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Short-term wind power
prediction based on anomalous
data cleaning and optimized
LSTM network

Wu Xu*, Zhifang Shen, Xinhao Fan and Yang Liu

School of Electrical and Information Technology, Yunnan Minzu University, Kunming, China

Wind power prediction values are often unstable. The purpose of this study is to
provide theoretical support for large-scale grid integration of power systems by
analyzing units from three different regions in China and using neural networks
to improve power prediction accuracy. The variables that have the greatest
impact on power are screened out using the Pearson correlation coefficient.
Optimize LSTMwith Lion Swarm Algorithm (LSO) and add GCT attentionmodule
for optimization. Short-term predictions of actual power are made for Gansu
(Northwest China), Hebei (Central Plains), and Zhejiang (Coastal China). The
results show that the mean absolute percentage error (MAPE) of the nine units
ranges from 9.156% to 16.38% and the root mean square error (RMSE) ranges
from 1.028 to 1.546 MW for power prediction for the next 12 h. The MAPE of
the units ranges from 11.36% to 18.58% and the RMSE ranges from 2.065 to
2.538 MW for the next 24 h. Furthermore, the LSTM is optimized by adding the
GCT attention module to optimize the LSTM. 2.538 MW. In addition, compared
with the model before data cleaning, the 12 h prediction error MAPE and RMSE
are improved by an average of 34.82% and 38.10%, respectively; and the 24 h
prediction error values are improved by an average of 26.32% and 20.69%, which
proves the necessity of data cleaning and the generalizability of the model. The
subsequent research content was also identified.

KEYWORDS

wind power prediction, anomaly data cleaning, lion swarm algorithm, gated channel
transformation, long and short term neural net

1 Introduction

In the context of global promotion of low-carbon economy and energy revolution,
reducing fossil energy combustion, accelerating the development and utilization of
renewable energy has become the general consensus and unanimous action of the
international community; wind energy, as one of themost commercialized renewable energy
sources, has achieved large-scale development and application worldwide, and wind power
has become an essential component of new electricity systemsGonzález-Sopeña et al. (2021);
Diaconita et al. (2022). Wind power has more than 700 GW of installed capacity worldwide
as of 2023, and it is still expanding quickly every year. China, the United States, Germany,
India, Spain, and the United Kingdom are among those that produce the most wind energy
globally Li (2022); Ding et al. (2022). However, due to the high volatility of wind power
caused by environmental factors, the prediction becomes inaccurate and can directly affect
the safety of grid connection. As a result, one of the hottest areas of research right now is
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how to efficiently increase prediction accuracy Chen and Lin (2022);
Ramasamy et al. (2015); Chandel et al. (2014b); Chandel et al.
(2014a).

At present, due to the limitation of technical means, the power
prediction by neural network is generally a short-term prediction.
In this case, a lot of data from the SCADA system, but the system
records and stores the operation data in the inevitable existence
of noise and faults and other anomalous data, according to the
distribution of the data in the power curve of the unit, the anomalous
data is divided into: the bottom of the pile-up type, deviation
from the power band type, the middle of the pile-up type, the
type of discrete several categories Zhao et al. (2022); Uddin and
Sadiq (2022). These data cannot truly reflect the operating state
of the unit, and only the data after removing the abnormal data
can reflect the unit's will-con state, and can be used to train the
prediction model of the unit Wang et al. (2022a). For this reason,
scholars began to look for methods that can effectively remove the
abnormal data. Literature 12 uses the K-means clustering algorithm
to remove the abnormal power data SheenaKurian and Mathew
(2023), but the deletion rate of this algorithm is high, which destroys
the temporal sequence of the original wind sequence and affects the
later prediction results; Literature 13 utilizes the quartile method
to clean the data Schubert et al. (2017), which is generalizable but
ineffective in identifying the high percentage of abnormal data;
literature 14 combines the combination of the quartile method and
DBSCAN in Literature 11 enhances the identification of anomalous
data Wang et al. (2022b), but it is more sensitive to the parameter
settings and decreases the efficiency of prediction.

In addition, meteorological conditions are also a factor that
affects the accuracy of prediction. Scholars have considered various
methods to find out the factors affecting the output power results
in order to make the study effective for practical use. For example,
Jordan Nielson et al. used feed-forward back-propagation (FFBP)
ANNmodel to predict the power output of individual wind turbines
from the turbine itself, and improved the accuracy of power
generation prediction by studying the atmospheric input variables
in order to construct a power curve Meka et al. (2021); Rajitha
Meka et al. used Pearson's algorithm to discuss the factors that
include ground temperature, wind speed, atmospheric pressure,
wind direction, and more than ten types of meteorological data that
have the potential to affect the power transmission results, and the
most relevant variables to the output power were used as inputs to
the temporal convolutional network (TCN), and the validity of the
methodology was confirmed by a multistep prediction Nielson et al.
(2020). In addition, Principal ComponentAnalysis (PCA) and shape
value method were also used as correlation analysis, and the results
obtained from all of the above methods showed that wind speed is
the most important factor affecting the output power.

