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Traditional manufacturing enterprises cannot adjust their production line
structure in the short term. They face significant challenges in adapting to the
rapidly changing market environment and meeting various variable batch
production requirements. Building a suitable and convenient multi-layer
planning and scheduling model is an important goal to solve the efficient
operation of manufacturing enterprises. This paper proposes a planning and
scheduling design that meets the needs of enterprise and the production
workshop using the APERT-VC model through a top-down design
methodology. APERT is an enterprise-level plan that uses attention
mechanisms to collect job plan time and decomposes project plans into
workshop plans through PERT technology. virtual command is workshop level
plan management, which converts workshop plans into time series vectors and
achieves rapid and comprehensive guidance of workshop resource planning for
enterprises through multiple classification and decision-making. Through
experiments, the algorithm achieved production scheduling accuracy
improvement of over 30% compared to previous algorithms and a decision
accuracy rate of over 90%. The first half of the new model solves the problem
of collecting work time formulti variety and variable batch products, and improves
the accuracy of algorithm input. The second half of the new algorithm innovatively
combines image recognition technology with dispatcher behavior, achieving
efficient simulation results.
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1 Introduction

With rapid changes in market demand, manufacturing enterprises are no longer just
producing one or several specific product projects but accepting diversified projects. In this
market environment, manufacturing enterprises attach great importance to research on
flexible production lines and strive to carry out customized production. Heavy assets are one
of the important characteristics of the vast majority of manufacturing enterprises. The initial
investment in human and financial resources for the construction of flexible production lines
is very significant. Moreover, considering the long-term, stable, and healthy development of
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the enterprise, production cannot be discontinued until the flexible
production line is renovated. Furthermore, existing processing
resources are needed to complete various product projects on
time and with good quality. The market is cruel. If a company
cannot complete certain projects on time, customers will
immediately turn to other companies for the next project
opportunity. This is a problem that most manufacturing
enterprises encounter.

The primary feature of a planning and scheduling system is its
multi-layer nature. The planning and scheduling system is mainly
divided into enterprise-level planning systems, production unit- or
department-level production planning systems, and section-level
production planning systems according to the organizational
structure of the enterprise. The coordination of plans needs to be
maintained among various levels of planning systems. The larger the
enterprise is, the more production units and sections it will have, and
the more difficult it will be to express the coordination of the plan.

Additionally, controllers need to give attention to the unique
nature of the production environment. The products on the pulse
production line have linear characteristics. This linear feature is
usually called production line balance. This is a technical means and
method of averaging all production processes and adjusting the
workload to make each operation time as close as possible. Pulse
production lines easily achieve line balance, but in a production
environment with multiple varieties and varying batches, it is
difficult to achieve this linear characteristic. The operation time
for products with multiple varieties and varying batches is not a fixed
value. If the production site of the enterprise is not a pulsating
production line, then the operation time of product production will
not be linear, and it is likely that nonlinear characteristics will
appear. This nonlinear characteristic will increase the difficulty of
designing the planning and scheduling system.

The paper notes that the multilevel planning and scheduling
model is of great significance for studying the operating mode of
manufacturing enterprises in a multi-variety and variable batch
production environment. Currently, many enterprises lack such
research, which has led to the occurrence of multi-project
resource conflicts, inadequate planning and monitoring, bloated
management, and even endangered enterprise survival.

The paper proposes a two-level intelligent planning and
scheduling model (APERT-VC) based on machine learning and
PERT technology, which can solve the complex production
environment of multiple varieties and variable batches. This
model can accurately predict the operation time of variable batch
products, supplement the data foundation of the planning and
scheduling system, achieve precise decomposition and control of
project plans, and replace scheduling personnel to issue commands
to each piece of equipment or workstation on site. The paper
proposed method consists of two various modules, namely, the
APERT module and the VC module. The function of the APERT
module is to import product homework time and accurately
decompose project plans. The function of the VC module is to
complete the classification and decision-making of production data
for on-site equipment or workstation resources. The results show
that the accuracy of this method is 1.3 times that of traditional
methods, and the classification decision accuracy reaches over 95%.
On-site management decision transmission can be completed in a
few minutes.

Adding imprecise data to excellent scheduling algorithms often
results in unsatisfactory results. Product operation time is one of the
important input data. The algorithm proposed in this article focuses
on solving the problem of time collection and prediction in a multi
variety and variable batch production environment. These relatively
accurate time data are the key to task decomposition in the APERT
algorithm.

