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The impedance of power lines is influenced by geological conditions and skin
effect, resulting in frequency-dependent characteristics. In this study, a
centralized parameter frequency-dependent line model based on first-order
rational function fitting is investigated for short overhead transmission lines.
The proposed model incorporates a parallel branch consisting of resistance
and inductance obtained through rational function fitting, which mimics the
frequency-dependent behavior of the line. The coupling between multiple
conductors is represented using controlled sources. Comparative analysis of
fitting accuracy and computational efficiency across various orders of rational
functions reveals that the first-order rational function fitting offers superior
computational efficiency while maintaining high accuracy in the medium and
low-frequency range. Simulation results demonstrate that the proposed model,
when disregarding wave propagation effects, exhibits comparable accuracy to the
distributed parameter line model while achieving higher computational efficiency.
Moreover, in transient analysis predominantly influenced by power frequency, the
proposed model outperforms the frequency-independent pi(π) line model in
terms of accuracy.
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1 Introduction

Accurate line models are essential for investigating transient analysis in power systems
(Zhou et al., 2021; Hu et al., 2022; Lei et al., 2023). The impedance of transmission lines varies
with frequency due to the skin effect and the interaction with the ground under alternating
electromagnetic fields, resulting in frequency-dependent characteristics (Mingli and Yu,
2004; Martí and Tavighi, 2017; Chen et al., 2022). Currently, line models commonly used in
practice can be classified into fixed parameter models and frequency-dependent parameter
models. In general, for steady-state conditions at a fixed frequency, a constant parameter line
model can be considered (da Prado et al., 2014; da Silva Lessa et al., 2020). However, for
electromagnetic transient processes (including DC components, power frequency
components, and various harmonic components), due to the varying resistance and
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reactance of the transmission line at different frequency
components, employing a constant parameter line model for
electrical quantity calculations would result in significant errors.
This is because the resistance and reactance in the low-frequency
range are generally smaller than those in the high-frequency range,
and applying fixed parameter line models at power frequency can
amplify higher harmonic signals in current responses, leading to
substantial waveform distortion (Marti, 1982). Hence, to conduct
more accurate electromagnetic transient analysis in power systems,
exploring line modeling methods that account for frequency-
dependent parameters holds crucial theoretical and practical
significance.

The models used for transient simulations of overhead lines can be
broadly classified into two categories: concentrated parameter
frequency-dependent line models and distributed parameter
frequency-dependent line models. In cases where the overhead line
is long (over 100 km) and spatial effects need to be taken into account,
distributed parameter frequency-dependent line models are
recommended. Professor J. Marti from the University of British
Columbia proposed the Marti model (Marti, 1982; Marti, 1988),
which utilizes a filtering network (RC network) with frequency
characteristics that match the line’s characteristic impedance to
simulate frequency-dependent parameter lines. Gustavsen introduced
the vector fitting method, which offers a more accurate fitting approach
for the universal Line Model (ULM) (Gustavsen and Semlyen, 1999;
Morched et al., 1999; Gustavsen and Nordstrom, 2007). The ULM has
beenwidely adopted as a fundamental distributed parameter frequency-
dependent line model in the Electromagnetic Transients Program
(PSCAD/EMTP) (Kocar et al., 2010). On the other hand, when the
overhead line is short (within 100 km) and the spatial effects of
electromagnetic wave propagation along the line can be neglected,
concentrated parameter line models also exhibit high accuracy.
Furthermore, due to the shorter computational time required
compared to distributed parameter models, concentrated parameter
line models offer higher computational efficiency. Therefore, when the
investigation does not involve the wave propagation characteristics of
the transmission line, the use of concentrated parameter line models is
more suitable (Ghazizadeh et al., 2022).

