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A microgrid is a promising small-scale power generation and distribution system.
The selling prices of wind turbine equipment (WT), photovoltaic generation
equipment (PV), and battery energy storage equipment (BES) have a significant
impact on microgrid profits, which, in turn, affects the planning capacity of
renewable energy. However, existing research has not yet conducted in-depth
modeling and analysis for different kinds of energy generation electricity prices.
This paper proposes an optimal capacity planningmethod for wind-photovoltaic-
storage equipment, considering different energy selling incomes in microgrids.
Stochastic characteristics of renewable energy (WT and PV), selling prices of
different types of energy, and timing coupling characteristic are considered in the
proposed model. In addition, the configuration capacities of WT, PV, and BES are
modeled as discrete decision variables, according to the type of specific
equipment. The comprehensive life cycle cost (LCC) is considered an objective
function. It can be found that the proposed collaborative capacity planning model
is a mathematical programming problem with complex nonlinear constraints and
integer variables. To solve this problem, a cultural gray wolf optimization algorithm
(CGWO) is applied in this paper. The proposed method’s efficiency, convergence,
superiority, and effectiveness are verified through a case study. Moreover, the
impact of different new energy sales prices on capacity planning results is also
revealed in the article.
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1 Introduction

1.1 Background

Global climate change has brought severe challenges to human survival. In the face of
these challenges, China has put forward the “carbon emissions peak” and “carbon neutrality”
policies (Wang Jiayu et al., 2022). The proposed policies insist on green and low-carbon
development, tackling climate change actively. In this context, a novel power system with
renewable energy is proposed as the main body of future power systems. Nowadays, Chinese
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clean energies mainly contain wind and photovoltaic power
generation, which are the most practical approaches and show
great development potential.

In rural areas, industrial parks, or islands, there are often many
distributed photovoltaic (PV) panels, wind turbines (WTs), and
battery energy storage equipment (BES), which constitute a
“microgrid” (Wei et al., 2014). In areas with abundant wind
energy and light resources, how to optimize the capacity of
different energy equipment in the microgrid, improving the
economic profits, enhancing the reliability of the designed
microgrid, and increasing the accommodation rate of clean
energy, is a crucial but complicated problem (Wang et al., 2022b;
Singh and Sharma, 2017).

1.2 Related work

Scholars around the world conducted research on the location
and capacity of distributed generation (DG) in microgrids from
different perspectives. Recent research studies can be summarized
from model formulation and algorithms, as shown in Table 1.

1.2.1 Model formulation
The objective of a microgrid capacity planning model needs to

consider economy, reliability, and environment protection (Kiptoo
et al., 2023). Economic objectives mainly include costs (annual
investment cost, maintenance cost, main grid electricity purchase
cost, equipment operation cost, etc.) and profits (main grid
electricity selling profits, environmental subsidies, etc.) (Yang
et al., 2020a). Reliability objectives include time-based indicators
(SAIDI and CAIDI), frequency-based indicators (SAIFI and CAIFI),
and energy loss-based indicators (EENS). Environment objectives
are related to emissions of greenhouse gases, which depend on the
output of traditional thermal power and renewable energy

accommodation (Wang et al., 2022c). The constraints of a
microgrid capacity planning model should consider the power
flow equation and operation mode. It can be found that the
capacity configuration of a microgrid is a nonlinear, multi-
objective problem with complicated constraints (Singh and
Sharma, 2017).

A cost-based formulation was performed to determine the
optimal size of BES in the operation cost minimization problem
of a MG under various constraints, such as the power capacity of
distributed generators (DGs), power and energy capacity of BES,
charge/discharge efficiency of BES, operating reserve, and load
demand satisfaction (Sharma et al., 2016; Liu et al., 2016),
focused on optimization of the power source capacity in the
microgrid. In addition, a coordinated planning strategy is
proposed with an integrated consideration of the characteristics
of DG, ES, and load. Kiptoo et al. (2019) investigated the prospects of
interlinking a short-term flexibility value into long-term capacity
planning toward achieving a microgrid with a high renewable energy
fraction. A pumped storage power station capacity planning method
based on the full life cycle cost was proposed to describe a new sizing
optimization methodology of a stand-alone hybrid photovoltaic/
wind/battery system, minimizing the levelized cost of energy
(LCOE), the loss of power supply probability (LPSP), and the
equivalent carbon dioxide (CO2-eq) life cycle emission (Xiao
et al., 2020). However, few studies have analyzed the impact of
price (cost and profit) on the capacity allocation of a microgrid and
carried out in-depth sensitivity analysis based on the proposed
model, providing effective guidance for microgrid planners.

1.2.2 Algorithm
Existing solving algorithms of capacity configuration in a

microgrid mainly include traditional analytical mathematical
algorithms and heuristic optimization algorithms (Abou El-Ela
et al., 2022). Some researchers tried to reformulate the original

TABLE 1 Summary of distributed generator planning models.