In addition, traditional scheduling algorithms often focus on
resource allocation techniques and rarely pay attention to the
behavior of scheduling personnel. How to make management
experience explicit for an excellent plan scheduling manager is a
new approach for future scheduling algorithm research. The paper
first focuses on the decision-making behavior of scheduling
personnel on resource demand histograms, and extracts human
perception of scheduling information from the perspective of image
recognition. Then, the algorithm utilized machine learning
technology and achieved satisfactory results. At the same time,
these new ideas and methods have significant inspiration for the
development of future new scheduling algorithms.

The rest of this paper will be organized as follows. After
introducing cutting-edge researches on scheduling algorithms in
Section 2, Section 3 describes the data processing method and model
structure of the APERT-VC algorithm. Then Section 4 conducts
data experiments and comparative analysis of the APERT-VC
algorithm, and evaluates and discusses the advantages of the new
algorithm. Section 5 summarizes the results of the APERT-VC
algorithm. Future work and limitation of this study are finally
given in Section 6.

2 Related work

Currently, research on scheduling can be divided based on
whether machine learning is used. One is a heuristic scheduling
algorithm that does not use machine learning, and the other is a
scheduling algorithm that uses machine learning to leverage its
advantages in feature learning, complex logic expression, and other
aspects to solve the challenges of heuristic scheduling algorithms.

Scholars refer to random search optimization algorithms similar
to biological evolution and genetics as genetic algorithms (GA). A
new model combining a genetic algorithm with neighborhood
search was proposed by Wang et al. (2017), which can further
enhance search functionality by utilizing information in the search
space. A multiobjective minimization method for the production
cycle and energy consumption based on a genetic algorithm was
proposed by Chen et al. (2020), which can be used to solve the
scheduling issue of pulsating production lines. A new model
combining the fuzzy assembly shop scheduling mode, heuristic
algorithm, and genetic algorithm was proposed by Liu et al.
(2017), which can improve the energy consumption of work
time. A total delay rate objective genetic algorithm solution for
mixed flow workshop scheduling based on unrelated parallel
machines was proposed by Yu et al. (2018), which provides a
new decoding method that achieves compact scheduling results
through chromosomes. A genetic algorithm-based solution
considering task allocation, process sequencing, and machine
allocation was proposed by Lu et al. (2018), which can solve
distributed flexible workshop scheduling problems. This
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algorithm provides a new chromosome representation method for
modeling three-dimensional problems through one-dimensional
schemes.

Neighborhood search is one of the salient features of the tabu
search algorithm (TS) (Gmira et al., 2021). It starts from the global
solution and gradually searches in its neighborhood. A tabu search
algorithm for scheduling problems based on a replacement flow
shop was proposed by Arik et al. (2021) that has crossover and
mutation operators, focusing on the best candidate in the search
solution during each iteration. A dual objective tabu search
algorithm was proposed by Wang et al. (2020), which can solve
the two-phase hybrid flow shop scheduling problem, with the goal of
reducing energy consumption. A nonwaiting two-stage scheduling
problem based on tabu search was proposed by Harbaoui and
Khalfallah. (2020), and its solution results are attributed to
traditional genetic algorithms. A new model combining the tabu
search algorithm and the Pareto evolutionary strategy algorithm was
proposed by Gonzalez Neira et al. (2019). It is also combined with
Monte Carlo simulation to solve the robust scheduling problem of
multiobjective alternative flow shop scheduling with random
processing time. A new algorithm based on parallel tabu search
called BożEjko et al. (2017) proposed that it can solve periodic
workshop scheduling problems. A hybrid Pareto tabu search
algorithm based on the maximum workload, manufacturing
cycle, total workload, and lead time was designed by Li et al.
(2018) to solve multiobjective problems.