In the field of concentrated parameter frequency-dependent line
models, extensive research has been conducted, leading to significant
achievements. Reference (Kurokawa et al., 2009) proposed amethod for
approximating the distributed characteristics of a line parameter model
by cascading multiple concentrated parameter line models. Each
concentrated parameter line model was connected to an RL parallel
network to account for the frequency-dependent characteristics of the
line parameters. Further advancements were made in reference (Da
Costa et al., 2011), where the adaptability of concentrated parameter line
models to higher frequency ranges was investigated by employing a
sufficient number of cascaded RL networks. To address the issue of
high-frequency oscillations resulting from the cascading of numerous
RL networks in references (Kurokawa et al., 2009; Da Costa et al., 2011),
reference (De Araújo et al., 2015) designed a low-pass passive filter that
was integrated into the equivalent circuit of the concentrated parameter
line model. This integration effectively mitigated the oscillation
problem. Reference (Colqui et al., 2021) examined the voltage
response of multi-cascaded concentrated parameter frequency-
dependent line models under various lightning current conditions
and demonstrated good agreement with distributed parameter

frequency-dependent line models through computational analysis. In
the cited references (Kurokawa et al., 2009; Da Costa et al., 2011; De
Araújo et al., 2015; Colqui et al., 2021), RL networks were serially
connected to concentrated parameter line models to capture the
frequency-dependent effects of line parameters. However, in
reference (Beerten et al., 2016), an alternative approach was
proposed. RL networks were connected in parallel with the
concentrated parameter line model to construct a frequency-
dependent line model. The applicability of this model to high-
voltage direct current lines was analyzed. The concentrated
parameter frequency-dependent line models investigated in
references (Kurokawa et al., 2009; Da Costa et al., 2011; De Araújo
et al., 2015; Beerten et al., 2016; Colqui et al., 2021) involved inserting
equivalent circuits obtained from vector fitting calculations into the
framework of a constant concentrated parameter line model. These
models simulated the wave propagation effects of the line by cascading
multiple concentrated parameter line models. Nevertheless, it is
important to note that utilizing high-order function vector fitting
and cascading multiple concentrated parameter line models can
adversely impact computational efficiency and lead to a significant
waste of computational resources.

If the transmission line is relatively short (below 100 km) and
the impact of wave propagation is negligible, accurate results can be
achieved in research that ignores wave propagation characteristics
by utilizing low-order rational function fitting. Therefore, the
objective of this study is to investigate concentrated parameter
frequency-dependent line models using low-order rational
function fitting.

Initially, we simulate the frequency-dependent behavior of line
parameters by employing a parallel combination of resistors and
inductors. The values of the resistors and inductors are determined
through rational function fitting. Additionally, controlled sources
are used to replicate the coupling relationships between multiple
conductors. Subsequently, we analyze the accuracy and efficiency of
rational function fitting at different orders. Finally, we evaluate the
applicability of the proposed model by constructing a concentrated
parameter line model based on first-order rational function fitting in
PSCAD.

This paper investigates a concentrated parameter frequency-
dependent line model suitable for overhead transmission lines. The
accuracy and computational efficiency of rational function fitting
with various orders were analyzed. The conclusion drawn is that
employing a first-order rational function fitting offers the highest
computational efficiency and satisfactory results. In comparison to
distributed parameter line models, the proposed line model in this
paper exhibits higher computational efficiency, while compared to
lumped parameter line models, it attains greater accuracy.
Furthermore, an applicability analysis of the concentrated
parameter line model fitted with a first-order rational function is
conducted, accompanied by quantitative conclusion.

2 Rational function fitting method for
line impedance

The Carson’s formula (Carson, 1926) is a fundamental approach
for calculating the frequency-dependent impedance of transmission
lines. This method requires the input of various constants, including
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the geometric positions of the line towers, wire radius, and DC
resistance.

