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Objective: This study aims to evaluate the accuracy of different modeling
methods and tree structural parameters extracted from airborne LIiDAR for
estimating carbon emissions reduction and assess their reliability as Certified
Emission Reduction (CER) assessment techniques.

Methods: LiDAR data was collected from an afforestation project in Beijing, China.
Various modeling methods, including statistical regression and machine learning
algorithms, were used to estimate biomass and carbon emissions reduction. The
models were evaluated under two schemes: tree-species-specific modeling
scheme (Scheme 1) and all-sample modeling scheme (Scheme 2) using cross-
validation and compared with ground-based estimations and pre-estimated
emission reductions.

Results: Totally, the biomass estimation models in scheme 1 showed better
accuracy than scheme 2. In scheme 1, The Random Forest (RF) and Cubist
models achieved the highest prediction accuracy (R? = 0.89, RMSE = 22.87 kg,
CV RMSE = 52.00kg), followed by GDBT and Cubist, with SVR and GAM
performing the weakest. In scheme 2, Cubist model had the highest accuracy
(R? = 0.75, RMSE = 33.95 kg, CV RMSE = 36.05 kg), followed by RF and GBDT, with
SVR and GAM performing the weakest. LiDAR-based estimates of carbon
emissions reduction were closer to ground-based estimations and higher than
pre-estimated values.

Conclusion: This study demonstrates that LiDAR-based models using tree
structural parameters can accurately assess carbon emissions reduction. The
models outperformed traditional methods in terms of cost and accuracy.
Considering tree species in the modeling process improved the accuracy of
the models. LIDAR technology has the potential to be a reliable assessment
technique for carbon emissions reduction in forestry projects. The pre-trained
models can be used for multiple predictions, reducing the cost of carbon sink
surveys. Overall, LIDAR-based models provide a promising approach for assessing
carbon emissions reduction and can contribute to mitigating climate change.

KEYWORDS

forest emissions reduction, airborne LiDAR, machine learning, tree species, certified
emission reduction

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fenrg.2023.1252882/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1252882/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1252882/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1252882/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1252882&domain=pdf&date_stamp=2023-09-20
mailto:zhukaiwei@tsinghua.edu.cn
mailto:zhukaiwei@tsinghua.edu.cn
https://doi.org/10.3389/fenrg.2023.1252882
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1252882

Qin et al.

1 Introduction

Mitigating climate change relies on Carbon Dioxide Removal
(CDR) (van Vuuren et al,, 2013; Kriegler et al., 2018). To meet the
climate objective of restricting global climate change to 1.5°C-2°C, as
stated by the Intergovernmental Panel on Climate Change (IPCC),
the assessments of most models depend on the large-scale
deployment of CDR technologies, and the dependence on CDR
technologies increases with the delay of the emission peak (Roe et al.,
2019).

Afforestation, reforestation (A/R), and forest management
are important CDR technologies, capturing atmospheric CO,
through forests and sequestering it in biomass. According to the
mitigation measures based on the land sector provided by the
Parties to the Paris Agreement in their Nationally Determined
Contributions, A/R and forest management contribute about
one-third of the emission reduction potential (Roe et al,
2019), thus playing a key role in mitigating climate change. As
a nature-based solution, afforestation provides many ecological
and environmental benefits beyond carbon capture and
sequestration, and therefore has received widespread attention
and has been carried out on a large scale.

