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In recent years, the photovoltaic (PV) industry has grown rapidly and the scale of
grid-connected PV continues to increase. The random and fluctuating nature of
PV power output is beginning to threaten the safe and stable operation of the
power system. PV power interval forecasting can provide more comprehensive
information to power system decision makers and help to achieve risk control and
risk decision. PV power interval forecasting is of great importance to power
systems. Therefore, in this study, a Quantile Regression-Stacking (QR-Stacking)
model is proposed to implement PV power interval prediction. This integrated
model uses three models, extreme gradient boosting (Xgboost), light gradient
boosting machine (LightGBM) and categorical boosting (CatBoost), as the base
learners and Quantile Regression-Long and Short Term Memory (QR-LSTM)
model as the meta-learner. It is worth noting that in order to determine the
hyperparameters of the three base learners and one meta-learner, the optimal
hyperparameters of the model are searched using a Tree-structured Parzen
Estimator (TPE) optimization algorithm based on Bayesian ideas. Meanwhile,
the correlation coefficient is applied to determine the input characteristics of
the model. Finally, the validity of the proposed model is verified using the actual
data of a PV plant in China.
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1 Introduction

In recent years, the human demand for electrical energy has been increasing. At present,
thermal power generation occupies 60% of the global electricity energy supply, however,
thermal power generation requires a large amount of non-renewable energy in the
production process, and the non-renewable energy sources stored on the Earth, such as
coal, oil and natural gas, are becoming increasingly depleted (Viet et al., 2020), and the
energy crisis has sounded an alarm for mankind for mankind (Frilingou et al., 2023).
Therefore, accelerate the energy revolution, optimize the energy structure is urgent to
achieve sustainable development of energy has become a key concern of countries around the
world. Solar energy is a renewable energy source with great potential, and countries around
the world have reached a consensus on the need for solar energy development, of which
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photovoltaic power generation is an important way of solar energy
development and utilization (Rafique et al., 2020; Khalid et al.,
2023). With the progress of technology and cost reduction,
photovoltaic power generation has been widely promoted and
applied in all countries around the world, and the installed
capacity has been rising in recent years.

PV power output is uncontrollable and subject to various
meteorological factors, showing strong volatility, randomness,
intermittency and non-smoothness. The PV power system is
equivalent to an uncontrollable power source for the power
system. With the increasing scale of grid-connected PV, unstable
PV power output will cause difficulties in power system scheduling
and real-time power balancing. At the same time, PV power output
fluctuations can lead to sharp fluctuations in frequency and voltage,
and the resulting shocks may threaten the safe and stable operation
of the power system. In addition, large-scale grid-connected PVmay
have a certain negative impact on the damping characteristics of the
power system, which in turn threatens the safe and stable operation
of the power system (Rafique et al., 2022). Therefore, in order to
improve the security of the power system and the reliability of power
supply, the light has to be abandoned. Accurate PV power prediction
helps the power system scheduling department to reasonably
arrange the power system scheduling plan and realise the real-
time balance of power generation and power consumption, so as to
ensure that the power system can operate reliably, safely and stably.
For PV power operating companies, it can improve the economic
efficiency of PV power plants. In addition to this, energy storage
technology has a very high potential in reducing the threat of PV
fluctuations to the power system (Amir et al., 2023).

According to the different mechanisms within the prediction
models, PV output forecasting models can be categorized into:
physical models, statistical models, machine learning models and
integrated models. The physical prediction model uses the
installation position, tilt angle, design parameters, operating
characteristics and conversion efficiency of PV modules to
establish a physical model, while meteorological data such as
solar irradiance is used as the data basis for the physical model
to obtain the predicted value of PV power generation through the
calculation of the physical model (Dolara et al., 2015). The statistical
model is only data-driven. The statistical model inputs weather
variables such as solar irradiance and historical data of PV power,
and extracts the intrinsic correlation information to build a mapping
model to achieve the prediction of future PV output (Gellert et al.,
2022). While traditional statistical methods have very limited
nonlinear modeling capability, machine learning prediction
models (Rao et al., 2022) have powerful nonlinear mapping
modeling capability, which has led to its rapid development in
the field of PV forecasting. Twenty-four machine learning models
were developed for implementing PV power prediction by Dávid
Markovics et al. Day-ahead PV power prediction was performed
based on numerical weather forecast data. The effects of predictor
variable selection and the benefits of hyperparameter tuning were
also investigated in detail in this study (Markovics andMayer, 2022).
In recent years many researchers have turned to the development
and research work of combined prediction models (Liang et al.,
2023), which have superior predictive performance, model
generalization performance, and robustness.