Reference Investment
cost

Reliability
cost

Main grid
interaction cost

Maintenance
cost

RES sales
profit

Scrapping
profit

Hung et al. (2014) √ √ × × × ×

Khoubseresht et al. (2023) √ √ × × × ×

(Ali et al., 2023; Prakash et al.,
2022)

× √ √ × × ×

Sharma et al. (2016) √ × √ √ √ ×

Liu et al. (2016) √ √ × √ √ ×

(Kiptoo et al., 2019; Borghei and
Ghassemi, 2021)

√ √ × × × ×

Xiao et al. (2020) √ × √ √ √ √

Khemissi et al. (2021) √ √ × × √ ×

Abou El-Ela et al. (2022) √ √ × √ √ ×

Coelho et al. (2016) √ × √ × √ ×

Kiptoo et al. (2023) √ × √ √ × ×

This paper √ √ √ √ √ √
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problem into a typical mixed-integer linear programming (MILP)
with some approximate techniques (Borghei and Ghassemi, 2021;
Kiptoo et al., 2023). Although these kinds of methods can obtain the
optimal solution to the transformed problem, the obtained solution
may have large deviations from practical solutions due to the
approximation. Furthermore, these algorithms cannot
accommodate to various scenarios, hindering their application in
practical engineering. On the other hand, heuristic optimization
algorithms can solve these complicated planning problems
effectively. However, the selection and improvement of heuristic
algorithms based on the variable form and constraint space of the
specific problem is an urgent and promising research area (Coelho
et al., 2016; Yang et al., 2020b).

1.3 Main purpose

From the aforementioned literature review, it can be found that
existing research has not yet conducted in-depth modeling and
analysis for different kinds of energy generation electricity prices,
given that a significant portion of the revenue from microgrid
operators comes from the selling income of renewable energy. In
addition, the selling prices of different types of renewable energy are
different, while existing research studies have not yet modeled,
solved, and analyzed the differences in selling prices of different
types of new energy. Microgrid planners or electricity market price
setters also require corresponding theoretical basis and guidance
when carrying out microgrid planning or setting electricity prices.
Thus, it is necessary to model the differences in the selling prices of
different types of renewable energy and integrate them into the
microgrid planning model.

1.4 Main contribution

To tackle the aforementioned issues, this paper proposes a novel
microgrid capacity planning model and an improved cultural gray
wolf optimization algorithm. The major contributions of this paper
can be summarized as follows:

(1) Novel microgrid capacity planning model. A novel wind-
photovoltaic-storage microgrid capacity planning model
considering comprehensive cost and profits is put forward.
The different selling prices of WT, PV, and BES are
considered in the paper, which is essential for the planning
model.

(2) Improved cultural gray wolf optimization (CGWO) algorithm.
An improved cultural gray wolf optimization algorithm
(CGWO) is proposed to solve this problem efficiently.
Compared with other heuristic optimization methods, the
proposed method outperforms in convergence and
calculation time when solving the proposed model.

(3) Impact of different energy sale prices and investment costs. The
influence of different selling prices of WT, PV, and BES, and the
investment cost of BES on the microgrid planning scheme is
analyzed. The proposed model mainly focuses on the impact of
the change in the electricity selling price on the planning results,

which is conducive to microgrid planners to analyze the
feasibility of the planning scheme from a new perspective.

1.5 Structure

The remainder of this paper is organized as follows: In Section 2,
the overall architecture of collaborative capacity planning in a
microgrid is presented. In Section 3, a capacity planning model
of WT, PV, and BES in the microgrid is established. In Section 4, the
solution algorithm CGWO is introduced. Subsequently, the testing
of the proposed methods and the sensitivity study are presented in
Section 5. Finally, conclusions and practical suggestions are
summarized in Section 6.

2 Optimal capacity planning model of
wind-photovoltaic-storage equipment
in a microgrid

2.1 Architecture of collaborative capacity
planning in a microgrid

Future smart DS will include various types of novel loads and
DGs, including wind WT, PV, BES, and user load. From the
perspective of optimal planning, DS planners should coordinate
reliability and DS costs through an optimal design of the equipment
capacity to accommodate these loads and DGs. Figure 1 shows the
planning task of capacity planning in a microgrid.

The total objective function F of capacity planning of wind and
solar storage equipment in the microgrid is formulated as follows.

F � CInv + CEENS + CBuy + CMain( ) − ISell + IDrop( ), (1)

where F represents the comprehensive cost of the designed
microgrid system. The objective function of this paper is to
minimize the comprehensive cost of wind-photovoltaic-storage
equipment in the microgrid system, which contains cost and
profits. The cost of the capacity planning model includes the cost
of equipment investment in the microgrid (WT, PV, and BES) CInv,
cost of expected energy not supplied (EENS) CEENS, cost of
electricity purchased from the main grid CBuy, and cost of

FIGURE 1
Framework of collaborative capacity planning in a microgrid.
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equipment maintenance CMain. In addition, the profits of the
designed microgrid system are composed of the profits obtained
from selling electricity ISell and the scrapping of equipment IDrop.