A/R and forest management, as a CDR technology, have the
primary risk associated with the accuracy and robustness of forest
emissions reduction assessment techniques. Using the Clean
Development Mechanism (CDM) outlined in the Kyoto Protocol
as an illustration, afforestation/reforestation projects necessitate the
certification of emission reduction (CER) credit quotas throughout
their implementation. A key step is to verify the emission reductions
by combining the carbon sequestration before and after the project
implementation. However, erroneous estimates of emission
reductions may cause the suspension of CERs and mislead the
evaluation of afforestation emission reduction projects for
mitigating the impacts of climate change. Currently, the
traditional carbon emission reduction assessment method is to
carry out field measurements on typical plots of forests at the
single-tree scale, and to model and evaluate the overall emission
reductions according to the emission reductions of the plots with the
same characteristics. However, the traditional method relies on
labor-intensive single-tree measurements, which require a huge
amount of time and labor costs, and its accuracy depends on the
representativeness and quantity of the plot selection. This may lead
to erroneous estimates of carbon emissions reduction, thereby
causing the failure of CDR technologies.

The increasing prevalence of Light Detection and Ranging
(LiDAR) has facilitated the accurate assessment of forest carbon
sinks in recent years. LIDAR sensors can penetrate the forest canopy
within a low-altitude range to extract high-density point clouds,
capturing the morphology of large forest areas and the structural
characteristics representing individual tree structures in a short
period. These structural features are related to the biomass of
trees. Establishing a model linking tree structural parameters and
biomass makes evaluating the biomass and carbon sequestration of
individual tree-scale plots feasible. Therefore, it is very suitable for
assessing the carbon emissions reduction of large-scale afforestation.
A considerable amount of research uses airborne LiDAR to extract
and derive parameters to assess tree biomass and carbon storage. For
example, Gleason and Im (2012) used crown parameters and various
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machine learning methods to predict the above-ground biomass of
forests. Li et al. (2014) used regression statistics and machine
learning modeling methods to estimate the relationship between
the crown parameters extracted by airborne LiDAR and forest
biomass. Lin et al. (2016) used multiple linear regression to
establish the relationship between the tree crown and related
competitive index exported by airborne LiDAR and the above-
ground carbon storage of forests. Nie et al. (2017) employed a
nonlinear correlation to establish the connection between visual
indicators, tree structure parameters derived from airborne LiDAR,
and the above-ground biomass of forests. However, to our
knowledge, no study has yet comprehensively compared the
usability of various models in assessing forest carbon emissions
reduction.

In this study, we evaluated the accuracy of estimating carbon
emissions reduction using tree structural parameters extracted from
airborne LiDAR point clouds with five modeling methods. We
compared the accuracy of these methods as Carbon Emission
Reduction (CER) assessment methods. The modeling methods
Generalized Additive Models, the Cubist method,
Random Forest (RF) algorithm, Gradient Boosted Regression
Trees (GBRT), and Support Vector Regression (SVR). Two
modeling schemes (tree-species-specific modeling scheme and the

include

all-sample modeling scheme) were established to explore the effect
of tree species-specific modeling in forest biomass and carbon
emissions reduction estimation. Our results indicate that all
carbon emission reduction models established by the tree
LiDAR have
significant advantages in carbon emission reduction assessments

structural parameters captured by airborne

compared to traditional methods.

2 Methods
2.1 Study area

The data for this study was obtained from an afforestation
project in Beijing, China, developed in accordance with China
Certified Emission Reduction (CCER) standards (https://www.
The
elaborated on in previous studies. (Qin et al.,, 2022).In brief, the

ccer.com.cn/). relevant specific information has been
project’s geographical coordinates are 39°37'-39°40'N and 115°54’-
115°58'E, encompassing a total area of 311.35 ha (Figure 1). Table 1
provides information on the prominent tree species within the
project area, along with the 60-year crediting emission reductions

achieved by the project.

2.2 LiDAR data

2.2.1 LiDAR data collection and processing

Airborne LiDAR data was collected using an unmanned aerial
vehicle (UAV) equipped with a RIEGL VUX-1LR LiDAR system.
LiDAR data was acquired using this device, the parameters for the
equipment to carry out operations, including pulse rate, beam
divergence, altitude, flying speed, average point density, ranging
accuracy, point cloud horizontal accuracy, and point cloud vertical
accuracy, are all detailed in Table 2.
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FIGURE 1
Location of the study area.