Traditional PV power prediction techniques focus on point
prediction. The output of point prediction is a single point
expected value of PV power at a certain moment in the future.
However, due to the chaotic nature of the atmospheric system, PV
power prediction errors cannot be avoided. There are significant
uncertainties in the prediction results, and the information provided
by point prediction is very limited. In contrast to point prediction,
interval prediction of PV power uses prediction intervals to achieve a
quantitative estimate of the prediction uncertainty. The interval
prediction results provide the upper and lower bounds of the
fluctuation of PV power at a certain confidence level at a certain
time in the future, which makes up for the limitations of the PV
power point prediction technique and can provide more
comprehensive data support for the power system. The PV
power interval prediction results can provide important
references for the operational risk assessment and risk decision-
making of the power system, and further improve the security and
economy of the power system. In addition, PV power interval
prediction technology has a very broad application prospect in
the fields of power system planning, power system scheduling,
energy storage configuration and regulation, and power market
trading. Zhenhao Wang et al. (Wang et al., 2022)established a
deep convolutional generative adversarial network model to
generate PV power characteristic curves in different scenarios,
and then established a QRLSTM model to achieve PV power
interval prediction. Ming Ma et al. (Ma et al., 2022)analysed the
distribution of PV power prediction errors and then constructed PV
power prediction intervals using a kernel density estimation
algorithm.

The existing PV power interval prediction is mainly realised
using a single model, and its prediction performance needs to be
further improved. Multi-model fusion technology will be an
important development direction in the future. The values of the
model parameters largely determine the prediction performance of
the model, so the hyperparameter optimisation problem of the
fusion model needs further research. Therefore, in this paper a
stacking model that can achieve the prediction of PV power intervals
is proposed. An optimisation algorithm is used to determine the
optimal hyperparameter values for this model to improve the PV
power interval accuracy. In order to provide important data support
for power system operation risk assessment and risk decision-
making, and to further improve the safety and economy of the
power system. The main contributions of this paper are as follows:

1) A novel QR-Stacking integrated model is proposed to implement
PV power interval prediction. Multiple decision tree models are
used as the base learners of this integrated model, and deep
neural networks are used as the meta-learner of this integrated
model. The QR-Stacking integrated model is constructed by
combining the quantile regression model and the Stacking
integrated model to achieve the PV power interval prediction.
This is the first application of this stacking model in the field of
PV power interval prediction.

2) To improve the prediction accuracy of the QR-Stacking
integrated model, the Tree-structured Parzen Estimator
algorithm was used to search for determining the
hyperparameters of multiple base learners and a meta-learner.
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3) Simulation analysis was conducted based on actual PV power
generation data from a PV power plant in China. Multiple interval
evaluationmetrics were used to evaluate the prediction intervals. A

comprehensive comparative analysis of the interval prediction
accuracy of QR-Stacking and multiple benchmark prediction
models was performed. The results show that the model can
give full play to the advantages of each algorithm and improve
the prediction accuracy of PV power intervals.

The rest of the paper is organized as follows: Section 2 describes
the prediction models and optimization algorithms used in this
paper. Section 3 describes in detail the evaluation metrics of the
prediction model. Section 4 provides case studies. The prediction
performance of the proposed prediction model is compared with
that of several benchmark models. The accuracy of the prediction
models is verified by experimental simulations. Section 5
summarizes the whole paper.

2 Methodology

Figure 1 shows the overall structure of the work in this paper.
Firstly, three base learners, Xgboost, LightGBM and CatBoost, and a
meta-learner, QR-LSTM, are built. The proposed QR-Stacking
model is constructed from the above four models and the TPE
optimisation algorithm. Secondly, the proposed model is trained
and tested using real PV data. Finally, three evaluation metrics are
used to compare and analyse the prediction performance of the
proposed model with QR-LSTM and QR-GRU models. The
nomenclature used in this paper is presented in Table 1.

2.1 Stacking

It has been shown that single prediction models have limited
prediction accuracy. Ensemble machine learning would be an
important solution to this challenge. Usually, the first layer of the
stacking model is the base learner layer and the second layer is the
meta-learner layer. The meta-learner layer corrects the prediction
error of the base learner. In this research, Xgboost, LightGBM and
CatBoost are used as base learners. The QR-LSTMmodel is used as a
meta-learner. The following section details the modeling principles
of the three base learners and one meta-learner.

2.2 Base learners

2.2.1 Xgboost
The XGBoost algorithm is an improved algorithm of the

gradient augmented regression tree. The main improvements of
the XGBoost algorithm are the improvement of the objective
function and its solving method.