2.2 Annualized cost of investment

In the process of microgrid planning, the investment and
construction cost of each piece of equipment (WT, PV, and BES
in this paper) occupies an important part, which is shown as follows:

CEQ
Inv � SEQpEQ

Inv

r

1 + r( )TEQ − 1
, (2)

where CEQ
Inv represents the investment cost of different equipment,

including WT, PV, and BES. The investment and construction costs
of each piece of equipment are closely related to the capacity of the
equipment SEQ. In addition, pEQ

Inv represents the investment and
construction costs per unit capacity of WT, PV, and BES.

2.3 Annual cost of outage compensation

If a power outage occurs due to insufficient power supply, the
microgrid operator needs to compensate the corresponding users. In
the planning and design of a high-reliability microgrid, it is
necessary to consider the annual outage compensation cost of the
microgrid, which can be written as follows:

CEENS � kEENSEENS, (3)
ΔPun

t � Dt − PW
t − PS

t − SOCt − SOC min( ), (4)
EENSt � ΔPun

t − Ptie,max
t ;ΔPun

t >Ptie,max
t , (5)

EENS � ∑
t

EENSt( ), (6)

where the annual outage compensation cost of planned equipment
CEENS is related to the annual shortage of power supply EENS and
power outage cost coefficient kEENS. Based on the power balance
equation, the unbalanced power ΔPun

t is the part that is still
insufficient after the wind, solar, and storage power output, as
shown in Eq. 4. Then, the power shortage EENSt occurs at the
current time t when the maximum power obtained from the main
grid is added, which is shown in Eq. 5. Eq. 6 considers the power
outage under all operating scenarios.

2.4 Annual cost of electricity purchased
from the main grid

If the wind and solar storage resources are insufficient, the
microgrid needs to purchase electricity from the main network to
meet the load demand of the whole microgrid. The annual cost
calculation formula of purchasing electricity from the main network
is as follows:

CBuy � kbuyP
buy
t , (7)

Pbuy
t � 0; ΔPun

t ≤ 0
ΔPun

t ; ΔPun
t > 0

{ , (8)

where the annual cost of power purchase of the main grid CBuy is
related to the power obtained through the tie line/main grid Pbuy

t

and price coefficient of power purchase from the main grid kbuy.
When the unbalanced power ΔPun

t at time t is less than 0, it means
that the current power of the microgrid is enough to be balanced by
wind and solar storage in the microgrid. In this situation, there is no
need to purchase electricity from main network, and the purchased
power is 0 at this time. When the unbalanced power ΔPun

t at time t is
greater than 0, it means that the current wind and solar storage
resources of the microgrid cannot meet the load demand in the
microgrid. In this situation, it is necessary to purchase electricity
from the main network at this time, and the purchased power of this
part is Pbuy

t .

2.5 Annual cost of equipment maintenance

The equipment invested and built by the microgrid needs to be
operated and maintained in its life cycle. The specific calculation
formula of the cost required for this part is as follows:

CEQ
Main � SEQpEQ

Main

r

1 + r( )TEQ − 1
, (9)

where CEQ
Main represents the maintenance cost of WT, PV, and BES.

Themaintenance cost of each piece of equipment is closely related to
the capacity of the equipment, SEQ. In addition, pEQ

Main represents the
maintenance cost per unit capacity of WT, PV, and BES.

2.6 Annual profit of electricity sales

The microgrid can exchange energy with the main grid through
the main grid bus, which can gain profits if the microgrid has extra
power. The calculation formula of annual electricity sales income
ISell of the microgrid, including the wind-photovoltaic-storage, is
mainly composed of electricity sales income of wind power,
photovoltaic, and battery energy storage.

ISell � pWPW
Sell,t + pSPS

Sell,t + pBPB
Sell,t, (10)

where ~pW, ~pS, ~pB are the electricity sales prices of WT, PV, and BES,
respectively. PW

Sell,t, P
S
Sell,t, andP

B
Sell,t are the sales power of WT, PV,

and BES, respectively.
To calculate the wind selling power at each time, it is necessary

to calculate the wind power PW t.

PW
t �

0; wt ≤wc

SW wt − wc( )/k; wc ≤wt ≤wr

SW; wt ≥wr

⎧⎪⎨⎪⎩ , (11)

where PW
t is the wind power, related to the wind speed at each time.

If the wind speed wt at the current moment is less than the cut-in
wind speed wc, the wind power cannot be output. If the current wind
speed wt is between the cut-in wind speed wc and the cut-out wind
speed wr, the generated power can be calculated from a linear
expression related to the wind speed and the capacity of WT. If
the current wind speed wt is greater than the cut-out wind speed wr,
the rated capacity SW of WT is considered in this paper.

