wind power accommodation rate. This better reflects the
advantages of the heat-storage electric heating operation.

(2) Combining the orderly scheduling method with the incentive
scheduling method of electric vehicles can fully transfer the
charging load. The compensation price is a key parameter that
affects the comprehensive efficiency of the system. When the
compensation price is 0.34 yuan, the various indicators of the
system reach their optimum levels.

(3) With the introduction of a tiered carbon trading mechanism,
the coordinated optimization and scheduling of sources and
loads enables wind power to be fully consumed, while
minimizing total economic costs and carbon emissions.

The proposed scheduling strategy in this paper advances the
optimization of integrated energy system scheduling, further
considering how to achieve the full integration of renewable
energy and reduce carbon emissions from both the supply and
demand sides. In-depth research on the thermal-storage electric
boiler was conducted to determine its optimal operating mode,
and a demand response strategy for electric vehicles was proposed
to improve the scheduling level of electric vehicles. However, there are
two limitations in this paper: it fails to consider the integration of V2G
technology for electric vehicles, and the proposed method lacks
verification of its effectiveness in a multi-node power system.

These are the two main limitations of this paper and also the
points that need to be studied in the future.
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