The objective function (loss function) of the XGBoost algorithm
during training consists of two parts, as shown in Eq. 1.

Obj � ∑n
i�1
l(yi,ŷi) +∑K

k�1
Ω fk( ) (1)

Where∑n
i�1
l(yi, ŷi) is used to characterize the difference between

the predicted values ŷi and true values yi. ∑K
k�1

Ω(fk) is the
regularization term.

FIGURE 1
Overall structure of the work in this paper.

TABLE 1 Nomenclature.

Abbreviations Full text

CatBoost categorical boosting

DI direct radiation

EI expected improvement

GRU Gated Recurrent Unit

GI global irradiance

H humidity

Ken Kendall correlation coefficient

LSTM Long and Short Term Memory

LightGBM light gradient boosting machine

PV photovoltaic

PICP Prediction interval coverage probability

PINAW Prediction interval normalized average width

QR Quantile Regression

QR-Stacking Quantile Regression-Stacking

QR-LSTM Quantile Regression-Long and Short Term Memory

QR-GRU Quantile Regression-Gated Recurrent Unit

TPE Tree-structured Parzen Estimator

T temperature

WC comprehensive evaluation index

WD wind direction

Xgboost extreme gradient boosting
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The regularization term can be calculated from Eq. 2:

∑K
k�1

Ω fk( ) � γT + 1
2
θ∑T
j�1
ω2
j (2)

where Ω(fk) is a function of the complexity of the decision tree
fk. γ is the penalty term of the L1 regular. T is the total number
of leaf nodes of the decision tree. θ is the penalty term of the
L2 regular. ωj is the weight of the decision tree fi at the jth
leaf node.

Each iteration updates the objective function to Eq. 3.

Objt � ∑n
i�1
l yi, ŷ

t−1( )
i + ft xi( )[ ] +Ω ft( ) (3)

Using a second-order Taylor expansion for the above
equation, the following equation is obtained by removing the
constant term.

Objt � ∑n
i�1

gift xi( ) + 1
2
hi × f2

t xi( )[ ] + Ω ft( ) (4)

where gi � ∂ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) and hi � ∂2

ŷ(t−1)
i

l(yi, ŷ
(t−1)
i ) are the first-

and second-order derivatives of the objective function, respectively.

2.2.2 LightGBM
The basic idea of LightGBM is to obtain the final strong regression

tree using multiple iterations of the weak regression tree. The new
regression tree obtained from each iteration is obtained by fitting the
prediction residuals of the previous regression tree. Finally, the
outputs of all regression trees are summed to output the better-
performing results. The calculation is shown in Eq. 5.

F x( ) � ∑M
m�1

fm x( ) (5)

where fm(x) is the output value of themth weak regression tree and
F(x) is the final output value of the model.

FIGURE 2
The structure of the LSTM unit.

FIGURE 3
Pseudo-code of the TPE optimisation algorithm.
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2.2.3 CatBoost
The CatBoost model is an improved gradient boosted decision

tree (GBDT) model. The improvements of CatBoost over traditional
GBDT are as follows:

Traditional GBDT derives the gradient of the current model
based on the same dataset in each iteration of training, but this leads
to biased point-by-point gradient estimation. CatBoost uses Ordered
Boosting to improve the gradient estimation method of the
traditional algorithm. The improved algorithm obtains an
unbiased estimate of the gradient to mitigate the effect of the
gradient estimation bias and thus improve the generalization
ability of the model. To obtain unbiased gradient estimation, the

CatBoost model trains a separate model Mi for each sample xi,
which is obtained by training with a training set that does not
contain sample xi. ThenMi is used to obtain a gradient estimate on
the samples. Finally, this gradient is used to train the weak learner
and obtain the final model.

2.3 Meta-learner

2.3.1 Quantile regression
The quantile regression (QR) model is used to study the

relationship between the conditional quartiles of the independent

FIGURE 4
Flow chart of the training phase of the proposed stacking model.

FIGURE 5
Pseudo-code for the training phase of the proposed model.
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and dependent variables. The quantile regression model can be
represented by Eq. 6.

QPi τ|xi( ) � xiβ τ( ) i � 1, 2,/, n (6)
where QPi(τ|xi) is the conditional quantile. τ ∈ (0, 1). β(τ) is the
vector of regression coefficients. β(τ) � [β0(τ), β1(τ),/, βm(τ)]T.
Each element βj(τ) in β(τ) characterizes the degree of influence of
the jth independent variable on the dependent variable. n is the total

number of samples. Pi is the dependent variable. xi is the
independent variable. The dependent variable is usually multiple,
i.e.,: xi � [xi,0, xi,1,/, xi,m]

The objective of solving the quantile regression model is β(τ).
The problem can be solved byminimizing the loss function as shown
in Eq. 7.