The calculation of solar power PS t is formulated as follows:
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PS
t � SSITt, (12)

where PS
t is the photovoltaic power generation related to the planned

capacity of solar power generation equipment SS and the radiation
intensity of current illumination ITt.

The renewable energy modeling in this paper considers the wind
speed and irradiance in the planning area, establishes a
mathematical relationship between wind or solar resources and
power output under a given new energy installation capacity, and
combines typical power output curves of wind and solar energy to
construct a scenario-based modeling method.

This paper assumes that renewable energy is preferentially
consumed in the system. Therefore, the power shortage at the
current time ΔPt can be expressed as follows.

ΔPt � PW
t + PS

t −Dt. (13)
It can be found that if ΔPt is greater than or equal to 0, indicating

that the current wind power generation power PW
t and the

photovoltaic power generation power PS
t are sufficient to supply

the load Dt, the surplus power at the current time can be provided to
the energy storage equipment for charging. If ΔPt is less than 0, the
current wind power generation power PW

t and photovoltaic power
generation power PS

t cannot meet the current load Dt demand and
need to be provided by the energy storage system.

SOCt is the remaining capacity of the energy storage equipment
at the current time, which is related to the capacity of the energy
storage equipment. The minimum value of SOCt is 30% of the
planned capacity of BES. The maximum value of SOCt is the value
corresponding to the planned capacity of BES. In particular, the
remaining capacity of the energy storage device needs to be limited
between the maximum and minimum values of the remaining
capacity.

SOCt � SOC max; SOCt ≥ SOC max,
SOC min; SOCt < SOC min,

{ (14)

SOCt � SOCt−1 + ΔPt−1Δt, (15)
where SOCt at the current time is the SOC at the previous time t-1
plus the charge/discharge power at the previous time. Then, the
charge/discharge power of battery energy storage is expressed by the
following formula.

PB
Sell,t � SOCt − SOCt−1; SOCt ≥ SOCt−1,

PB
Charg e,t � SOCt−1 − SOCt; SOCt < SOCt−1.

{ (16)

If the SOC at the current moment is larger than the SOC at the
previous moment, the BES in the microgrid is in discharge and sells
power to the main grid. Conversely, if the SOC at the current
moment is larger than the SOC at the previous moment, the BES in
the microgrid is in charge.

Pc,max
t � Dt + Ptie,max

t + PB
t , (17)

PMAR
t � PW

t + PS
t − Pc,max

t , (18)
where Pc,max

t is the maximum consumable power at time t, Ptie,max
t is

the maximum power of the tie line at time t, and PB
t is the battery

energy storage power at time t. It can be found that the maximum
consumable power Pc,max

t at time t is composed of the load Dt, the
maximum power of tie line Ptie,max

t , and the battery discharge power

PB
t at the current time. PMAR

t is the remaining power margin after
consuming wind power and photovoltaic, and its value is the surplus
of wind power output PW

t and photovoltaic output PS
t after

deducting the maximum consumable load power Pc,max
t .

Combined with the power margin and the maximum
consumable power calculated previously, the actual sales power
of WT and PV can be calculated, which are shown as follows:

PW
Sell,t � PW

t ; PMAR
t ≤ 0,

PW
t PW

t + PS
t( )/Pc,max

t ; PMAR
t > 0,

{ (19)

PS
Sell,t � PS

t ; PMAR
t ≤ 0,

PS
t PW

t + PS
t( )/Pc,max

t ; PMAR
t > 0.

{ (20)

Therefore, when the residual power margin is less than 0, WT
and PV power are the actual output power. If the power margin is
greater than 0, WT and PV power can only be consumed
proportionally.

2.7 Annual profit of equipment scrapping

Another part of the income of the wind-photovoltaic-storage
microgrid comes from the scrapping income of wind-photovoltaic-
storage equipment, and the specific calculation formula is as follows:

IDrop � IWDrop + ISDrop + IBDrop, (21)
IEQDrop � SEQpEQ

Drop

r

1 + r( )TEQ − 1
, (22)

where the annual scrapping income of planned equipment consists
of the scrapping income of WT IWDrop, the scrapping income of PV
ISDrop, and the scrapping income of BES IBDrop. The coefficient r is the
discount rate. TEQ are the life cycles of WT, PV, and BES,
respectively. pEQ

Drop represents the scrapping income per unit
capacity of WT, PV, and BES.

3 Improvement in the cultural gray wolf
optimization algorithm

The aforementioned problem is a planning model with complicated
constraints and variables. It contains a large number of logical judgment
constraints, which is intractable to most mathematical solvers.
Furthermore, the traditional optimization algorithm has slow
convergence speed. In addition, traditional mathematical optimization
methods, such as branching-and-cut or cutting plane methods, need to
approximate the non-convex and nonlinear parts, transforming the
model into a tractable form of MILP. Although the precise solution of
the model can be obtained, there is still some deviation between the
transformed model and the original model. In this situation, the
advantages of the heuristic optimization algorithm are more prominent.