In terms of model selection, the literature Liu et al. (2018) uses
support vector machine (SVM) for regression analysis, but due to
the choice of kernel parameters, its generalization ability is weak
and its learning capacity is insufficient for large-scale wind farm
data, resulting in fluctuations in prediction results. The literature
Krishna et al. (2021) also uses extreme learning machine (ELM)
to simplify the network, which increases prediction accuracy to a
certain extent, but because the hidden layer analytic complexity
is low, it is difficult to generalize the results. Other researchers
attempt to use the classical BP Li et al. (2022) network and LSTM

Malakouti et al. (2022) network, both of which have achieved good
prediction results, but the application to the actual wind power also
has issues similar to those of SVMandELMbecause the hidden layer
and bias parameters in the network structure are random.As a result,
the generalization ability decreases.

Researchers have begun to think about using some intelligent
optimization algorithms to replace human optimization search
because many underlying models call for the selection of debugging
parameters, which significantly affects the efficiency of learning.
For instance, the literature Hui et al. (2018) used the rich-poor
optimization algorithm to optimize the parameters of the outlier
robust learning machine to improve the generalization ability of
the model, as well as the Optimize lstm based on improved
whale algorithm Yang et al. (2022) and the variational modal
decomposition and sparrow algorithm Wu and Wang (2021).
Literature Wang et al. (2020) error correction is performed using
RBF-based optimization LSSVM to increase the precision of the
prediction outputs. These combined models, which were previously
mentioned, have decreased prediction efficiency as a result of the
addition of optimization algorithms, but have only slightly increased
prediction accuracy. They are somewhat concerned with one thing
but not the other, and the majority of them are only studied for one
unit of a single wind farm without the support of more real data,
which makes them weak arguments.

In order to solve the aforementioned problems, a KD-LSO-G-
LSTMwind power short-term prediction model is developed in this
study. The following are some of the research contributions.

1) For the anomalous data in the original power, first use the elbow
method to decide on the optimal number of clusters, which not
only can avoid the issue of manual selection leading to lower
efficiency, but also can make the best detection effect. Then, use
the K-means algorithm to clean the first class of anomalous data
values, and DBSCAN to reject the second class of anomalous
data.The effectiveness of the approach for cleaningwindpower is
tested in the paper using comparison and ablation experiments,
respectively;

2) Proposed using the original LSTM neural network and adding
the Gated Channel Transformation (GCT) attentionmechanism
module to enhance the network's performance in the prior and
subsequent moments;

3) Reducing the amount of time needed to discover the best settings
for the G-LSTM by using the Lion Swarm method;

4) Nine wind turbines from three different regions of China
(the Northwest, Central Plains, and Coastal) were chosen for
simulation trials based on actual wind farm data in order to
prevent model overfitting, and encouraging forecast results were
produced.

2 Materials and methods

2.1 Abnormal data cleaning

2.1.1 K-means
The most fundamental and widely used clustering algorithm is

K-means clustering. Contrary to classification and sequence labeling
tasks, clustering is an unsupervised algorithm that divides samples
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into multiple categories based on the inherent relationship between
data without knowing any sample labels in advance, producing high
similarity between samples of the same category and low similarity
between samples of different categories. The main concept behind it
is to iteratively identify a division scheme ofK clusters so that the loss
function associated with the clustering result is minimized. Where
the loss function is the sum of the squared deviations of each sample
from the cluster centroid to which it belongs Jin and Han (2021).

J(c,μ) =
M

∑
i=1
‖xi − μci‖

2 (1)

Where xi represents the ith sample, and ci is the cluster it belongs to,
and μci denotes the central point corresponding to the cluster, and
M is the total number of samples. The core objective of K-means
is to divide the given data set into K clusters and give the center
corresponding to each sample data. These are the precise steps.

1) Data preprocessing, primarily data normalization;
2) Randomly select K center points, labeled as μ0k;
3) Define the loss function:J(c,μ);
4) Equations 2, 3 should be repeated until J converges, where t

denotes the number of iteration steps.