L � ∑n
i�1
γτ Pi − xiβ τ( )( ) (7)

FIGURE 6
Flow chart of the testing phase of the proposed stacking model.

FIGURE 7
Pseudo-code for the testing phase of the proposed model.
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where γτ is an asymmetric function with respect to the quantile τ.
β̂(τ) is the estimated value of β(τ). Its specific expression is
given by:

γτ s( ) � τs s≥ 0
τ − 1( )s s< 0

{ (8)

where the expression of s is s � Pi − xiβ(τ).
Thus the expression for solving β̂(τ) is as follows:

β̂ τ( ) � argmin∑n
i�1
γτ Pi − xiβ τ( )( ) (9)

Ultimately, the estimates obtained by quantile regression model
estimation at different conditional quartiles are as follows.

Q̂Pi
τ|xi( ) � xiβ̂ τ( ) i � 1, 2,/, n (10)

2.3.2 Long and Short Term Memory
The Long and Short Term Memory (LSTM) model was first

proposed by Hochreiter and Schmidhuber in the 1990s as a solution
to the issue of vanishing gradients in traditional RNNs. The
incorporation of gating units, consisting of forgetting, input, and
output gates, allows LSTMs to selectively retain or discard
information within the cell state, enabling them to effectively
capture and model long-term dependencies in sequential data. As
a result, LSTMs have become a widely utilized tool in the field of
deep learning. Figure 2 is a schematic diagram of the structure of the
LSTM model.

2.3.3 Quantile Regression-Long and Short Term
Memory

Quantile regression model in the form of loss function and
LSTMmodel are fused to achieve PV power interval prediction. The

FIGURE 8
Heat map of correlation between power variables and meteorological factor variables.

TABLE 2 The hyperparameter search range settings for the base learners and
meta-learner.

Model Hyperparameter Search range

Xgboost learning_rate Choice [0.01,0.03,0.1,0.2,0.5]

n_estimators Randint (100,1000)

max_depth Choice [4,6,8,10,12,15]

min_child_weight Randint (3,20)

LightGBM learning_rate Choice [0.01,0.03,0.1,0.2,0.5]

n_estimators Randint (100, 1000)

max_depth Choice [4,6,8,10]

min_child_samples Randint (0,30)

min_child_weight Randint (3,20)

CatBoost learning_rate Choice [0.01,0.03,0.1,0.2,0.5]

iterations Randint (100,1000)

depth Choice [4,6,8,10,15]

LSTM units Qrandint (16, 512,16)

dropout Choice [0.01,0.2,0.5,0.8,0.9]

activation Choice ["linear","relu","elu"]
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Quantile Regression-Long and Short Term Memory (QR-LSTM)
model serves as a meta-learner for the proposed model to further
correct the prediction bias of the base learner.

2.4 Tree-structured parzen estimator

In this study, the Tree-structured Parzen Estimator (TPE)
optimization algorithm is proposed to achieve the global
optimization of each model hyperparameter. The TPE algorithm
uses a probability density estimator based on the tree structure to
implement Bayesian optimization. The TPE technique may fast
converge to the global optimal solution and models the
parameter space using a tree structure.

The main advantages of the TPE algorithm are (1) It avoids the
inefficiencies of traditional grid search or random search by using
probability density estimates to model the objective function.
(Nguyen et al., 2020). (2) The TPE algorithm can automatically

adjust the direction and scope of the search. (3) The TPE algorithm
can handle discrete, continuous, and mixed types of
hyperparameters, making it applicable to a variety of machine
learning models and algorithms. (4) The TPE algorithm is based
on Bayesian optimisation theory, which has a solid mathematical
foundation and reliable theoretical support. (5) The TPE algorithm
estimates the probability density function in the parameter space by
constructing a tree-like structure, which enables it to find high
probability regions quickly and reduces the size of the search space.
In contrast, optimisation algorithms such as genetic algorithms
require a large number of iterations and crossover operations
with high computational complexity. (6) The TPE algorithm is
able to handle the noise in the objective function better and find
the optimal solution more stably through the estimation of the
probability density function. While optimisation algorithms such as
genetic algorithmmay be disturbed by noise and get unstable results.

The core of TPE optimisation is to find a set of hyperparameters
that minimise the established objective function. The Bayesian-

FIGURE 9
Forecast intervals of the QR-Stacking model during sunny days.

FIGURE 10
Forecast intervals of QR-LSTM model during sunny days.