TABLE 1 Summary of the project.
Number of plots

Area

39°400"N.

29°39'57'N

59

311.35 ha

Tree species

60-year crediting emission

Annual crediting emission

Malus micromalus, Amygdalus davidiana, Robinia pseudoacacia, Pinus tabulaeformis, Salix matsudana, Koelreuteria paniculata, Ginkgo

biloba, and Populus tomentosa
190,102 tons CO,e

3,168 tons CO,e

TABLE 2 Characteristics of the LiDAR data collection.

Pulse rate 380 kHz

Beam divergence 0.35 mrad
Altitude 150 m
Flying speed 6 m/s

Average point density 100 points/m*

Ranging accuracy 25 mm
Point cloud horizontal accuracy 15 cm
Point cloud vertical accuracy 10 cm

The processing of Airborne LiDAR data involved four primary
stages. Initially, we cleaned the raw LiDAR data to eliminate noise
using a technique based on the elevation frequency histogram. The
processed point clouds were classified into the ground and non-
ground points using the adaptive triangulation network filter
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algorithm. Following was the generation of a digital terrain
model (DTM) and a digital surface model (DSM) using ground
and canopy points with a 1 m grid size. To eliminate the influence of
topography, the elevation was subtracted from the DTM, resulting in
a canopy height model (CHM) and normalized point clouds.

2.2.2 Individual tree segmentation and LiDAR
metrics extraction

This research detected individual trees from normalized point
clouds using normalized cut (Ncut) segmentation (Shi and Malik,
20005 Reitberger et al., 2009). The process consisted of three key
steps: firstly, identifying local maxima in the Canopy Height Model
(CHM) to gain prior knowledge of tree positions; secondly,
employing Ncut segmentation for initial canopy segmentation;
and finally, the local maximum was replaced with the global
maximum, incorporating canopy shape and a minimum number
of canopy points as constraint conditions. By implementing the
Ncut segmentation method, the leakage rate of individual tree
detection was minimized, ensuring precise identification. These
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TABLE 3 LiDAR feature parameters.

Predictor Notation

variable

10.3389/fenrg.2023.1252882

Description

Height-related

parameter H97, H98, H99
TH, Hmean, HSD, Hev
Point quantity N

outcomes determined the count of individual trees within the
LiDAR data coverage The study area’s
straightforward plantation led to an exceptionally high

airborne area.
segmentation accuracy of 98.6%. (Qin et al., 2022).

After obtaining the point cloud data of each tree by individual
tree segmentation, normalized point clouds of each tree were utilized
to calculate LiDAR feature parameters, serving as proxies for forest
biomass, as presented in Table 3. These were: 1) height-related
parameters, including 10th-99th percentiles of height, tree height
(maximum height), mean height, standard deviation of height, and
coefficient of variation of height; 2) the number of the points.

2.3 Field data collection and processing

Eleven randomly selected plots encompassing the primary tree
species listed in Table 1 were subjected to field measurements. Each
plot ranged in size from 0.02 to 0.04 ha and contained between
20 and 40 trees. A cumulative area of 0.3 ha, including 303 trees, was
chosen to establish species-specific biomass estimation models.
Furthermore, the tree height (TH) and diameter at breast height
(DBH) were manually measured individually.

2.4 Ground-based biomass estimation

The above-ground biomass was calculated by substituting the
measured TH and DBH into the species-specific allometry equation
from the project design document (PDD) (Supplementary Table S1).
The study employed the default root-shoot ratio (Supplementary
Table S1) to convert above-ground biomass to below-ground
biomass, enabling the determination of total tree biomass for all
plots.