This paper improves the GWO algorithm (Mirjalili and Seyed
Mohammad Mirjalilib, 2014) and proposes an improved CGWO
algorithm, which is suitable for the capacity planning model of wind-
photovoltaic-storage equipment in themicrogrid. The proposed CGWO
algorithm enhances the gray wolf optimization method to effectively
solve the capacity planning problem and optimize the performance of
wind-photovoltaic-storage equipment in microgrids.
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A traditional GWO algorithm is based on the classification of
wolves. The weight of wolves with a high level is higher, and the weight
of wolves with a low level is lower. The search range and target of
different wolves are different. Finally, the search information on
different wolves is summarized and synthesized, and the optimal
search mode of the whole wolves is given. The framework of this
algorithm is presented in Figure 2.With the iteration, the search range is
continuously narrowed to achieve the optimal position. However, the
iterative update mode of the traditional gray wolf optimization
algorithm in the evolution process adopts the linear decreasing
strategy to shrink, and the convergence factor calculation formula of
the traditional gray wolf algorithm is as follows:

a � 2 1 − l

T
( ), (23)

where a is the convergence factor, l is the current iterative algebra,
and T is the total number of evolutionary iterations.

Inspired by particle swarm optimization, slowing down the
convergence rate of the convergence factor can enhance its global
search ability and prevent the algorithm from falling into the local
optimal solution. Therefore, to improve the global performance of
algorithm contraction, this paper proposes a new convergence factor
updating method based on exponential law change:

a � 2 exp −l /T( ), (24)

The convergence factor a will decrease in the form of a negative
exponent, and its decreasing speed is lower than that of the linear
decreasing strategy.

Second, to better carry out the global search and consider the
performance of local utilization (the basic idea of the greedy algorithm),
this paper proposes an adaptive search strategy, which makes the
algorithm still attach importance to the role of the first wolf (α
wolf), but at the same time, it does not take the average value of the
positions of the three wolves. The specific expression is as follows:

X l + 1( ) � X1 + X2 + X3

3
1 − l

T
( ) + X1

l

T
, (25)

where X1 is the position of the αwolf, X2 is the position of the β wolf,
and X3 is the position of γ wolf, which indicates the central position
of the population after evolving from the previous generation to the
next generation.

In addition, a better initial solution can significantly
improve the initial search performance. Therefore, this
paper is inspired by the cultural gene optimization
algorithm to give full play to the global search performance
of the genetic algorithm (GA). Before starting iteration, the
initial solution is generated blindly and randomly. First, the
high-quality initial solution is obtained based on GA, and then,
the evolutionary iteration is carried out based on the gray wolf
optimization algorithm.

The steps of the improved gray wolf optimization algorithm are
summarized, as shown in Figure 3.

4 Case study

The following will be combined with the actual solution example
for analysis, based on MatlabR 2020a. The processor parameter of
the computer is Intel(R) Core(TM) i7-8565U CPU @ 1.80 GHz,
1.99 GHz.

4.1 Model parameter description

This paper takes a microgrid as a simulation example. Then,
8,760 h of the actual load demand in the microgrid, the wind speed,
and the light intensity of the microgrid in a year for this area are
collected and uploaded in Liang et al. (2023).

FIGURE 2
Framework of gray wolf optimization (GWO).
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4.2 Algorithm parameter setting

Before solving the model based on the heuristic/meta-heuristic
optimization algorithm, it is necessary to set the memory of each
parameter involved in each algorithm. In order to ensure the
comparability of the algorithms, each heuristic optimization

algorithm sets the same parameters in the population number
and iteration times, and other algorithms determine the optimal
parameter settings according to the grid search method (Bergh and
Engelbrecht, 2003; Baker and Ayechew, 2003). The specific
parameter settings of each algorithm are shown in Table 2;
Table 3; Table 4; Table 5; Table 6.

4.3 Comparison of different optimization
algorithms

To verify the convergence and convergence speed of the
improved CGWO algorithm proposed in this paper, it is
compared with PSO (Prakash et al., 2022), GA (Wang et al.,
2022c, WOA (Singh and Sharma, 2017), and GWO algorithms
(Ali et al., 2023). The convergence curves and convergence times
of different algorithms are shown in Figure 4; Figure 5.