Imitating the activities of birds and fish is a prominent feature of
particle swarm optimization (PSO). An improved particle swarm
optimization algorithm considering human factors was designed by
Marichelvam et al. (2020), which can solve the multilevel flow shop
scheduling problem of parallel machines. Wu et al. (2018) further
validated the performance of six particle swarm optimization
algorithms through analysis of variance. A particle swarm
optimization algorithm based on a population adaptive
mechanism was proposed by Zhao et al. (2019), which is
oriented to the maximum duration criterion to solve the no wait
flow shop scheduling problem. A new model combining particle
swarm optimization and a genetic algorithmwas designed by Jamrus
et al. (2017). It can find the optimal process sequence and shorten
the scheduling time of flexible job shops in semiconductor
manufacturing. A two-stage particle swarm optimization
algorithm was proposed by Nouiri et al. (2017), which can solve
the job shop scheduling problem considering machine failure. A
particle swarm optimization algorithm based on hierarchical
methods was designed by Kato et al. (2018), which solves path
optimization and plan optimization problems. A dynamic
scheduling algorithm model for task random arrival was
proposed by Wang et al. (2019), which has significant advantages
over the PSO algorithm in solving random task problems. A two-
layer particle swarm optimization algorithm was proposed by
Zarrouk et al. (2019). Its upper layer is used to process the
mapping of the process to equipment, and the lower layer is used
to process the prescheduling sequence.

Simulating ants’ foraging habits is a prominent feature of ant
colony optimization algorithms (ACO). An optimization algorithm
solution based on a mutation mechanism and crossover was
proposed by Engin and Guclu. (2018), whose results can reduce
the maximum completion time. A cuckoo search algorithm based on

ant colony optimization algorithms was proposed by Zhang et al.
(2019), which can solve the permutation flow scheduling problem. A
multiobjective hybrid ant colony optimization algorithm was
proposed by Zhang et al. (2020), Zheng et al. (2020). It takes
into account the situation of two-stage replacement flow and
better finds the equant between the energy cost and the
maximum completion time. A hybrid ant colony optimization
algorithm was proposed by Huang and Yu. (2017), which can
solve multiobjective flexible workshop scheduling problems with
fixed batch sizes. Chaouch et al. (2017) compared three ant colony
optimization algorithm schemes that can solve the distributed job
shop scheduling problem and proposed an improved scheme. A
multirobot scheduling model based on ant colony optimization was
proposed by Elmi and Topaloglu. (2017), which can determine the
optimal task allocation and process arrangement for robots. The
enhanced ACO and hybrid ACO algorithms were proposed by
Deepalakshmi and Shankar. (2020), who investigated the role of
ant colony optimization in planning and scheduling problems.

The statistical model is the main feature of the distribution
estimation algorithm (EDA). Compared with traditional genetic
algorithms, it does not have crossover and mutation operations but
relies on learning and sampling statistical models. A P-EDA
algorithm based on completion time criteria was proposed by
Shao et al. (2018), which introduces path reconstruction
technology and improves convergence. A multi-objective
distribution estimation algorithm model based on the distance
index was proposed by Zangari et al. (2017), which can solve
multi-objective optimization problems in permutation flow shop
scheduling. A multi-objective distribution estimation algorithm
based on dual criteria random operations was proposed by Hao
et al. (2017), which uses the Monte Carlo method to sample the
processing time of each process. These also derive the firefly
algorithm (Fan et al., 2019), leapfrog algorithm (Lei et al., 2017),
etc. Li et al. (2023) proposed a dual population based distribution
estimation algorithm to solve flexible workshop scheduling
problems with the goal of minimizing the maximum
completion time.

The above algorithms are basically based on classic metaheuristic
algorithms and lack a solution to the production planning problem of
tree-shaped product structures. In certain fields, the final product is
achieved through pushing and pulling. For example, the final assembly
pulls the partial assembly, the partial assembly pulls the complete set of
parts, and the complete set of parts pulls the supply of raw materials.
Some scholars are conducting research on the comprehensive
scheduling problem of complex products and proposing
comprehensive scheduling solutions (Komaki et al., 2019; Zhang
et al., 2019; Xie et al., 2020). A temporal comprehensive scheduling
algorithm considering the fallback strategy was proposed by Zhang et al.
(2019), which effectively solves the compactness problem of serial
processes. A dual objective multi workshop scheduling algorithm
based on process transfer was proposed by Xie et al. (2020), which
finds a balance between the total completion time and total cost of the
product. In addition, comprehensive solutions based on process
relationship matrix tables and hybrid comprehensive scheduling
solutions based on improved bottleneck device conversion strategies
have also been proposed by scholars (Lei et al., 2018; Shi et al., 2020). Li
et al. (2021) also focused on the impact of transportation turnover when
studying flexible workshop scheduling problems.
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These algorithms always have certain limitations, so an
increasing number of scholars are turning their research
direction toward task scheduling algorithms based on artificial
intelligence neural networks, leveraging the advantages of deep
reinforcement learning algorithms in machine learning. A
priority-based parallel reinforcement learning task scheduling
method was proposed by Sha et al. (2019), which solves the rate
of convergence problem of reinforcement learning tasks in a large
state space. Zhang et al. (2019) automatically learned PDR through
end-to-end deep reinforcement learning agents. Swarup et al. (2021)
proposed a dual deep Q-learning algorithm that utilizes target
networks and relay technology. Luo (2020) extracted seven
universal state features to represent the rescheduled production
state and trained them using deep Q-learning (DQL). A
reinforcement learning mechanism based on a genetic algorithm
was proposed by Asghari et al. (2021), which can be used to manage
cloud resources. Silva et al. (2019) utilized the concept of
reinforcement learning to enable agents to interact with other
agents and environments. Park et al. (2021) proposed an RL
strategy based on near-end strategy optimization, which is
trained end-to-end. Du et al. (2022) solved the problem of
optimizing resource allocation within the workshop through
reinforcement learning.