Figure 1 illustrates the geometric parameters of the line towers,
defined within a Cartesian coordinate system. A, B, and C represent
the geometric positions of the three-phase conductors at the tower.
The X-axis represents the horizontal position, while the Y-axis
represents the vertical height. The positions of the three-phase
conductors are denoted as PA = [xA, yA], PB = [xB, yB], and PC =
[xC, yC], where xi represents the horizontal coordinate of the
conductor, and yi represents its height above the ground. Amirror,
Bmirror, and Cmirror indicate the mirrored positions of the three-
phase conductors with respect to the ground. By utilizing the
coordinates of the three-phase conductors, the distances dij and
the mirror distances dij,mir (where i, j =A, B, C, and i ≠ j) between the
conductors can be calculated. The symbol ri represents the radius of
the conductor, while SAG refers to the conductor sag. By utilizing
the sag and the height of the conductor on the tower, denoted as yi,
the average height of the conductor above the ground, denoted as hi,
can be calculated as shown in Eq. 1.

hi � yi

∣∣∣∣ ∣∣∣∣ − SAG + 1
3
SAG � yi

∣∣∣∣ ∣∣∣∣ − 2
3
SAG i � A, B, C( ) (1)

By employing this data, the Carson’s formula can be used to
compute the impedance matrix of the transmission line at a specific
frequency, as expressed in Eq. 2.

Z �
Zaa Zab Zac

Zbc Zbb Zbc

Zac Zbc Zcc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (2)

Reference (Li and Lv, 2019) presents a method to derive the
geometric parameters of a line by utilizing the known impedance
matrix and capacitance matrix at power frequency. Further, the
Carson’s formula is employed to determine the line parameters at
different frequencies. To cover a frequency range of 10^-3~10^4 Hz,
m frequency values, denoted as f(n) (n = 1, 2, m), are selected with a
logarithmic uniform distribution. This method enables the
calculation of the line impedance matrix, Z(f(n)), corresponding
to each of the chosen frequency values.

Z f n( )( ) � Zaa f n( )( ) Zab f n( )( ) Zac f n( )( )
Zbc f n( )( ) Zbb f n( )( ) Zbc f n( )( )
Zac f n( )( ) Zbc f n( )( ) Zcc f n( )( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
n � 1, 2/m( )

(3)

This study does not consider the asymmetric conditions of
three-phase lines and specifically focuses on uniformly
transposed three-phase lines. Under this assumption, the
impedance matrix can be expressed as follows:

Z �
Zs Zm Zm

Zm Zs Zm

Zm Zm Zs

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (4)

The Coulomb-Born phase transformation matrix (Liang and
Zhu, 2019) was chosen for this study.

S �
1 1 1
1 −2 1
1 1 −2

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (5)

The matrix (4) is diagonalized by employing Eq. 5:

Zmod � S−1ZS �
Zs + 2Zm 0 0

0 Zs − Zm 0
0 0 Zs − Zm

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (6)

At this stage, the zero-sequence impedance and positive-
sequence impedance can be expressed as follows:

Z0 � Zs + 2Zm

Z1 � Zs − Zm
{ (7)

By substituting the impedance values at different frequencies
from Eq. 3 into Eqs 4–7, we can obtain the following results:

Z0 f n( )( ) � Zs f n( )( ) + 2Zm f n( )( )
Z1 f n( )( ) � Zs f n( )( ) − Zm f n( )( ){

n � 1, 2/m
(8)

Due to the complexity of the Carson’s formula, obtaining a
frequency-domain analytical expression is challenging. Hence, we
propose utilizing simple rational functions to fit the modulus
impedance values obtained from the Carson’s formula at
different frequencies (i.e., Eq. 8). By obtaining fitting functions

FIGURE 1
Equivalent geometric parameters of overhead lines.

FIGURE 2
Equivalent circuit diagrams of the fitting functions.
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that capture the frequency-dependent characteristics, we can
approximate the frequency-domain behavior of the modulus
impedance and develop a frequency-dependent line parameter
model. Currently, there are two primary types of fitting functions
for rational function approximation of impedance, expressed by Eqs
9, 10:

Zfit1 jω( ) � R1 + L1jω +∑n
k�2

Rkjω

jω + Rk/Lk( ) (9)

Zfit2 jω( ) � R1 +∑n
k�2

1/Ck

jω + 1/CkRk( ) (10)

In Eqs 9, 10, the coefficients Rk, Lk, Ck (k = 1,2, n) represent the
unknown parameters of the fitting functions. These equations can be
equivalently represented by the circuit diagrams shown in Figures
2A, B, respectively.