By usingMATLAB, CGWO can converge to the optimal value of
-1.1908 * 106 yuan at a faster speed. To verify the optimality of the
convergence objective, this paper increases the number of
population searches and iterations of other heuristic optimization
algorithms and finally converges to the same objective function
value. Therefore, it can be considered that the convergence value is
the optimal objective function value of the wind-photovoltaic-
storage microgrid planning model, and the specific decision
variables obtained by the convergence of different algorithms are

FIGURE 3
Framework of cultural gray wolf optimization (CGWO). (i)
Initializing CGWOparameters, including the population number N and
total iteration times T. (ii) Giving full play to the global optimization
ability of GA, the initial solution is obtained by a genetic principle,
and the initial gray wolf population is generated. (iii) Calculating the
fitness function of each level of gray wolf in the population. For the
calculation of fitness function in this paper, refer to the objective
function of the optimal capacity planning model of wind and solar
storage equipment in the microgrid, which is presented in Eq. 1. After
the calculation, the fitness function of different gray wolves and its
corresponding position (the value of decision variables) were
recorded. (iv) Judging whether the condition of algorithm termination
is met. For example, whether the algebra of convergence iteration is
reached or not, the optimal solution does not change in K iterations. If
the termination condition is satisfied, the optimal solution of the cycle
output is proposed, and the optimal capacity planning scheme of
wind-photovoltaic-storage equipment in the microgrid is obtained;
otherwise, step (v) is performed. (v) The convergence factor a is
calculated according to Eq. 24. (vi) The gray wolf population was
sorted, and the gray wolf level was divided into three levels. (vii) The
center position of the evolved population is obtained based on
Formula 25, and it is checked whether the center position of the new
population violates the relevant constraints of the model. If the
constraint is violated, it is compressed to the boundary. (viii) The
number of iterations plus 1, that is, l = l+1, return to step (iv).

TABLE 2 Parameter setting of particle swarm optimization (PSO).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

C1 Learning factor 1 2.0

C2 Learning factor 2 2.0

vmax Maximum speed 0.8

vmin Minimum speed 0.1

TABLE 3 Parameter setting of the genetic algorithm (GA).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

Pc Crossover rate 0.8

Pm Variation rate 0.05

TABLE 4 Parameter setting of the whale optimization algorithm (WOA).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50
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395.8956, 397.6725, and 864.0066. The calculation time of different
algorithms can be completed within 15 s, the solution efficiency can
meet the requirements of planners for planning and design, and the
efficiency is much higher than that of the manual scheme design and
index comparison.

In this case study, the performance of several optimization
algorithms to solve the planning model is compared. The key
findings are as follows:

(1) PSO produced average initial solutions, eventually converging
to a local optimal solution. PSO’s optimization time was
moderate, but its performance was sensitive to parameter
settings, making it less adaptable and robust.

(2) GA had poor initial solutions and convergence speed, but its
diverse and global solutions made it a valuable component of the
improved GWO, which combined GA with the stable and
powerful optimization performance of GWO.

(3) WOA had better convergence and shorter calculation times
compared to PSO. It is a meta-heuristic algorithm that is easier
to apply and understand than PSO.

(4) CGWO outperformed all other algorithms in convergence
speed and actual calculation time. Its combination of cultural
genes enabled high-quality solutions to evolve and converge
quickly.

To further verify the convergence of the algorithm, different
optimization algorithms were repeated 20 times, and the curves were
plotted in a boxplot, as shown in Figure 6. It can be found that
CGWO has the best convergence, both in terms of the fluctuation of
the boxplot (length of the boxplot) and the mean value of the
boxplot, which are superior to other algorithms. Therefore, it can be

TABLE 5 Parameter setting of the gray wolf optimization algorithm (GWO).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

TABLE 6 Parameter setting of the improved cultural gray wolf optimization
algorithm (CGWO).

Parameter Name Value

N Population number 50

G Maximum number of iterations 50

Pc Crossover rate 0.8

Pm Variation rate 0.05

FIGURE 4
Convergence curves of different optimization algorithms.

FIGURE 5
Calculation time of different algorithms.

FIGURE 6
Box diagram of convergence values for different optimization
algorithms.
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concluded that the algorithm proposed in this paper has better
convergence compared to other optimization algorithms.

4.4 Sensitivity analysis of the model

4.4.1 Electricity price sensitivity analysis of different
types of generators
4.4.1.1 Sensitivity analysis of wind power selling prices

The sensitivity analysis of different wind power sales prices is
performed and shown in Figure 7. A sensitivity analysis was
conducted on wind power sales prices by multiplying the
reference price with corresponding electricity price coefficients
ranging from 0.5 to 1.5 in increments of 0.05.

Based on the findings presented in Figure 7, it can be inferred
that an increase in the selling price of wind power will lead to an
increase in the planned capacity of wind power equipment. When
the electricity price coefficient exceeds 1 p. u., the planned capacity
of wind power equipment increases, while the planned capacity of
photovoltaic and energy storage equipment decreases. However, due
to the ability of energy storage to smooth fluctuations, a certain
capacity of energy storage equipment is still necessary.

4.4.1.2 Sensitivity analysis of solar power selling prices
The sensitivity analysis of different selling prices of photovoltaic

power generation is performed, and the results are shown in
Figure 8.