Ahmed et al. (2023) discussed the optimal planning of an industrial
microgrid considering integrated energy resources, and paid more
attention to the impact of scheduling models on economic effects.
Both traditional scheduling algorithms and intelligent scheduling
algorithms represented by machine learning are focused on
production problems in certain special environments, mainly in the
productionworkshop or a certain section. However, controllers often face
a problem at the enterprise level. It is difficult to systematically solve the
production planning problems that exist in a complex production
environment with multiple varieties and batches by only solving the
problems of a certain workshop and a certain section. Therefore, inspired
by previous scholars’ research, this article takes the enterprise problem as
the starting point, the hierarchical relationship of production planning as
a systematic consideration, and the characteristics of multiple varieties
and variable batches as the foundation. Efforts are made to achieve the
integration of enterprise to workshop planning, the specific command
and decision-making from enterprise toworkshop, and the establishment
of an intelligent scheduling model for the interconnection of enterprise
and workshop level planning and scheduling.

3 Methods

The APERT-VC algorithm includes data acquisition,
preprocessing, operation time prediction, dynamic path
optimization and multiclassification decision-making.

3.1 Data acquisition

This study focuses on a certain type of manufacturing enterprise
and the manufacturing process of its products, which is described in
Figure 1. Its product manufacturing process is a tree structure, raw
materials are processed into parts, parts are assembled into
components, and components constitute finished products.

Anodizing treatment uses the principle of oxidation to generate
aluminum oxide through electrolytic oxidation, which
spontaneously generates a colored anodic oxide film with
corrosion resistance and oxidation resistance. It is widely used in
the manufacturing of aerospace and automotive products. Faced
with the complex production environment of multi-variety and
variable batch, enterprises can still collect the production cycle of
parts and components through the industrial internet, but it is
difficult to obtain anodized operation time. Although the operation
time for a single variety can be obtained, after multiple varieties of
products arrive at the anodizing workshop, a mixed line processing
state is formed. In this complex production state, the uncertainty of
product processing increases, such as the mutual influence between
different varieties of products, waiting before processing, waiting for
product inspection after processing, etc., ultimately leading to
inconsistent product operation time. Anodizing, as the main
process of product processing, if not accurately estimated, will
significantly decrease the accuracy of product production
planning arrangements. To further verify the actual situation of
anodizing production, this article converts the anodizing task into a
product order, collects the time when the anodizing workshop
receives the product order and completes the product order, and
obtains the operation time of a certain anodizing task through the
difference between them. A schematic diagram of the time collection
process for this assignment is shown in Figure 2.

The tasks in anodizing order are represented byW, Formula (1).
N is the product name. n1 is the product number. n2 is the
collaboration task number. C is the product category. t1 is the
task start time. t2 is the task end time.

W � N, n1, n2, C, t1, t2( ) (1)
The acceptance time in Figure 2 will be stored in t1, and the

completion time will be stored in t2.

3.2 Data preprocessing

In this paper, these anodization task data are transformed into
the time vector of single product processing. This time vector is σ. T
is the time sequence. t′ is the single product operation time of the
current time. The paper used Formula (2) and Formula (3).

σ � T, t′( ) (2)

t′ � ∑
n

i�1
(t′i/n) (3)

The advantage of data preprocessing in this way is that it
improves the convergence of calculations. At the same time, it
facilitates predicting the running time of different batches of
products in the future.

Through the data acquisition and pretreatment methods
described in Section 3.1 and 3.2, the actual operation time data
of the quenching process are obtained in this paper.