First, for each sample xi, assign it to the nearest center:

cti < −argmink‖xi − μ
t
k‖

2 (2)

The center of each class is then recalculated for each class center k:

μt+1k < −argmink
b

∑
i:cti

‖xi − μ‖
2 (3)

The main goal of K-means is to decrease J by fixing the center
and changing the category that each sample belongs to. The two
processes switch off, J drops monotonically until it reaches its
minimal value, and at the same time, the centroid and the category
into which the samples are divided.

2.1.2 DBSCAN abnormal data cleaning
One of the more exemplary density-based clustering algorithms

is DBSCAN. It is able to combine clusters with adequate high
density of areas into clusters and can be utilized in noisy
spatial databases of variable forms in the clusters, in contrast to
division and hierarchical clustering methods that define clusters
as the greatest set of densely connected points Hahsler et al.
(2019).

The core metrics of the algorithm are the neighborhood range
radius and theminimumnumber of neighborhood points threshold,
i.e., epsilon and minpts.The EPS neighborhood is defined as a circle
with a center p and a radius epsilon. The number of data points in
this neighborhood is m, which reflects the density of the cluster.
minpts:Theminimumnumber of data points, which is usually given
directly. Based on the relationship between m and minpts, the data
points can be distinguished as core points, boundary points, and
outlier points. After dividing the data points, the algorithm divides
the density relationship between two arbitrary data points in the
same cluster into three categories: direct density reachable, density
reachable, and density connected. Direct density reachable: if a point
q is within the EPS neighborhood of data point p and data point q is
the core point, then the center point p is directly density reachable
from data point q. Density reachable: if data points p1,p2,…,pn in a
certain EPS neighborhood, if pi of these data points can be directly
density reachable pi+1, then it is said that p1 density up to pn. Density
connectivity: If a data point s is accessible by data point q and data
point q, then data point q and data point q are said to be density
connected.

2.2 Lion group algorithm

A suggested algorithm called LSO, which has a high
optimization efficiency, is based on how lion prides hunt. The
lion pride method divides the lions into three groups in order to
solve the global optimization issue given the objective function:The

FIGURE 1
LSTM unit structure diagram.
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FIGURE 2
Flow chart of the model in this paper.

lioness, the lioness, and the cub. Its parameters are defined as follows
Lee et al. (2020).

1) For adult lions, the proportion factor β is a random number
between 0 and 1, and the value of β is typically set at 0.5 to speed
up convergence.

2) Lioness moving range perturbation factor αf, the perturbation
factor is defined as follows, and its purpose is to dynamically
update the search range to promote convergence.

α f = step • exp(−
30
T
)
10

(4)

where: step = 0.1(H− L) denotes the maximum step range of lion
activity; t and T denote the current number of iterations as well
as the maximum number of iterations, respectively; and denote
the maximum and minimum mean values in the range of lion
movement.

3) The range's elongation or compression is controlled by the
perturbation factor for cubs αc, which is specified as follows:

αc = step • (
T− t
T
) (5)

Suppose there areN lions in a D-dimensional algorithmic space,
and let nLeader denote the number of adult lions, then:

2 ≤ nLeader ≤ N
2

(6)

There is one male lion in the pride and the remainder are
females. The coordinate information of the ith (1 ≤ i ≤ N) lion
is xi = xi1,xi2,…,xiD (1 ≤ i ≤ N). The number of adult lions is:
nLeader = N*β, and the number of juvenile lions N− nLeader. Each
of the three fulfills his responsibility while the male lion hunts for
superiority, moves in a restricted region close to the ideal position.
The position update formula is:

xk+1i = g
k (1+ δ‖pki − g

k‖) (7)

And the lioness needs to work with the other end to update,
according to Equation 8:

xk+1i =
pki + p

k
c

2
(1+ α fτ) (8)
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FIGURE 3
Pearson correlation coefficient heat map.

Lion cubs are divided into three situations: hunting with the
lioness, feeding with the lion king, and elite reverse learning. The
process is shown below:

xk+1i =

{{{{{{{{{
{{{{{{{{{
{

pki + g
k

2
(1+ αcτ) ,q ≤

1
3

pkm + p
k
i

2
(1+ αcτ) ,

1
3
≤ q ≤ 2

3
pki + g
′k

2
(1+ αcτ) ,

2
3
≤ q ≤ 1

(9)

pkc is the historical optimal position of a randomly chosen
hunting collaborative partner in the kth generation of the lioness
pride, where is a pseudo-random number generated using the
normal distribution N (0,1). pki represents the historical optimal
solution for the kth generation of the ith lion, gk represents the
kth generation optimal position of the group. And: g′k = L−H− gk

is the position of the ith lion cub driven.pkm represents the kth
generation's best placement for the cub to follow the lioness, and
q is the probability factor, a random number produced using the
uniform distribution U [0,1] Zhang et al. (2020).