2.5 LiDAR-based biomass estimation

To validate the effectiveness of separate modeling of
differentiated tree species in biomass estimation, we designed the
following two schemes: The tree-species-specific modeling scheme
(Scheme 1) and the all-sample modeling scheme (Scheme 2). In
Scheme 1, LIDAR-based biomass estimation models were built at the
tree species level. These models were established from the LiDAR
point cloud metrics and corresponding individual tree biomass for
each tree species. In Scheme 2, LiDAR-based biomass estimation
models were built for all 303 tree samples without tree species
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H10, H25, H30, H40, H50, H60, H70, H75, H80, H85, H90, H95, H96,

10th-99th percentiles of height

Tree height, mean height, standard deviation of height, coefficient of
variation of height

The number of the points

differentiation. Several regression models were used for each of the
two schemes.

2.5.1 Regression model

Regression models include one statistical regression method, a
generalized additive model, and four machine learning models,
including Random Forest, Cubist, SVR, and Gradient Boosting.

(1) The Generalized Additive Model (GAM) is a flexible statistical
modeling technique widely used in forestry data measurement.
It extends the Generalized Linear Model by allowing nonlinear
relationships between the response and predictor variables,
making it ideal for complex forestry data (Wood, 2017).
GAMs have been used to accurately predict forest attributes,
such as tree height, diameter, and biomass (Maltamo et al,
2012). They can also easily handle large datasets, making them a
preferred choice for forest inventory estimation (Hastie and
Tibshirani, 1990). Furthermore, due to their flexibility, GAMs
can be used for other forestry-related tasks, such as disease
detection and species classification (Leathwick et al., 2006).

In our study, GAM was adopted, but considering the strong
collinearity of our radar characteristic parameters, we first calculated
VIF and eliminated the variables with VIF greater than 5.

(2) Random Forest: Random Forest is a powerful machine learning
algorithm extensively used in forestry data measurement. It
operates by constructing a multitude of decision trees during
training and outputting the class, that is, the mode of the classes
or mean prediction of the individual trees (Cutler et al., 2007).
Random Forest has been successfully used to predict various
forestry attributes, such as tree height, diameter, and biomass,
with high accuracy (Prasad et al., 2006). Its ability to handle
high-dimensional data and its robustness to outliers is
instrumental in forest inventory estimation (Liaw and
Wiener, 2002). The algorithm’s inherent feature importance
estimation capability is valuable for identifying significant
predictors in forestry studies.

(3) Cubist: Cubist is a rule-based machine learning algorithm for
constructing predictive models, particularly effective in forestry
data measurement. It excels in handling large datasets, making it
ideal for predicting forest attributes such as tree height, volume,
and biomass. Cubist’s ability to handle nonlinear relationships
and interactions between variables enhances its accuracy in
predicting forest variables (Palmer et al., 2011). Its robustness
and flexibility make it a preferred choice for forest inventory
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estimation, as it can accommodate different data types and
provide interpretable results (Stojanova et al., 2010).

—~
N
=

SVR: Support Vector Regression (SVR) is a powerful machine
learning algorithm for predicting forest measurements in
forestry data. It is based on Support Vector Machines (SVM)
principles but adapted for regression problems. SVR is beneficial
in handling high-dimensional and nonlinear data, making it
ideal for complex forestry datasets. It has been successfully used
in various forestry applications, such as predicting tree height,
diameter, and biomass. The effectiveness of SVR can be
optimized by choosing the appropriate kernel function and
tuning its parameters. Vapnik (1999) proposed the original
SVR algorithm, and subsequent research has demonstrated
its application in forestry (Maltamo et al., 2005; Hudak et al.,
2012; Zhang and Kovacs, 2012).

Consistent with the GAM model, the collinearity of SVR also
needs to be considered, and the input parameters are selected
according to the criterion that VIF is greater than 5.