Over the past 2 years, the company collected a total of
4,689 samples of anodizing operation time. Through data
preprocessing described in Section 3.2, 235 samples were
obtained and plotted as the actual anodizing operation time
curve, as shown in Figure 3. From Figure 3, it can be seen
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that in the state of multi-variety and batch mixed production, the
product anodizing operation time exhibits nonlinear
characteristics. Meanwhile, the graph shows the annual
average homework time curve in orange. Compared to 2021,
the average annual homework time in 2022 has increased and
shows a nonlinear characteristic of higher fluctuations. Analysis
reveals the reason for this distribution trend is the strong market
demand in 2022, with an increase in orders held by enterprises
and a clear conflict in anodizing resources. Instead, it increases
the fluctuation of operation time, resulting in an increase in
single piece anodizing operation time. In addition, from the
actual operation time results collected, it can be seen that the
standard anodizing operation time does not take into account the

market rules of enterprise production and cannot be used for
actual planned production scheduling. If the anodizing standard
operation time is used during the scheduling of production, it will
seriously affect the accuracy of the planned production.
Therefore, accurately predicting the future anodizing
operation time is crucial for enterprises to implement accurate
production planning and scheduling.

3.3 APERT-VC algorithm

The APERT-VC algorithm structure is shown in Figure 4. In this
algorithm, A represents the attention mechanism, and PERT

FIGURE 1
Concept diagram of the product production process. The white squares represent the tree structure of the product. The yellow squares represent
the main research object of the paper, which is the anodizing process.

FIGURE 2
Design of the anodization process acquisition process. The tables on the left and right represent the production data of anodized orders recorded in
the field in this article. The middle section displays the mixed production status of various types and batches of products.
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represents the program evaluation and review technique. VC
represents the virtual command model.

From the above figure, it can be seen that the algorithm model is
divided into two parts: upper and lower. The input is the product
operation time data recorded in the production information system.
The working time of parts and components can be determined using
standard working time, while the working time of processes
(anodizing) can be nonlinearly fitted and predicted using
attention mechanisms. Why consider using attention
mechanisms? The operation time of products with multiple

varieties and varying batches exhibits nonlinear characteristics
and fluctuates greatly. The attention mechanism can extract key
information while ignoring irrelevant information to prevent
gradient explosion and achieve better prediction results. This
article combines the RNN model with an attention mechanism to
predict and analyze production data with significant fluctuations.
After accurately predicting the operation time using neural
networks, the actual production data will be used as input
conditions for the PERT model. The PERT model uses a network
diagram to express the progress of various activities in a project and

FIGURE 3
Actual anodizing operation time curves. The blue curve represents the actual working time of anodized products over the past 2 years. The red curve
represents the average of the first and second halves of the blue curve.

FIGURE 4
APERT-VC algorithm structure. The upper part of the figure shows that the operation time of the process is predicted through the attention
mechanism, and the operation temporal database is improved. As the input of the PERT optimization model, the job temporal database forms the
resource demand histogram. The histogram is used to make multiclassification decisions through the VC model.
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their interrelationships. Based on this, network analysis is conducted
to calculate the time majority of each activity in the network,
determine key activities and critical routes, and continuously
adjust and optimize the network using time differences to obtain
the shortest cycle and complete the project plan decomposition. The
decomposed project plan has become the workshop product plan.
The end of the workshop product plan is reflected in specific
equipment and workstations. This article designs a VC model
behind it. By using the VC model to classify specific resource
plan diagrams on equipment and workstations, different
classifications represent different production decisions, thus
achieving the goal of enterprise management to assign decisions
to each piece of equipment and workstation.

Manufacturing enterprises use PERT technology to plan and
manage complex projects. PERT technology not only uses time
parameters to discover the critical path of a project and perform
real-time control but also derives the latest end time of each task
through time parameters. Controllers often ask for specific product
plans based on the latest completion schedule. To better integrate
the predicted working time with the PERTmodel, this article defines
the task in the PERT model as P, such as Formula (4). si is the front
node of the task, sj is the rear node of the task, Fij is the total float, t
is the operation time of the task, Ki is the node immediately before
the task, kj is the node immediately after the task, and o is the
completion status of the task. Fij is the difference between the latest
completion time and the earliest completion time. It is the maximum
allowable delay at the start of the project, which is the maximum
completion time of the line allowed without affecting the overall
construction period of the project.