These two fitting functions are mathematically similar and
exhibit comparable fitting accuracy. In this study, we employ the
fitting function Zfit1, as represented by Eq. 9 and illustrated in
Figure 2A, as the equivalent circuit model.

It is important to note that the fitting functions proposed in
this study are specifically designed to fit the modulus
impedance. In computational and simulation analyses of
multi-conductor lines, modulus operations are commonly
used. If the fitting target were the complex impedance (Zs,
Zm), although the rational function in Eq. 9 is of order (n-1), the
modulus impedance (Z0, Z1) calculated using Eq. 7 would be of
order 2(n-1). Conversely, when directly fitting the modulus
impedance, the order of the rational function for the modulus
impedance would be (n-1). Therefore, fitting the modulus
impedance can reduce the order of the rational function,
thereby reducing computational complexity and improving
computational speed.

Let the relative deviation between each data point in Eq. 8 and
the fitting function in Eq. 9 be denoted as

δn � Z f n( )( ) − Zfit j2πf n( )( )
Z f n( )( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣, n �, 1, 2/m (11)

The sum of squared relative deviations is given by:

FIGURE 3
Tower structure of three-phase overhead transmission power line.

Frontiers in Energy Research frontiersin.org04

Li et al. 10.3389/fenrg.2023.1244329

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1244329


J � ∑m
j�1
δn

2 (12)

Based on the principle of minimizing the sum of squared
deviations, the optimal fitting curve Zfit is obtained using the

least squares method. In this study, the forminsearch function in
MATLAB is used for implementation.

Upon reaching this stage, the fitting functions Zfit,x (x = 1,2) can
be employed to substitute the modulus impedance Zx (x = 1,2)
calculated using the Carson’s formula.

FIGURE 4
Comparison and error analysis of first-order rational function fitting for Z0.
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To validate the accuracy of the proposed fitting functions, a
frequency-dependent model of a 10 km three-phase overhead line is
constructed in the PSCAD/EMTDC simulation environment, as
depicted in Figure 3.

The tower parameters are set as follows: PA = [-1 m, 6 m], PB =
[0 m, 7 m], and PC = [1 m, 6 m]. The SAG is set to 1 m, while the

wire radius ri is chosen as 0.0203454 m. The DC resistance of the
wire is determined to be 0.03206 Ω/km. A three-phase balanced
transposition scheme is implemented. Subsequently, the line’s
modulus impedance parameters obtained from simulations at
different frequencies are extracted for comparison with the values
calculated using the Carson’s formula and the fitting functions

FIGURE 5
Comparison and error analysis of first-order rational function fitting for Z1.
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proposed in this study. Initially, a first-order rational function fitting
approach is employed, specifically with n = 2 in Eq. 9. The results
obtained are depicted in Figures 4, 5.

Figures 4A, B show the comparison between the PSCAD
simulated values, the calculated values from the Carson’s
formula, and the fitting function approximations for the zero-
sequence impedance. Figures 4C, D depict the calculation errors
of the Carson’s formula and the fitting function, respectively,

based on the precise values obtained from the PSCAD
simulations. Similarly, Figure 5 represents the positive-
sequence impedance.

Figures 4, 5 demonstrate that the calculated values obtained
from the Carson’s formula exhibit remarkable accuracy when
compared to the PSCAD simulated values. Furthermore, the first-
order rational function approximation yields highly accurate fitting
results. Regarding the fitting values, the average magnitude error of

FIGURE 6
Error of third-order fitting function.
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the zero-sequence impedance Z0 is 2.95%, with a maximum error of
10.43%. The average phase deviation is 1.82°, with a maximum
deviation of 6.83°. Similarly, for the positive-sequence impedance
Z1, the average magnitude error is 0.09%, with a maximum error of
0.58%. The average phase deviation is 0.08°, with a maximum
deviation of 0.43°. Therefore, it can be concluded that the results
obtained from the first-order rational function approximation are
highly accurate.