(5) Gradient Boosting: Gradient Boosting (GDBT) is an advanced
machine learning algorithm effectively applied in forestry data
measurement. It employs an ensemble of weak prediction
models, typically decision trees, to improve the accuracy of
predictions on forest attributes such as tree height, diameter,
and biomass (Moisen et al., 2006). The algorithm’s strength is
minimizing bias and variance, providing more accurate and
reliable predictions (Hastie et al., 2009). Due to its flexibility and
adaptability, Gradient Boosting has been used in various
forestry applications, including forest inventory estimation,
disease detection, and species classification (Cutler et al., 2007).

(6

=

All of the above models were developed in Python sklearn
module. Among them, Random Forest, GDBT, and SVR
algorithms were implemented in sklearn using RandomForest
module, GradientBoostingRegressor module and SVR module,
GAM was implemented in pyGAM library using LinearGAM
module, Cubist was implemented in cubist library using the
Cubist module. In GAM and machine learning algorithms, the
hyperparameters of the model have a direct impact on the
prediction results. Therefore, an optimal set of hyperparameters
should be tuned for each algorithm to obtain the best model
performance. In this study, we employed a grid search technique
to perform hyperparameter tuning automatically. The
hyperparameter tuning process was performed using the
Grid Search CV module in sklearn. The hyperparameter
types, parameter grids and optimal parameters set for each
model are shown in Supplementary Table S4.

2.5.2 Model assessment

This study did the cross-validation in all of the models. Cross-
validation, a widely recognized statistical technique, is crucial in
assessing and comparing the performance of differentalgorithms. It
ensures that each observation can be used for validation
(Refaeilzadeh et al,, 2009). In data mining and machine learning,
empirical and theoretical evidence supports the suitability of k-fold
cross-validation for model evaluation and selection due to its ability
to provide an almost unbiased estimate while eliminating the need
for manual intervention.
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Our study employed 4-fold cross-validation for model training
and validation, adhering to its established efficacy and credibility. To
compare the performance of different models, we compare the
average root mean square error (RMSE), Relative Root Mean
Squared Error (rRMSE) and R-square (R?).

2.6 Assessment of project emissions
reduction

To validate the emissions reduction accuracy stated in the PDD,
this study calculated the biomass carbon stock of the sample species
within the project boundary. This involved summing the single-tree
biomass obtained using the aforementioned methods and
comparing the results with the values reported in the PDD. The
total carbon stock (c) (kg) of the sample species, which can
approximate the cumulative emissions reduction since project
implementation, was derived from the total biomass (b) (kg)
using the default carbon fraction (cf = 0.5) provided by the
IPCC. The relevant calculation methods are in the Supplement
Material.

3 Results

3.1 Biomass estimation results under
different schemes

The results of the model performance under the two schemes,
as well as scatter plots of the predicted and measured values of the
models, are illustrated in Figure 2. As shown in Figure 2, Scheme
1 represents the model trained at the tree species level to estimate
single-tree biomass, with its evaluation accuracy designated as
the assessment accuracy for the total population of single trees.
Based on the R%,, RMSE and CV RMSE of the model cross-
validation results, the RF model achieved the highest
prediction accuracy (R*> = 0.89, RMSE = 22.87 kg, CV RMSE =
52.00 kg), followed by GDBT (R* = 0.85, RMSE = 26.58 kg, CV
RMSE = 49.60 kg) and Cubist (R* = 0.85, RMSE = 26.11 kg, CV
RMSE = 56.51 kg), with SVR (R*> = 0.73, RMSE = 35.08 kg, CV
RMSE = 53.94 kg) and GAM (R? = 0.76, RMSE = 33.42kg, CV
RMSE = 66.91 kg) performing the weakest.

Compared to Schemel, Scheme2, which disregards the
differences in tree species for model training, overall performs
weaker than the tree species-specific models. Among them, the
Cubist model performed the best (R* = 0.75, RMSE = 33.95 kg, CV
RMSE = 36.05 kg), followed by RF (R* = 0.72, RMSE = 35.90 kg, CV
RMSE = 32.37kg) and GBDT (R* = 0.54, RMSE = 46.06 kg, CV
RMSE = 33.55kg), with SVR (R* = 0.33, RMSE = 55.63 kg, CV
RMSE = 37.74kg) and GAM (R* = 0.24, RMSE = 59.29 kg, CV
RMSE = 60.26 kg) once again performing the weakest.