Frontiers in Energy Research frontiersin.org08

Zhang et al. 10.3389/fenrg.2023.1252057

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252057


based TPE optimisation algorithm reduces the number of
computations and time cost by selecting the most promising set
of hyperparameters for the next evaluation. Figure 3 illustrates the
pseudo-code of the TPE optimisation algorithm. The following
section describes in detail the selection criteria for the objective
function and the next set of hyperparameters:

The goal of hyperparameter optimization is to find the value of
the hyperparameter that minimizes the loss of the machine learning
model. It can be expressed as Eq. 11.

s* � argmin
s∈S

f s( ) (11)

where S is the optional hyperparameter space and s* is the best set of
hyperparameters.

The whole concept of Bayesian optimization is to reduce the
number of computations and time cost by selecting the most
promising set of hyperparameters as possible for the next evaluation.
The selection criteria for the next set of hyperparameters is the expected
improvement (EI), which is expressed as:

EIt* s( ) � ∫t*

−∞
t* − t( )p t, s( )dt (12)

where t* is the threshold of the objective function, s is the proposed
hyperparameter, t is the actual value of the objective function when
the proposed hyperparameter s is used, and p(t, s) denotes the agent
probability model.p(t, s) is defined in the TPEmethod, and p(t, s) is
denoted as

p t, s( ) � l s( ) if t< t*
g s( ) if t> t*{ (13)

where l(s) denotes the probability of hyperparameter set s when the
value of the objective function t is less than a threshold value t*, g(s)
denotes the probability of hyperparameter set s when the value of the
objective function t is greater than a threshold value t*.

The EI criteria when using the TPE method can be expressed as
follows.

EIt* s( ) � ∫t*

−∞
t* − t( )p t, s( )dt � ∫t*

−∞
t* − t( )p s, t( )p t( )

p s( ) dt (14)

p(s) can be denoted as p(s) � ∫
R
p(s|t)p(t)dt � gl(s)+

(1 − g)g(s).Let γ � p(t< t*). The final EI can be expressed as
follows.

FIGURE 11
Forecast intervals of QR-GRU model during sunny days.

TABLE 3 Evaluation of the prediction results of each model during sunny days.

Model Confidence levels (%) PICP PINAW WC

QR-Stacking 95 1.000000 0.142233 0.142233

90 0.912281 0.108516 0.118951

85 0.859649 0.095189 0.110731

QR-LSTM 95 1.000000 0.159846 0.159846

90 0.842105 0.107182 0.127279

85 0.789473 0.090057 0.114073

QR-GRU 95 1.000000 0.146956 0.146956

90 0.824561 0.105388 0.127812

85 0.754385 0.093575 0.124041
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EI*t s( ) � γt*l s( ) − l s( )∫t*

−∞p t( )dt
γl s( ) + 1 − γ( )g s( ) ∝ γ + g s( )

l s( ) 1 − γ( )( )−1
(15)

In order to maximize EI, the ratio l(s)
g(s) should be maximized.

Therefore, the expected set of hyperparameters s has a higher
probability under l(s).

Eventually, through continuous iteration, the set of
hyperparameters that can make the objective function achieve the
minimum value is obtained. This set of hyperparameters is the best
hyperparameters for the proposed model.

2.5 Quantile regression-stacking model
optimized using the tree-structured parzen
estimator algorithm for photovoltaic power
interval prediction

In this study a stacking model using an efficient hyperparametric
optimization method for PV power interval prediction is proposed.

Xgboost, LightGBM and CatBoost are used as the base learners. QR-
LSTM is used as a meta-learner. Firstly, three basic learners are used
to independently make predictions of PV power output, which are
able to learn the trend of PV power from historical data. Each basic
learner produces a set of predictions. Then, the prediction results of
these base learners are fed into QR-LSTM to achieve the final
prediction. QR-LSTM further corrects the prediction errors of
the three base learners to improve the prediction accuracy.
Notably, the quantile regression model in the QR-LSTM model is
capable of constructing prediction intervals to quantify the
uncertainty in PV power prediction. By combining the strengths
of these learners, the QR-Stacking model is able to better address the
challenges associated with PV power output fluctuations and more
accurately quantify the uncertainty in PV power forecasts. In
addition to this, the TPE algorithm is also used to search for the
optimal parameters of the base and meta learners to further improve
the interval prediction performance of the model.

The proposed stacking model is illustrated separately in a
training phase and a testing phase.

FIGURE 12
Forecast intervals of QR-Stacking model during rainy days.

FIGURE 13
Forecast intervals of QR-LSTM model during rainy days.
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2.5.1 Training phase
The steps of the stacked model training phase are shown in

Figure 4. The pseudo-code for the training phase of the proposed
model is presented in Figure 5. The 5-fold cross-validation and
TPE parameter optimization methods are used in the training
phase of the proposed stacking model. The details are illustrated
below.