In order to enhance the fitting accuracy, a higher-order rational
function approximation can be utilized. Similar to the approach
used for the first-order rational function approximation, the error
function for the third-order rational function approximation is
defined with k = 4 in Eq. 9. Similarly, the error function for the
fifth-order rational function approximation is defined k = 6 in Eq. 9.
The fitting process was conducted using MATLAB on a desktop
computer with an i7-7700 CPU and 12 GB RAM. The first-order

FIGURE 7
Error of fifth-order fitting function.
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approximation required a time of 0.1300 s, the third-order
approximation took 0.4775 s, and the fifth-order approximation
took 0.9665 s. The efficiency of the first-order rational function
approximation is 3.67 times higher than that of the third-order
approximation and 7.43 times higher than that of the fifth-order
approximation. Figures 6, 7 illustrate the fitting errors of the third-
order and fifth-order rational function approximations.

In Figures 6, 7, the average magnitude error of the zero-sequence
impedance obtained from the third-order rational function
approximation is 0.91%, with an average phase deviation of 0.55°.
For the positive-sequence impedance, the average magnitude error is
0.96%, with an average phase deviation of 0.04°. Regarding the fifth-
order rational function approximation, the average magnitude error
of the zero-sequence impedance is 0.55%, with an average phase
deviation of 0.32°. For the positive-sequence impedance, the average
magnitude error is 0.04%, with an average phase deviation of 0.08°.
The results in Figures 6, 7 demonstrate that increasing the order of
the fitting function can improve the fitting accuracy. However, it is
important to note that since the fitting is performed against the
values computed by the Carson’s formula, which inherently includes
some degree of error, using higher-order fitting functions only leads

to a closer approximation of the Carson’s formula values without a
significant improvement in fitting function errors.

Given the low computational complexity and ease of
implementation, as well as the reasonably accurate fitting results
achieved with the first-order rational function approximation
method, our subsequent research will predominantly concentrate
on its further exploration and refinement.

3 Concentrated-parameter frequency-
dependent line model based on the
pi(π) line model

In the case of relatively short transmission lines, where the wave
propagation characteristics can be neglected, a simplified pi(π) line
model is commonly employed as an appropriate line model (Xu
et al., 2019). Figure 8 depicts the simplified equivalent circuit of the
multi-phase pi(π) line model, which effectively captures the
fundamental characteristics of the system.

In Figure 8, the impedance matrix for the three-phase balanced
interchanged line is represented by Eq. 4, whereas the capacitance
matrix is described by Eq. 13.

C[ ] �
Cs Cm Cm

Cm Cs Cm

Cm Cm Cs

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (13)

The line capacitance typically does not change with varying
frequencies (Martinez et al., 2005). In this study, we directly utilize
the capacitance values derived from PSCAD simulations for
subsequent computational analyses.

Eq. 14 can be derived from Eq. 7.

Zs � 1
3
Z0 + 2

3
Z1

Zm � 1
3
Z0 − 1

3
Z1

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

By substituting the obtained first-order fitting functions
Zfit,0(j2πf) and Zfit,1(j2πf) (derived from Eq. 9 with n = 2) for Z0
and Z1 in Eqs 14–16 can be derived.

Zs � 1
3

R0,1 + L0,1j2πf + R0,2j2πf
j2πf + R0,2/L0,2( )( )

+2
3

R1,1 + L1,1j2πf + R1,2j2πf
j2πf + R1,2/L1,2( )( )

� Rs,1 + Ls,1j2πf + Rs,2j2πf
j2πf + Rs,2/Ls,2( ) + Rs,3j2πf

j2πf + Rs,3/Ls,3( )

(15)

Zm � 1
3

R0,1 + L0,1j2πf + R0,2j2πf
j2πf + R0,2/L0,2( )( )

−1
3

R1,1 + L1,1j2πf + R1,2j2πf
j2πf + R1,2/L1,2( )( )

� Rm,1 + Lm,1j2πf + Rm,2j2πf
j2πf + Rm,2/Lm,2( ) + Rm,3j2πf

j2πf + Rm,3/Lm,3( )
(16)

In the above equations, Rs,x, Ls,x, Rm,x, and Ls,x (x = 1,2,3)
represent the combined terms. The equivalent circuit diagrams
for Zs and Zm are shown in Figure 9.