Further comparison of the rRMSE of the model cross-validation
results (Table 4) showed that there were significant differences in the
predictive accuracy between tree species in scheme 1. Apart from the
GAM models, K. paniculata achieved the highest predictive
accuracy among all tree species with the lowest rRMSE (10.2% in
RF, 10.3% in GDBT, 9.6% in Cubist and 12.1% in SVR), while A.
davidiana had the lowest prediction accuracy with the highest
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FIGURE 2

The predictive values and observed values of Scheme 1 and Scheme 2, where RMSE and CV RMSE, respectively represent the overall predictive

accuracy of the model and the predictive accuracy of cross-validation.

rRMSE (79.6% in RF, 81.1% in GDBT, 86.7% in Cubist and 87.5% in
SVR). The rRMSE of most tree species predicted by GAM was close
to 100%, indicating that this model has a significant error for this
study’s data set and method. However, this model did not perform
the worst among all tree species. Its predictive ability for R.
pseudoacacia was higher than SVR. The rRMSE in Scheme 2 was
consistent with the model capability in Scheme 1, but the rRMSE of
GDBT was the lowest (72.0%), better than RF (75.5%), and the worst
performance was still GAM (97.1%).

3.2 Variable importance analysis of the
biomass estimation models

The variable importance of the optimal model was analysed using
the permutation_importance module in the sklearn package.
Permutation_importance is a method that uses a value domain of 0-
1 dimensionless values to indicate the importance of each variable for the
prediction results. In this study, based on the importance values of all
variables in the prediction models, the variables with feature importance
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TABLE 4 rRMSE of the prediction of single-tree biomass for each tree species in the cross-validation of all models in Scheme 1.

Species RF (%) GDBT (%) Cubist (%) GAM (%) SVR (%)
P. tabulaeformis 17.3 19.5 20.6 97.2 17.5
S. matsudana 26.8 27.4 27.9 31.9 26.3
P. tomentosa 32.5 38.2 39.4 99.1 33.1
M. micromalus 16.3 159 13.3 102.5 12.3
A. davidiana 79.6 81.1 86.7 80.0 87.5
G. biloba 353 37.1 40.8 99.2 44.7
R. pseudoacacia 29.6 29.4 34.6 30.7 48.3
K. paniculata 10.2 10.3 9.6 94.1 12.1

TABLE 5 Variable importance of the biomass estimation models in Scheme 1 and Scheme 2.

Algorithm Important variable
Scheme 1 Scheme 2
Random Forest The number of the points (N) 10th percentiles of height (H10)
Cubist N H10
SVR N N
Gradient Boosting N N
GAM N N

greater than 0.1 in the prediction process were selected as important
variables. The important variables of the optimal model of Schemel and
Scheme2 model under each algorithm are shown in Table 5.

As shown in Table 5, the number of points (N) was the most
important variable in all of the biomass estimation models for
Scheme 1. In Scheme 2, the 10th percentile of height (H10) was
the most important variable in RF and GBDT, while N was the most
important in Cubist, SVR and GAM. The results of variable
importance analyses indicated that the number of points had the
most significant effect on biomass estimation, followed by the 10th
relative percentile of height.

3.3 Comparison of carbon emission
reduction estimation results among Scheme
1, Scheme 2, ground-based estimation, and
PDD estimation

In order to be consistent with the categorization of carbon emissions
reduction estimated by PDD, the eight tree species evaluated in this study
were divided into six categories. Among them, M. micro malus and A.
davidiana were classified as other tree species. At the same time, K
paniculata and R. pseudoacacia were merged into one category as R.
pseudoacacia because they belong to the same category.