1) The training set is divided into 5 folds.
2) Training the Xgboost model using a 5-fold cross-validation

method and a TPE parameter optimization method. In the
first iteration, the last 4 folds are used for training the model
and the first fold is used for prediction. The obtained prediction
result is P1−fold

Xgboost. In the second iteration, the second fold is used
for prediction and the remaining four folds are used for training.
The obtained prediction result is P2−fold

Xgboost. This process is
repeated until the prediction results are obtained for all
5 folds. Finally, the prediction result obtained by the Xgboost
model is:

PTrain
Xgboost � P1−fold

Xgboost, P
2−fold
Xgboost, P

3−fold
Xgboost, P

4−fold
Xgboost, P

5−fold
Xgboost[ ] (16)

3) Using the same process as (16), the outputs obtained from the
LightGBM and CatBoost models are expressed as follows.

PTrain
LightGBM � P1−fold

LightGBM, P
2−fold
LightGBM, P

3−fold
LightGBM, P

4−fold
LightGBM, P

5−fold
LightGBM[ ]

(17)
PTrain
CatBoost � P1−fold

CatBoost, P
2−fold
CatBoost, P

3−fold
CatBoost, P

4−fold
CatBoost, P

5−fold
CatBoost[ ] (18)

4) The prediction results of the three base learners are merged to
obtain a new training set PTrain

New . The matrix PTrain
New and the

original dependent variable PTrain
Original are used as training data

for the meta-learner.

PTrain
New �

P1−fold
Xgboost P1−fold

LightGBM P1−fold
CatBoost

P2−fold
Xgboost P2−fold

LightGBM P2−fold
CatBoost

P3−fold
Xgboost P3−fold

LightGBM P3−fold
CatBoost

P4−fold
Xgboost P4−fold

LightGBM P4−fold
CatBoost

P5−fold
Xgboost P5−fold

LightGBM P5−fold
CatBoost

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(19)

5) The dimension of matrix PTrain
New is transformed into three

dimensions to satisfy the QR-LSTM model input

FIGURE 14
Forecast intervals of QR-GRU model during rainy days.

TABLE 4 Evaluation of prediction results of each model during cloudy and rainy days.

Model Confidence levels (%) PICP PINAW WC

QR-Stacking 95 0.982456 0.135335 0.137751

90 0.964912 0.110254 0.114264

85 0.894736 0.084793 0.094768

QR-LSTM 95 0.982456 0.152176 0.154893

90 0.912280 0.127719 0.140000

85 0.912280 0.110009 0.120587

QR-GRU 95 1.000000 0.180607 0.180607

90 1.000000 0.148593 0.148593

85 1.000000 0.124890 0.124890
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requirements, and the new matrix PTrain
New 1 is obtained. The

prediction results PTrain
New 1 of the base learners and the training

set PTrain
Original of the dependent variable are fed to the meta-learner

QR-LSTM for training. It is worth noting that the meta-learner
also uses the TPE algorithm for parameter optimization to
exploit its optimal predictive performance.

2.5.2 Testing phase
The detailed flow of the testing phase is shown in Figure 6. The

pseudo-code for the testing phase of the proposed model is
presented in Figure 7. In the testing phase, the test dataset is fed
into the stacking model to implement PV power interval prediction.
It is worth mentioning that the cross-validation strategy is no longer
used in the testing phase and an average strategy is introduced to
deal with the multiple predictions of each base learner. The details
are described as follows.

1) The test set is fed to each base learner for prediction. A 5-fold
cross-validation strategy is used in the training phase, hence for
each base learner five different models are generated after
training. Therefore, each base learner is capable of obtaining
five predictions. The prediction results of each model are as
follows.

PTest
Xgboost � PTest 1

Xgboost, P
Test 2
Xgboost, P

Test 3
Xgboost, P

Test 4
Xgboost, P

Test 5
Xgboost[ ] (20)

PTest
LightGBM � PTest 1

LightGBM, P
Test 2
LightGBM, P

Test 3
LightGBM, P

Test 4
LightGBM, P

Test 5
LightGBM[ ]

(21)
PTest
CatBoost � PTest 1

CatBoost, P
Test 2
CatBoost, P

Test 3
CatBoost, P

Test 4
CatBoost, P

Test 5
CatBoost[ ] (22)

2) The 5 predictions of each base learner are averaged and 3 new
matrices are obtained:

PTest−New
Xgboost � 1

5
∑5
i�1
PTest i
Xgboost, P

Test−New
LightGBM � 1

5
∑5
i�1
PTest i
LightGBM,

PTest−New
CatBoost � 1

5
∑5
i�1
PTest i
CatBoost

.
3) The 3 matrices are combined and used as feed-in data for the

meta-learner. The matrix obtained by merging the matrices is:
PTest
Merge.