When revenue from photovoltaic electricity sales increases, it
often leads to an increase in the construction of photovoltaic
equipment. However, if the revenue from photovoltaic electricity
sales continues to remain high, it may result in a decrease in the
construction of wind power equipment and an increase in the
construction of energy storage equipment. This is because high
revenue from photovoltaic electricity sales may make wind power
projects less financially attractive, and energy storage equipment
becomes more important to balance the intermittency of renewable
energy sources, such as wind and solar energy. Therefore, it is

important to consider the overall energy mix and the balance
between different renewable energy sources and energy storage
technologies to ensure a sustainable and reliable energy system.

4.4.1.3 Sensitivity analysis of storage power selling prices
The sensitivity analysis is conducted on the selling price of

different energy storage power generation, and the results are shown
in Figure 9.

When the revenue generated by selling electricity from energy
storage equipment increases, it incentivizes the expansion of the
energy storage construction capacity. However, as the cost of selling
electricity from energy storage equipment increases to a certain level,
it may become more expensive to rely solely on energy storage to
meet the load power demand. At this point, there may be an
increased incentive to expand the construction capacity of
photovoltaic equipment to help supplement the energy supply
and lower costs.

FIGURE 7
Optimal equipment capacity for different wind power selling
prices.

FIGURE 8
Optimal equipment capacity for different solar power sale prices.

FIGURE 9
Optimal equipment capacity for different battery storage power
selling prices.
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4.4.2 Sensitivity analysis of the BES investment cost
The sensitivity analysis of investment and construction costs of

different energy storage equipment is performed, and the results are
shown in Figure 10.

Figure 10 demonstrates that a decrease in the investment cost of
energy storage equipment results in a significant increase in its
optimal planning capacity. This is because energy storage plays a
vital role in stabilizing power fluctuations within a microgrid. As
such, a reduction in the construction cost of energy storage
equipment incentivizes its greater utilization and expansion
within the system.

4.4.3 Discussion on the costs and benefits
Through sensitivity analysis, the costs and benefits of different

types of renewable energy on the planning results can be
summarized as follows:

①With the increase in the WT selling price, the WT installation
capacity increases. In comparison to PV selling prices, the
advantage of WT will squeeze out some of the PV installation
capacity. However, due to the greater uncertainty of WT
fluctuations compared to PV, the WT installation capacity
rapidly decreases when the selling price is below 1 p. u.

② With the increase in the PV selling price, the PV capacity
increases to a certain extent, but after reaching a certain
point, PV also needs some energy storage support and will
not increase further. In comparison to WT selling prices, the
advantage of PV will squeeze out some of the WT
installation capacity. Since the output of PV is relatively
regular (high radiation intensity at noon and low radiation
intensity at other times), the PV installation capacity is
replaced by the WT installation capacity only when the
price is below 0.8 p. u.

③ BES plays an important role in suppressing the volatility and
uncertainty of wind and solar energy. Therefore, when the
electricity price for energy storage and sales decreases, it is
necessary to retain a certain degree of installed energy storage
capacity to promote the consumption of wind and solar

resources. When the electricity price for energy storage and
sales increases, the efficient combination of energy storage
and photovoltaic will show “bundled growth.”

5 Discussion and limitations

5.1 Advantages and disadvantages of the
proposed method

The advantages of the proposed method for considering the
selling income of renewable energy in microgrid capacity planning
are summarized as follows:

(1) One of the key advantages of the proposed approach is its
ability to capture the impact of varying electricity prices on
microgrid capacity. By incorporating dynamic pricing
models, different scenarios and the capacity planning
solution can be obtained and analyzed. This allows
microgrid operators to make more informed decisions and
maximize their revenue potential.

(2) Another advantage is that the proposed method considers
distributed power generation, which aligns with the growing
trend of renewable energy integration in microgrids. By
incorporating the revenue from selling excess power back to
the grid, the deployment of DGs is incentivized.

(3) The proposed optimization algorithm is stable and has good
convergence effect. Compared with traditional mathematical
methods, such as branch-and-cut or cutting plane methods, the
proposed algorithm can be applied easily to provide several
satisfactory solutions for planners to select.

However, certain limitations are summarized as follows.

(1) Real-time volatility of electricity prices has not been considered.
The uncertainties associated with price forecasting can indicate
potential risks in the process of microgrid capacity planning. In
future research, the uncertainty of prices can be accurately
characterized through distributionally robust optimization
(DRO) and integrated with the optimization model, fully
considering the impact of price volatility on capacity
planning (Zhou et al., 2021).

(2) Although feasible solutions can be provided, the optimal
solution of the model cannot be guaranteed. Due to the non-
convex and nonlinear nature of the proposed model, it can only
be solved with the meta-heuristic optimization algorithm.