As shown in Figure 3, in Scheme 1, aside from the GAM and SVR,
all other methods showed high consistency with the results of ground-
based estimation across all categories. The performance of the methods
in Scheme 2 varied among different tree species, with no scheme
maintaining accuracy across all categories. The most unstable among
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them was GAM, which had significant deviations in all categories except
for P. tomentosa. In the overall evaluation of carbon emissions, RF,
GDBT, and Cubist performed the best. The carbon emissions they
estimated were highly consistent with ground-based estimation results
in both Scheme 1 and Scheme 2. However, the results of GAM and SVR
differed from the ground-based estimation results in both schemes.
Nevertheless, all LIDAR-based estimates of emission reductions were
closer to ground-based estimations (Supplementary Table S2), and
higher than those estimated by PDD (Supplementary Table S3).

4 Discussion

For the selected CCER projects, both Scheme 1, targeted at specific
tree species, and Scheme 2, based on all samples, were more accurate
than the estimated emission reduction results, and LiDAR technology
provides a faster sampling method. Therefore, using LIDAR technology
to evaluate CER projects is feasible as an alternative assessment method
for implementing afforestation and reforestation carbon sink emission
reduction projects. The predictions of carbon emission reduction by
Scheme 1 and Scheme 2 were both better than the method adopted by
PDD (Project Design Document). Among all models, RF (Random
Forest) and Cubist performed superiorly in both Scheme 1 and Scheme
2, which is consistent with other research results (Feng et al., 2017; Li
etal, 2018), followed by GBDT (Gradient Boosting Decision Tree) and
SVR (Support Vector Regression). We do not recommend using GAM
for biomass assessment. Although it performs better in the project than
the original plan, it significantly differs from ground-based estimates
(Figure 2).
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TABLE 6 Variance of the root mean square error (RMSE) in cross-validation for Scheme 1 and Scheme 2.

Species RF (%) GDBT (%) Cubist (%) GAM (%) SVR (%)
P. tabulaeformis 70.0 56.0 67.6 183 71.4
S. matsudana 15.6 59.5 87.5 74.3 84.1
P. tomentosa 25.8 20.3 7.7 17.7 48.8
M. micromalus 49.6 74.2 47.8 16.0 50.8
A. davidiana 103.4 624 105.5 135.6 1314
G. biloba 130.2 118.8 133.0 50.1 144.9
R. pseudoacacia 254 51.9 374 113.9 76.3
K. paniculata 98.4 95.4 82.4 10.7 95.3
Total 34.5 52.5 434 352 482

The requirement of single tree biomass prediction for biomass
prediction based on LIDAR data is less than the prediction at the single
tree scale in the prediction scale of carbon emission reduction
accounting. Among them, the best-performing RF model had an
rRMSE of up to 79.6% in the prediction results of the A. davidiana
tree species. However, in assessing carbon emission reduction, the
estimation results of this tree species were very close to ground-
based estimation results. The reason may be that when assessing
carbon emission reduction, the results of all plots will be traced back
to the carbon layer scale. Therefore, it can be regarded as a plot-level
calculation, which may offset the error of single trees in the plot. For
specific tree species, ignoring the plot surveys and model training of the
tree species can also meet the needs of carbon emission reduction
assessment, which will undoubtedly reduce the cost of large-scale
deployment of afforestation and reforestation carbon emission
reduction projects, thereby enhancing the operability of CER projects.