P � si, sj, Fij, t, Ki, kj, o( ) (4)

Fij is a key indicator of critical path and critical work control. Fij is
equal to the latest start time minus the earliest start time. tES(K, i)
represents the earliest start time of point K on the left side of node i.
t(K, i) represents the duration between node i and node j. If there is
only one path on the left side of node i, the calculation formula for
the earliest start time of work ESij is formula 5.

ESij � tES K, i( ) + t K, i( ) (5)

If there are multiple paths on the left side of node i, the
calculation formula for the earliest start time of work ESij′ is
formula 6.

ESij
′ � max tES K, i( ) + t K, i( )( ) (6)

Using the same approach, the latest start time LSij′ for the project
is recommended. tLS(j, k) Represents the latest start time of the
node on the right side of node j. t(j, k) represents the duration
between node j and node k. LSij′ calculation method is Formula 7.

LSij
′ � min tLS j, k( ) − t j, k( )( ) (7)

According to the connotation of PERT technology, Fij

calculation method is formula 8. Bring formula 6 and formula 7
into formula 8 to obtain formula 9

Fij � ESij
′ − LSij

′ (8)
Fij � max tES K, i( ) + t K, i( )( ) −min tLS j, k( ) − t j, k( )( ) (9)

The core of PERT technology is to monitor critical work and
critical paths through Fij, and dispatch tasks according to the latest
completion time. The algorithm program adopts the Python
language, uses the NetworkX toolkit, and uses the topological
sequence function for programming.

4 Experimental evaluation and
discussion

4.1 Operation time prediction

After collecting and preprocessing actual production data, this
paper found that in a multi-variety and variable batch production
environment, the anodizing operation time of parts and components
exhibits nonlinear characteristics and significant fluctuations. To
select an appropriate algorithm for job time prediction, this paper
uses four different algorithms, namely, MLP (multilayer
perceptron), LSTM (long-term and short-term memory),
enhanced local transformer and the convolutional attention
mechanism. These four algorithms are widely accepted in time
series data prediction projects. The convolutional attention
mechanism has been proposed in recent years and is mostly
applied in the medical industry, but has not yet been applied in
manufacturing enterprise planning problems. The paper compares
the convergence and prediction accuracy of different algorithms,
verifies the advantages of the attention mechanism mechanism
through comparative experiments, and analyzes the mechanism
by which the advantages are achieved. Through calculation, the
paper obtained the prediction results of different algorithms and the
convergence process, as shown in Figure 5 and Figure 6.

It can be seen from Figure 5 and Figure 6 that the convolutional
attention mechanism has obvious advantages over MLP, LSTM and
Trans in predicting the operation time of multivariety and variable
batch mixed production.

In these results, paper further validated the LSTM gradient
vanishing problem. LSTM processes tags in order and maintains
a hidden state. This state updates with each new input and
represents the entire sequence. In theory, LSTM can maintain the
propagation of important information over infinitely long
sequences. However, for time series data with large fluctuations,
the vanishing gradient problem is very serious. From Figure 5, it can
be seen that the LSTM model has almost lost its fitting ability for
time series data with large fluctuations. Similarly, from Figure 6, it
can be seen that the LSTM model is difficult to obtain convergence
results.

In addition, this article uses a locally enhanced transformer
model. Compared to the initial transformer model, this model adds a
casual convolutional, which can better solve the problem of the
initial transformer model being insensitive to pre- and
postinformation and better integrate local information. Therefore,
the operational results of the locally enhanced transformer model
are slightly higher than those of theMLPmodel but lower than those
of the convolutional attention mechanism. The convolutional
attention mechanism adopts a global attention mechanism
architecture, which can consider more data source information
and achieve better computational results compared to the locally
enhanced transformer model.
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Then, the paper compared the data of the first week of operation
in 2023 predicted by the four models, the data of the traditional
mean method and the actual data collected, as shown in Table 1.

From the final results of the prediction, the attention mechanism
prediction obtained the optimal result, with a predicted value of
1.54 days, which is only a 10% error compared to the true value of
1.38. Due to the poor convergence of the MLP, LSTM, and TRANS
models, there is a significant gap between the actual values and the lack
of predictability. The average achieved a good result of 1.82 days, but the
error was approximately 30%. The predictive accuracy of the attention
mechanism is three times that of the average. Y Yao et al. (2023) found
in the medical field that the AM algorithm does have advantages over
other algorithms in predicting long-term continuous time series. The
results of this interdisciplinary study indirectly support our analysis. In
addition, the paper conducted comparative experiments on the
homework time data of heat treatment. The prediction errors of
MLP and LSTM are 247% and 351%, respectively, and the
prediction error of attention mechanism is 11%.