PTest
Merge � PTest−New

Xgboost , PTest−New
LightGBM, P

Test−New
CatBoost[ ] (23)

4) The matrix PTest
Merge is dimensionally transformed and fed

into a QR-LSTM model to achieve PV power interval
prediction. PV power prediction results under different
quartiles are obtained. The predicted result is Wi �
[Q̂Pi

(τ1|xi), Q̂Pi
(τ2|xi), . . . , Q̂Pi

(τL|xi)].

3 Evaluation indicators for interval
prediction results

Prediction Interval Coverage Probability (PICP) is an important
statistic for assessing prediction interval reliability, and a larger value
implies that the model predicts a more trustworthy interval.

Prediction interval normalized average width (PINAW) is an
essential statistic for assessing prediction interval accuracy, and a
lower value suggests that the model predicts a more accurate
interval. There is a relationship between PICP and PINAW. In
general, the higher the PICP, the lower the PINAW, indicating that
the model is more confident in the prediction interval.
Simultaneously, there is a contradictory link between PICP and
PINAW. When the prediction interval is large, it is easy to attain
high interval coverage probability. However, prediction intervals
that are too wide cannot provide accurate uncertainty information.

PINAW, PICP andWC indicators are calculated based on Eq. 24
(25) (26), respectively:

PICP � 1/N( ) ·∑N
n�1

Sn (24)

where N denotes the number of data. Sn represents a Boolean
function. The value of this Boolean function takes 1 when the
prediction interval of the model contains the true value,
otherwise, it is 0.

PINAW � 1/ N · E( )[ ] ·∑N
n�1

Pup − Pdown( ) (25)

where N is the total number of data. E denotes the difference
between the maximum and minimum values of PV power. Pup

and Pdown respectively represent the upper and lower bound of the
interval prediction.

There is a conflicting relationship between PICP and PINAW.
Therefore, by combining these two indicators, a comprehensive
evaluation index is proposed. The comprehensive evaluation index
(WC) is calculated using Eq. 26. The smaller theWC value, the more
superior the interval obtained.

WC � PINAW/PICP (26)

4 Case studies

4.1 Data sets

The data used in this study are from a photovoltaic power plant
in Hebei, China. The dataset is sampled at 15-min intervals. The
historical data set includes active power (P), global irradiance (GI),
direct radiation (DI), temperature (T), humidity (H), wind speed
(WS), wind direction (WD), and pressure (P). Most of the nighttime
zero-value data were removed in this study.

4.2 Selection of model input features

It is well known that PV power output is very closely related to
several meteorological factors. In order to improve the accuracy of
PV power prediction, it is usually necessary to filter several
meteorological variables to get the meteorological variables that
show high correlation with PV power output. In this study, the
Kendall correlation coefficient was used for variable correlation
analysis.

The Kendall correlation coefficient is calculated as follows:
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Ken � P − Q
1 /

2*N* N − 1( ) (27)
where P and Q denote the number of harmonious and discordant
quantities, respectively. The denominator of the formula indicates
the total number of pairs of observations.

For comparison and analysis, a heat map was drawn based on
the calculated Kendall correlation coefficients, as shown in
Figure 8. The numbers in this figure characterise the degree of
correlation between the variables. Numbers closer to 1 indicate a
higher degree of correlation, and numbers closer to 0 indicate a
lower degree of correlation. A negative number indicates a negative
correlation.

Figure 8 shows that global irradiance (GI), direct radiation (DI),
wind direction (WD), temperature (T) and humidity(H) are the
main meteorological variables affecting PV output, so these five
variables are chosen as input variables for the model.

4.3 Model parameter setting and data set
division

The hyperparameter search range settings for the base learners
and meta-learner are shown in Table 2. The LSTMmodel consists of
one layer of LSTM network layer, one layer of Dropout layer, and
one layer of Dense layer. The number of neurons of the LSTM
network layer, the dropout rate, and the activation function of the
Dense layer are optimized. The number of neurons in the Dense
layer is 199, i.e., the quantile takes a range of values from 0.005 to 1,
and the step size is 0.005.The optimizer for LSTM model training is
adam, and the batch_size is 48. The epochs for the training of the
LSTM model are set to 150 and an early stopping strategy is used to
avoid the overfitting problem. Each base learner uses a decision tree
model, which runs faster, so its hyperparameter search time is set to
200 s. The number of hyperparameter searches for the meta-learner
model is 100.