For carbon emission reduction assessment technology, the reliability
and transferability of the model are of great importance. In Scheme
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1 and Scheme 2, the RF models generated based on the training set have
the coefficients of variation of RMSE in S. matsudana, P. tomentosa, and
R. pseudoacacia of 15.6%, 25.8%, and 25.4%, respectively. Considering
the small sample size of the training set, this demonstrates the model’s
high robustness. Therefore, the performance of the RF model has a good
performance in the dimension of transferability, which is consistent with
the conclusions of previous studies (Gleason and Im, 2012; Tompalski
etal, 2019). However, the robustness of the model varies greatly between
different tree species, even within the same model. Among them, P.
tomentosa showed higher robustness in all tree species except SVR, with
the coefficient of variation of RMSE in cross-validation between 7.7%-
25.8%. At the same time, G. biloba and A. davidiana had coefficients of
variation of RMSE over 100% in RF, Cubist, and SVR (Table 6).
However, the prediction accuracy of G. biloba was not the worst
compared to other tree species (Table 4).

Previous studies have also used LIDAR technology and allometric
growth equation to estimate forest biomass. These studies used some
machine learning algorithms and built relatively robust models. Torre-
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Tojal et al. (2022) used a random forest (RF) estimation technique to
estimate forest biomass (Pinus radiata). The models were applied in a
municipality with more than 5,000 ha of the species under study, and
the biomass predictions were compared to those predicted by the
Basque Government. Furthermore, they also used cross-validation to
train and test the RF models (R* > 0.7). Li et al. (2014) used airborne
LiDAR data in Huntington Wildlife Forest, located in Adirondack Park.
They employed seven modeling methods to estimate biomass and
carbon stock. Boosted regression trees performed the best in model
calibration, while support vector regression and ordinary least squares
performed slightly better in model validation. Gleason and Im (2012)
also discussed the estimation of forest biomass using machine learning
approaches and airborne LiDAR data. They focused on evaluating
different models for estimating biomass at both individual tree and plot
levels. Although there are many similar studies, our study innovatively
compares multiple models based on whether tree species are
distinguished and finds that tree species-specific modeling can
greatly improve model accuracy. In the previous study, we used the
ordinary least square method for fitting, and combined with the
findings of this study, distinguishing tree species can indeed greatly
improve the fitting accuracy (Qin et al,, 2022). A possible reason for this
result is that tree species-specific modeling can reduce the error and
uncertainty of forest biomass estimation due to heterogeneity in forest
structure, thus improving the prediction accuracy.

Another highlight of this study is that we not only assessed biomass
but also calculated carbon emissions reduction. Consistent with previous
studies, we used multiple regression models and found that the emissions
reduction estimated using LiDAR for the chosen project was twice as
high as the initial anticipation by the project developers prior to
implementation (Qin et al, 2022). More noteworthy, Scheme
2 adopted in this study does not distinguish tree species, but the
results of carbon sink estimation are still similar to those of Scheme
1 for tree species differentiation. This is of great practical significance for
promoting the use of airborne LiDAR in Forestry Carbon Sequestration
Projects, as the airborne LIDAR alone has been ineffective in identifying
tree species (Sasaki et al,, 2012; Guimardes et al., 2020). These models
exhibit satisfactory precision in sample plots with species-specific field
investigations, and they also have more real advantages over previous
methods in sample plots without species-specific investigations.
Furthermore, the machine learning models established based on
sample plots are reusable and can be well understood and adopted
by forestry professionals for carbon sink measurements. Using these pre-
trained models for multiple predictions significantly reduces the per-
instance cost of forestry carbon sink surveys.

Our study still has some limitations. On the one hand, the samples
we used for machine learning modeling are not large enough, which is
also the reason why our CV RMSE is relatively large. On the other hand,
the collinearity of the covariables of the GAM model is strong, so the
characteristic parameters may be insufficient, which may also be the
reason for the poor performance of GAM.

5 Conclusion

Our results show that all carbon emission reduction models
established by tree structural parameters acquired by airborne
LiDAR have significant advantages compared to traditional
carbon emission reduction assessment methods. Among them,
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the carbon emission reduction assessment model established by
the Species-specified scheme combined with RF performed the best
and most robust assessment method. Based on these results, we
believe that the emission reduction assessment models established
by airborne LiDAR can serve as an alternative to traditional
methods, both in terms of cost and accuracy.
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