Accurate time is the foundation of planning and scheduling.
After obtaining accurate homework time in this article, the project
plan was decomposed using the APERT model mentioned earlier.
The decomposed plan was communicated to the workshop planning
system through the smarteam system to complete the specific
production task dispatch.

4.2 Experiments on the VC algorithm

Usually, in a large factory, there are thousands of sets of
equipment. All dispatch tasks will be assigned to specific
equipment. Each device outputs a real-time resource demand
plan histogram. In a complex production environment with
multiple varieties and varying batches, these histograms have
many possibilities. Managers will analyze the situation in the
histogram and provide improvement strategies. Assuming the
factory has 1,000 devices, according to the weekly drawing

FIGURE 5
The fitting results of four different algorithms. The horizontal axis represents the number of days, and the vertical axis represents the operation time.
The red curve represents the actual homework time data, while the blue curve represents the predicted homework time. (A) is the MLP algorithm result,
(B) is the LSTM algorithm result, (C) is the TRANS algorithm result, and (D) is the AM algorithm result.
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method, 50,000 images will appear every year. It is difficult to
manage such a large amount of on-site data solely relying on
manual labor.

The VC algorithm proposed in this article is a novel concept.
Managers will recognize the features in the resource demand plan
histogram and make decision intentions. The VC algorithm utilizes
the advantages of deep learning in feature recognition and
multiclassification problems, allowing machines to replace
manual histogram classification. Each classification result
corresponds to one or several strategies. In this way, machines
can be used instead of managers to issue commands to
equipment or workstations. The logic of the VC algorithm is
shown in Figure 7.

Below, the paper will demonstrate the application of the VC
algorithm in specific engineering aspects. Based on the knowledge
and experience of managers, this paper has summarized four forms
of demand histograms using machined shell segment products as an
example, as shown in Figure 8. These four forms are left distribution,
right distribution, middle distribution, and two end distribution.

Figure 8A shows the distribution curve on the left, with the
optimization direction on the right. The specific management strategy
is to delay the plans that exceed production capacity, ensuring that all
tasks are completed within 7 days andminimizing the impact. Figure 8B
shows the distribution curve on the right side, with the optimization
direction on the left side. The specificmanagement strategy is to schedule
centralized tasks during device idle periods. Due to the plan moving
forward, it will not affect the total project duration. Figure 8C shows the
middle distribution curve, with the optimization direction on both sides.
The specific management strategy is to prioritize moving centralized
tasks to the left, and if the left side cannot bear it, thenmoving to the right
is considered. Figure 8D shows the distribution curve at both ends, with
four optimization directions. The specific management strategy is to
move the plan toward the intermediate idle period.

Therefore, the paper can classify all histograms, and each
classification result corresponds to management decisions and
optimization methods. In addition, controllers can also monitor in
real time whether the current production situation is high risk or low
risk. This article tends to use the iResNet algorithm for classification. The

FIGURE 6
Comparison of loss values of four algorithms. The abscissa represents the number of cycles, and the ordinate represents the value of the loss
function. The blue curve represents the MLP algorithm, the red curve represents the AM algorithm, the green curve represents the LSTM algorithm, and
the blue curve represents the Trans algorithm.

TABLE 1 Multiple prediction results and actual results.

Item Time (days)

MLP prediction results 3.11

LSTM prediction results 6.15

TRANS prediction results 3.21

AM prediction results 1.54

Average method prediction results 1.82

Actual value 1.38

The table shows the comparison of the predicted values, average values, and actual values of anodizing operation time for the four algorithms.
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iResNet algorithm is an improved version of the ResNet algorithm. On
the basis of ResNet, a newnetwork structure is introduced to enhance the
information flow and network expression ability, reduce information
loss, and increase the learning ability of the residual module. Therefore,
this paper will compare and analyze the results of iResNet and ResNet
later to prove that algorithm engineers have chosen a better algorithm.
To increase the effectiveness of the algorithm comparison, the paper also
included comparative experiments with the SAE algorithm.

This article compares the accuracy and convergence of three
algorithms. The training sample is 700, and the testing sample is 300.
The training process of the three various algorithms is shown in Figure 9.

From the training process, it can be seen that the convergence of
the iResNet model performs best among the three algorithms. This
article presents a comparison between the predicted and true values
of the four classifications in an explicit manner, as shown in
Figure 10.