The ratio of training set, validation set and test set was 7:2:1.
100 days of data were used in this study. One sunny day and one
rainy day in the test set were selected separately for each model
performance comparison. The model output is the predicted PV
power for the 199 quantile points of the future day. The prediction
interval is constructed by selecting several of the quantile
predictions.

4.4 Predictive performance comparison

In order to evaluate the prediction performance of the proposed
QR-Stacking model, two benchmark models and the QR-Stacking
model are developed in this paper for prediction performance
comparison. The two benchmark models established in this paper
are QR-LSTM and Quantile Regression-Gated Recurrent Unit (QR-
GRU). In order to make a valid comparison, the benchmark models
QR-LSTM and QR-GRU also use the TPE algorithm for parameter
search. The search parameter setting ranges of the benchmark models
QR-LSTM andQR-GRU are kept the same as those of the QR-Stacking
model. To verify the generalization performance of the models, the
prediction performance of the three models under several different
weather conditions is compared and analyzed. It is worth noting that

the prediction performance of eachmodel is compared at 95%, 90% and
85% confidence levels in this study.

4.4.1 Comparison of the prediction performance of
the models during sunny days

The prediction intervals of the three models under sunny
conditions are shown in Figures 9, 10, and 11. Figures 9, 10, and
11 show that the proposed QR-Stacking model has the highest
interval coverage and narrow interval width.

Table 3 evaluates the prediction interval of each model at three
confidence levels using several evaluation metrics. The prediction
interval coverage of all three models at 95% confidence level can
meet the requirements, i.e., the coverage rate is greater than 95%.
However, the prediction interval coverage of the QR-LSTM and QR-
GRU models at 90% and 85% confidence levels cannot meet the
requirements. In terms of PINAW and WC metrics, the prediction
interval of QR-Stacking model can provide narrower prediction
intervals while meeting the interval coverage requirement. At the
95% confidence level, the WC indicator of the prediction interval of
the QR-Stacking model is 11.02% and 3.21% lower than those of the
QR-LSTM and QR-GRU models, respectively. The WC metrics of
the prediction intervals of the QR-Stacking model are 6.54% and
6.93% lower than those of the QR-LSTM and QR-GRU models,
respectively, at the 90% confidence level. At the 85% confidence
level, the WC metrics of the prediction intervals of the QR-Stacking
model are 2.92% and 10.73% lower than those of the QR-LSTM, and
QR-GRU models, respectively.

In summary, the prediction interval of the QR-Stacking model is
best in sunny days.

4.4.2 Comparison of prediction performance of
various models during rainy days

The prediction intervals of the three models for cloudy and rainy
days are shown in Figures 12, 13 and 14. These three plots show that
the prediction interval coverage of the proposed model meets the
requirements and the interval is narrower.

Table 4 evaluates the prediction intervals of each model at three
confidence levels using multiple evaluation metrics. The prediction
interval coverage of the 3 models can meet the requirements of each
confidence level. In terms of PINAW and WC metrics, the prediction
interval of QR-Stackingmodel can provide narrower prediction intervals
while meeting the interval coverage requirement. At the 95% confidence
level, the WC indicator of the forecast results of the QR-Stacking model
is 11.06% and 23.72% lower than those of the QR-LSTM and QR-GRU
models, respectively. At the 90% confidence level, theWCmetrics of the
prediction interval of the QR-Stacking model are 18.38% and 23.10%
lower than those of theQR-LSTMandQR-GRUmodels, respectively. At
the 85% confidence level, theWCmetrics of the prediction interval of the
QR-Stacking model are 21.41% and 24.11% lower than those of the QR-
LSTM, QR-GRU models, respectively.

In summary, the QR-Stacking model has the best prediction
interval during cloudy and rainy days.

5 Conclusion

In this research, a QR-Stacking model with hyperparameter
optimization using TPE algorithm is proposed to improve the
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reliability and acuity of PV power interval prediction. The
conclusions are stated as follows:

1) Kendall correlation coefficient is used to screen several
meteorological features. This method removes the redundant
features of the input data and reduces the complexity of the
model.

2) QR-Stacking model has more superior interval prediction
performance than the two benchmark models QR-LSTM and
QR-GRU.QR-Stacking model can reduce the width of the
prediction intervals while ensuring the coverage of the
prediction intervals. In other words, the prediction intervals
of the proposed model are sharper while satisfying the
reliability. The superior interval prediction performance of the
prediction model is further ensured by using the TPE algorithm
as the hyperparametric search algorithm of the proposed model.
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