FIGURE 8
Simplified multi-phase pi(π)-type equivalent circuit.

FIGURE 9
Equivalent circuit diagrams of Zs and Zm.

TABLE 1 Parameters in the fitting functions Zs and Zm.

Resistance (Ω) Inductance (H)

Rs,1 0.3223 Ls,1 0.0195

Rs,2 0.4120 Ls,2 2.65e-04

Rs,3 1.4926 Ls,3 0.0047

Rm,1 1.66e-03 Lm,1 0.0108

Rm,2 1.4926 Lm,2 0.0047

Rm,3 −0.2060 Lm,3 −1.33e-04

Frontiers in Energy Research frontiersin.org09

Li et al. 10.3389/fenrg.2023.1244329

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1244329


4 Simulation verification

To validate the proposed approach, a simulation model was
constructed in the PSCAD/EMTDC environment, replicating the
same line model as described in Section 2. The geometric parameters
of the overhead line were incorporated into the Carson’s formula to
calculate the line parameters. Subsequently, based on the methodology
outlined in Section 3, all parameters for the fitting functions Zs and Zm
were computed and their corresponding values are presented in Table 1.

Using the data provided in Table 1, a centralized parameter
frequency-dependent transmission line model is constructed in the
PSCAD/EMTDC simulation environment, as illustrated in
Figure 10. The coupling between multiple conductors is
simulated using controlled sources to accurately represent the
relationship described by Eq. 17.

ua

ub

uc

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � Zs Zm Zm

Zm Zs Zm

Zm Zm Zs

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ia
ib
ic

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (17)

A comparative analysis is conducted to investigate the current
responses of the proposed centralized parameter frequency-
dependent line model (CPLM) and the distributed parameter
frequency-dependent line model (DPLM) in PSCAD at different
voltage frequencies. The line length is set to 10 km, and the leading
terminal of the line is subjected to 10 kV voltages at various
frequencies, while the other end is directly grounded (without
load connection to assess the accuracy of the line model). The
current response at the leading terminal of the line is measured, as
shown in Figure 11.

When the length of the line is 10 km, Figures 11A–E
demonstrate a high level of consistency, below 1,000 Hz, between
the proposed centralized parameter frequency-dependent line
model in this study and the distributed parameter frequency-
dependent line model. However, Figure 11F reveals a significant
difference in the circuit response between the proposed model and
the distributed parameter model at 2000 Hz.

In order to analyze the limiting frequency for various line
lengths while maintaining accuracy, this study conducted

FIGURE 10
Centralized parameter frequency-dependent transmission line model built in PSCAD.
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additional current response simulations for line lengths of 200 km,
100 km, 10 km, and 1 km at different voltage frequencies, as
illustrated in Figure 12.

From Figures 12A, B, it is evident that for a transmission line
length of 200 km, the model’s accuracy is relatively high when
considering only the power frequency (50 Hz) electrical quantity.
However, the model’s precision noticeably decreases when the
frequency exceeds 100 Hz. Figures 12C–E demonstrate that for a
transmission line length of 100 km, themodel is more accurate when
the frequency is below 100 Hz, and its accuracy decreases noticeably
when the frequency exceeds 150 Hz (third harmonic). Similarly,
Figures 12F, G, and Figure 11 indicate that for a transmission line
length of 10 km, the model is more accurate when the frequency is
below 1,000 Hz, and its accuracy decreases significantly when the
frequency surpasses 1,500 Hz. Moreover, Figures 12H–J show that
for a transmission line length of 1 km, the model achieves higher
accuracy when the frequency is below 10,000 Hz and experiences a
noticeable decline in accuracy when the frequency exceeds
15,000 Hz.