In addition to the explicit treatment, the paper evaluated the
classification results using four classification evaluation indicators:
accuracy, precision, recall, and F1 score, as shown in Table 2. From
Table 2, it can be seen that the accuracy, precision, recall, and
F1 score of iResNet all reached 98%, performing the best among the
three algorithms. Next is ResNet. ResNet’s Accuracy, Precision,

FIGURE 7
Flowchart of the VC algorithm. The upper half of the figure represents the process by which enterprise managers identify and make decisions on
resource demand histograms. The lower half of the figure represents the process of VC model classifying and making decisions on resource demand
histograms.

FIGURE 8
Four distribution forms of resource histograms. The horizontal axis represents 1–7 days, while the vertical axis represents the number of tasks
undertaken on the device. (A) represents the left distribution, (B) represents the right distribution, (C) represents themiddle distribution, and (D) represents
the two end distributions.
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Recall, and F1 Score all reached over 90%. The worst classification
result is SAE. By enhancing the information flow, reducing the
information loss, and enhancing the learning ability of the residual
module, iResNet is indeed better than ResNet in dealing with
multiclassification problems. From this example, the accuracy of
iResNet has increased by 6.5% compared to ResNet.

5 Conclusion

This paper focuses on manufacturing enterprises in a complex
production environment with multiple varieties and varying
batches. Aiming at the hierarchical nature of planning, an
APERT-VC model is proposed to solve the problems of mixed

FIGURE 9
Accuracy and loss values during the training process of the three algorithms. The horizontal axis represents the number of training sessions, and the
vertical axis represents the accuracy and loss values. The purple curve represents the SAE algorithm, the red curve represents the ResNet algorithm, and
the orange curve represents the i-ResNet algorithm.

FIGURE 10
Test results of the three algorithms. The vertical axis represents four classifications of true values, while the horizontal axis represents four
classifications of predicted values. Each small grid represents the proportion of predicted results, with a larger proportion indicating a darker color.
Diagonal lines indicate the consistency between predicted and true values, where a darker the color of the diagonal corresponds with a higher accuracy
of the prediction.

TABLE 2 Comparison table of multiple classification evaluation indicators for three algorithms.

iResNet ResNet SAE

Accuracy 0.98 0.92 0.84

Precision 0.98 0.93 0.88

Recall 0.98 0.90 0.83

F1 Score 0.98 0.91 0.84

The table represents the accuracy, precision, recall, and F1 score results of three different algorithms.
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line operation time prediction, workshop plan decomposition, and
rapid decision-making of equipment plan classification.

The APERT-VC model is divided into two layers, where the
attention mechanism is used to collect work plan time in APERT,
and the project plan is decomposed into workshop plans through
PERT technology. Through comparative experiments, it was found
that the results of the attention mechanism have better accuracy
compared to LSTM, MLP, and locally enhanced TRAN.

This article innovatively proposes a new concept, namely, the
VC (virtual command) of the APERT-VC model. The VC model
utilizes the advantages of machine learning in feature extraction and
multiclassification and makes multiclassification decisions based on
the resource demand histogram of management. Through
comparative experiments, it was found that iResNet has
significant advantages in handling multiclassification problems,
with VC models having an accuracy rate of up to 98%, which
can be used for engineering applications.

The paper mainly focuses on the research work of project
planning and workshop resource planning. The new model
proposed in the paper solves the problem of precise
decomposition of project plans and management of workshop
resource plans, and is suitable for the two-level planning
structure of enterprises and workshops. Through machine
learning algorithms, the paper solved the problem of difficult to
predict the operation time of multi variety and variable batch
products, and successfully learned the behavior and knowledge of
scheduling personnel in making workshop resource planning
decisions. This study can simulate scheduling personnel
conducting on-site command and decision-making.

6 Future work

This study is suitable for traditional manufacturing enterprises
such as aerospace, aviation, and shipbuilding. Through the
application of this algorithm, a connection can be established
between factory level planning and workshop planning, and the
workload of on-site scheduling personnel can be reduced to a certain
extent.

The algorithm generates different decisions and measures by
simulating the behavior of scheduling personnel. However, these
decisions and measures still rely on the dispatcher’s knowledge base.
In the future, the research team will establish a plan optimization
model for high-risk resources based on this algorithm. Continue to
study the behavior of scheduling personnel in adjusting and

optimizing plans, and establish a new type of plan optimization
model through reinforcement learning.
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