2.3 LSTM

In many sequential tasks, long short-term memory (LSTM) is
used, and it typically outperforms other sequential models like RNN
when it comes to learning tasks involving vast amounts of data. The
LSTM's structure means that it can store more memories and that

it can better manage which memories are kept and which ones are
deleted at a particular time step. The LSTM's structure means that
it can better regulate which memories are kept and which ones are
deleted at a certain time step.The cell structure is shown in Figure 1.

According to the above figure, an LSTM cell consists of a
memory cell Ct and three gate structures (input gate it, forgetting
gate ft, output gate ot). At the moment t, the xt represents the input
data and ht represents the hidden layer. ⊗ represents the vector outer
product, ⊕ and represents the superposition operation Greff et al.
(2015). The formula is as follows:

ft = σ(U fxt +W fht−1 + b f) (10)

it = σ(Uixt +Wiht−1 + bi) (11)

ut = tanh(Uuxt +Wuht−1 + bu) (12)

ct = ft*ct−1 + it*ut (13)

ot = σ(Uoxt +Woht−1 + bo) (14)

ht = ot*tanh(ct) (15)

where U and W are the matrix weights, b is the offset, and σ is
the Sigmoid function.

3 Model structure of this paper

Figure 2 depicts the model's flow in this article. The plan is to
separate the data gathered by the SCADA system into a training set
and a test set, count the number of clusters using the Elbowmethod,
remove and clean the data gathered in the low power region (the first
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FIGURE 4
Wind speed statistics for 9 units.

FIGURE 5
Unit 1 3D scatter diagram.
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FIGURE 6
Unit 1Elbow method curve.

category), and the high power region (the second category), using
K-means and DBSCAN, respectively. After that, the two sets of data
are combined to create a new wind power sequence, which is then
input to LSO-G-LSTM to determine the prediction results. Below is
a description of the LSO-G-LSTM algorithm flow and the G-LSTM
network structure, respectively.

Even though LSTM can explain the inherent correlation of
wind power output data, the wind power output varies significantly
due to variations in wind speed and other factors, and predictions
made using simply LSTM networks are frequently wrong. When
building the model, the GCT attention mechanism module, which
is compact and easy to understand, takes up little room, and
the straightforward threshold settings make it easy to visualize
the behavioral value of the GCT: competition OR synergy. To
improve prediction accuracy, adding GCT to the LSTM coding layer
can dynamically vary the contribution of various characteristics
to the output and the weights of the input features Zhang et al.
(2022). The red dashed box in the figure depicts the G-LSTM
unit's construction. The blue box in the illustration represents
the GCT module. First assume that the input x(n)t denotes the
activation features in the CNN, and its time series is X =
[x1,x2,…,xt] = [x(1),x(2),…,x(n)]

T, the expanded matrix expression
is:

X =
[[[[

[

x(1)1 ⋯ x(n)1
⋮ ⋱ ⋮

x(1)T ⋯ x(n)T

]]]]

]

∈ RT×n (16)

Where xt = [x
(1)
t ,x
(2)
t ,…,x

(n)
t ](1 ≤ t ≤ T) denotes a number of

meteorological feature sets at moment t.
From the G-LSTM structure diagram, the relevant

meteorological features are input to the attention mechanism at
moment t. Combining the output of the hidden unit ht−1 and the
memory information μt−1 at moment t− 1, the GCT performs the

following transformation on the input data sequence:

g(n)ct = F(x
(n)
t |λ,ω,γ) (17)

Where, λ,ω,γ are trainable parameters contribute to the
adaptiveness of the embedded output, λ is used to control
the activation threshold, ω,γ they determine the behavioral
performance of the GCT in each channel. According to the figure
shown, the GCT is divided into three components Lu et al. (2021).

The first part is Global Context Embedding, given the
embedding parameters λ = [λ(1)1t ,…,λ

(n)
ct ], defined as follows:

s(n)ct = λ
(n)
ct ‖x
(n)
t ‖

2
= λ(n)ct {[

H

∑
i=1

W

∑
j=1
(x(n)i,jt )

2
]+ ε}

1
2

(18)

where ɛ is used to avoid the reciprocal to 0. The trainable parameter
λ(n)ct are used to control the importance of different channels.