According to reference (Cui et al., 2019), it has been observed
that the accuracy of the concentrated parameter transmission line
model is higher when the line length is much smaller than the

electromagnetic wave’s wavelength. The formula for calculating the
wavelength (λ) is as follows:

λ � c

f
(18)

where λ represents the wavelength, c is the speed of light (typically
taken as 3 × 10̂8 m/s), and f is the frequency. Setting the ratio (k)
between the electromagnetic wave’s wavelength (λ) and the line
length (l) as:

k � λ

l
(19)

Based on simulations, the following conclusion can be drawn:
When k is greater than 30, our model is relatively accurate, while
when k is less than 20, the model’s precision noticeably declines.

If we consider only the power frequency (50 Hz), we believe that
the maximum distance for our transmission line model is 200 km, as
it still ensures accuracy for power frequency (50 Hz) electrical
quantities at that distance. If we also consider the third harmonic
(150 Hz), we consider 66.7 km as the maximum distance, ensuring
accuracy for third harmonic electrical quantities at that distance. If
readers want to explore the limiting distance for different

FIGURE 11
Line current response at different frequency voltages.
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frequencies or the limiting frequency for different line lengths, they
can use Formulas (18) and (19) for calculations.

The following section presents an analysis of the current
responses in a three-phase line under normal operating
conditions with a load at the industrial frequency of 50 Hz.
Specifically, we examine the current responses at the 0.1-s mark

for two fault scenarios: single-phase-to-ground fault and two-phase-
to-ground fault at the far end of the line. These faults are
characterized by zero-resistance short circuits, which are idealized
to emphasize the accuracy of the line parameters. To evaluate the
performance of our proposed centralized parameter frequency-
dependent line model (CPLM), we compare it with two

FIGURE 12
Response of different length lines under different frequency voltages.
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benchmark models: the distributed parameter frequency-dependent
line model (DPLM) implemented in PSCAD and the widely used
pi(π) line model (πLM). The comparative analysis is depicted in
Figure 13.

In Figure 13, by considering the PSCAD distributed parameter
frequency-dependent line model (DPLM) as the accurate reference
model, the following conclusions can be drawn: for a 10 km long line,
when disregarding the wave propagation effect, the utilization of the
proposed centralized parameter frequency-dependent line model based
on the first-order rational function fitting yields higher accuracy in
estimating the transient short-circuit current primarily driven by the
power frequency, compared to the conventional pi(π) line model.

5 Conclusion

This study presents an investigation into a novel centralized
parameter frequency-dependent line model based on first-order
rational function fitting. The proposed model offers an efficient
simulation approach for capturing the behavior of medium-to-low
frequency responses in three-phase or two-phase overhead lines
while neglecting the wave propagation effects. The conclusions and
contributions of this paper are as follows:

1) This study analyzes the accuracy and computational efficiency of
rational function fitting with different orders for estimating line
impedance. The following conclusions are drawn: The
computational efficiency of the first-order rational function fitting
is 3.67 times higher than that of the third-order fitting and 7.43 times
higher than that of the fifth-order fitting.Moreover, when considering
only the medium-to-low frequency range, the first-order fitting
exhibits comparable accuracy to higher-order fittings.

2) The proposed line model in this paper offers higher computational
efficiency compared to the distributed parameter line model.

Specifically, without considering wave propagation characteristics,
the proposedmodel demonstrates higher accuracy. In the context of
power-frequency-dominated electromagnetic transient processes,
the proposed model outperforms the centralized parameter pi(π)
model in terms of accuracy.

3) An applicability analysis is conducted for the centralized parameter
line model utilizing first-order rational function fitting. The results
indicate that when the ratio k between the electromagnetic wave
wavelength λ and the line length l exceeds 30, this line model
demonstrates a high level of accuracy. Conversely, when k falls
below 20, the accuracy of the line model diminishes.

This paper focuses on the frequency-dependent model for
overhead lines, while the frequency-dependent model for cables
requires further investigation. The concatenation of multiple
lumped parameter line models can overcome the length
limitation of conductors and simulate wave propagation effects.
The application of lumped parameter line models for calculating
wave propagation and whether tuning wave protection using such
model could potentially outperform the existing wave protection
methods are subjects that warrant further research.
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