5.2 The potential impact of the
communication mechanism

The intensity of communication among components has a
significant impact on the microgrid system structure (Górski,
2022; Menniti et al., 2022). It is crucial to consider the area of
information exchange, messaging patterns, and technologies
employed. The use of messaging patterns in microgrid systems
has gained significant attention due to their ability to facilitate
efficient communication and coordination among various

FIGURE 10
Optimal equipment capacity of different energy storage
equipment investment construction cost.
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components. Górski (2022) provided valuable insights into the
use of messaging patterns in different domains. By leveraging
messaging patterns, microgrid components can exchange
information in a standardized and reliable manner, enabling
effective coordination and control. Menniti et al. (2022)
presented experimental use cases that highlight the potential
of enabling technologies in energy communities. These
technologies can be leveraged in microgrids to enhance
information exchange, such as advanced metering
infrastructure, smart sensors, and real-time data analytics.

Therefore, if the communication between different microgrids
and the communication range constraints between different types of
devices are considered, it may influence the planning result of the
microgrid equipment capacity.

6 Conclusion

This paper proposes a capacity planning model for wind-
photovoltaic-storage equipment in microgrids and solves the
model using the CGWO algorithm. The paper presents the
following conclusions.

(1) This paper analyzes the whole life cycle costs and profits that
need to be considered in the planning of wind-photovoltaic-
storage equipment in a microgrid. Then, a capacity planning
model of wind, photovoltaic, and storage equipment
considering LCC and profits in the microgrid is established.
In terms of life cycle cost, annualized investment cost, annual
power outage compensation cost, annualized main grid
purchase cost, and annualized equipment operation and
maintenance cost are considered. In terms of profits of the
system, the electricity sales income and scrapping income are
considered.

(2) CGWO is applied to solve the proposed model efficiently. From
the simulation results, it can be seen that CGWO improves the
solution efficiency and convergence characteristics without
increasing too much computational complexity. In addition,
the robustness and adaptability of the algorithm are obviously
improved compared with the traditional heuristic optimization
algorithms.

(3) Sensitivity analysis on electricity selling price and energy storage
investment and construction cost in the model are conducted to
analyze the influence of electricity selling price and energy
storage construction cost on the planning scheme. Case
studies reveal the impact of the planned capacity of WT, PV,
and BES increases in varying degrees when the selling price of
different equipment decreases. In addition, microgrid planners
will rapidly increase the proportion of BES investment when the
investment cost of BES decreases.

Future research can investigate the integration of multiple
energy resources, dynamic demand response, multiple microgrid
interaction, and digital techniques and their impact on the capacity
planning of microgrid equipment. Additionally, uncertainty
optimization algorithms that can accurately depict load,
renewable energy, and electricity price fluctuations will be further
studied and applied in depth (MirjaliliSeyedaliLewis, 2016).
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Nomenclature

Variables

F Comprehensive cost of the designed microgrid system

CInv Cost of the capacity planning model includes cost of equipment investment in the microgrid (WT, PV, and BES)

CEENS Cost of expected energy not supplied (EENS)

CBuy Cost of electricity purchased from the main grid

CMain Cost of equipment maintenance

ISell Profits of selling electricity from the designed microgrid system

IDrop Profits of the scrapping of equipment from the designed microgrid system

IWDrop/I
S
Drop/I

B
Drop Profits of the scrapping of WT/PV/BES

CEQ
Inv

Investment cost of WT, PV, and BES

SEQ Capacity of WT, PV, and BES

CEQ
Main

Maintenance cost of WT, PV, and BES

PEQ
Main

Maintenance cost per unit capacity of WT, PV, and BES

EENSt Power shortage at time t

EENS Annual shortage of power supply

ΔPun
t Unbalanced power at time t

PW
t /PS

t Wind power/solar power generation power at time t

SOCt Energy storage value at time t

Pbuy
t

Power obtained through the tie line/main grid at time t

PW
Sell,t /P

S
Sell,t /P

B
Sell,t Sales power of WT/PV/BES at time t

PB
Charge,t Charging power of BES at time t

SW/SS Planned capacity of wind power/solar power generation equipment

ΔPt Power shortage at time t

Pc,max
t Maximum consumable power at time t

PB
t Battery energy storage power at time t

PMAR
t Remaining power margin at time t

X1/X2/X3 Position of α wolf, β wolf, and γ wolf

X (l+1) Position of the next wolf

Parameters

PEQ
Drop

Investment cost per unit capacity of WT, PV, and BES

r Discounted rate

PEQ
Inv

Investment and construction cost per unit capacity of WT, PV, and BES

TEQ Life cycle of WT, PV, and BES

kEENS Power outage cost coefficient

~pW , ~pS , ~pB Electricity sales prices of WT, PV, and BES

Dt Load at time t

kbuy Price coefficient of power purchase from the main grid

ITt Radiation intensity of illumination at time t

SOCmax/SOCmin Maximum/minimum energy storage value
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Ptie,max
t Maximum power of the tie line at time t

wt Wind speed at time t

wc/wr Cut-in wind speed/cut-out wind speed

a Convergence factor

l Current iterative algebra

T Total number of evolutionary iterations
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