The second part is Channel Normalization, which, based
on literature experience, uses ζ2 for cross-channel feature
normalization, which is defined at this point as follows:

e(n)ct =
√Cs(n)ct
‖s‖2
=

√Cs(n)ct

[(∑C
c=1
(s(n)ct )

2
+ ε)]

1
2

(19)

√C is the scale factor to normalize e(n)ct , thus avoiding the scale being
too small.The third part, Gating Adaptation, by introducing a gating
mechanism, GCT can help to promote competitive OR synergistic
relationships of neurons. The definition is as follows:

g(n)ct = x
(n)
t [1+ tanh(γce

(n)
ct +ωc)] (20)

The GCT obtains channel competition when the additional
trainable parameters are positive; when they are negative, it receives
a synergistic relationship. With this functionality, the network
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FIGURE 7
(Continued).

performs more robustly and the training data is more steady when
making predictions.

The correlation characteristics considering the contribution of
different meteorological elements ̃xt are obtained by multiplying the

characteristic correlation coefficients g(n)ct with the corresponding
meteorological characteristic values x(n)t :

̃xt = [g
(1)
ct x
(1)
t ,g
(2)
ct x
(2)
t ,…,g

(n)
ct x
(n)
t ] (21)
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FIGURE 7
(Continued).

Obviously, the relevant correlated weather feature matrix of the
input can be extracted flexibly by the feature attention mechanism.
The hidden layer state ht is then updated according to the following
equation:

ht = f1 (ht−1, ̃xt) (22)

Through the feature attention mechanism, the input layer
considers the correlation between the input meteorological features
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FIGURE 7
(Continued). Comparison before and after data cleaning.

and the output power, strengthens the key factors affecting the
wind power output, and adaptively extracts the contribution of each
feature to improve prediction accuracy. f1 is the LSTM network

unit, and the input is no longer the original meteorological feature
values but the weighted features considering the magnitude of
correlation.
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3.1 LSO-G-LSTM

Based on the above theory, a wind power prediction model
named LSO-G-LSTM is built in this paper whose steps are as
follows:

Step 1: The total number of initial lions N, the maximum
number of iterations Tmax, the adult lions β, and the
trainable parameters λ,ω,γ of the G-LSTM neural network are
selected.

Step 2: Generate the initial population pki = (c
k
i ,g

k
i ).

Step 3: Calculate the resulting fitness, assign it to the
activation parameter λ and the threshold parameters ω,γ
in the GCT, and update the information of the male lion's
position.

Step 4: Update the lioness and cub location information
according to Eqs 8, 9.

Step 5: Judgewhether themale, female and cubs should be sorted
and renewed according to the degree of adaptation.

Step 6: Determine whether the optimal parameters are
found, if yes, output; if no, repeat steps three to six until the
optimal is found or the maximum number of iterations is
reached.

4 Case study

In this paper, the wind power historical data of 2017–2018 from
three power plants in Northwest, Central and Coastal China are
selected respectively, in which three units are selected from each
power plant and sampled at 10-min intervals, and 10,000 data are
taken from each group. LSTM, LSO-LSTM, and KD-LSO-G-LSTM
models are constructed respectively, which are used to predict the
wind power in the next 12 and 24 h, and the prediction results are
compared with similar models in other literatures to analyze the
errors.

PyCharm is the experimental platform. The operating system is
64 for Windows 10, the programming language is Python version
3.8, and the running RAM is 16.0 GB.

First, the meteorological data and unit characteristics of the
three wind farms collected through the SCADA system were
correlated and analyzed, so as to select the variables suitable for
use as model inputs. The Pearson correlation coefficient method
was used to analyze the degree of contribution of wind speed (ws),
wind direction (wd), air temperature (T), atmospheric pressure
(Pa), wind turbine rotational speed (rs), and relative humidity
(RH) data to power (wp). The quotient of the covariance and
standard deviation between two variables is defined by the Pearson
correlation coefficient between the two variables as shown in the
following equation.

ρx,y =
cov (x,y)
δxδy
=
E[(x− μx,y− μy)]

δxδy
(23)

Where, ρx,y denotes the overall correlation coefficient;covx,y
denotes the covariance; E denotes the mathematical
expectation;δx,δy represents the product of the standard deviation;
and x-μx and y-μy denotes the value of its mean difference,
respectively. The sample Pearson correlation coefficient is shown

TABLE 1 Comparison of data before and after cleaning by KD algorithm.

Windnumber Algorithm ADD D/% t/s

1

M1 0.6823 37.64 0.36

M2 0.2231 47.21 2.74

M3 0.1764 33.67 2.54

2

M1 0.7201 36.64 0.31

M2 0.3065 40.23 2.65

M3 0.2023 32.14 2.36

3

M1 0.5421 35.30 0.65

M2 0.2652 36.72 2.74

M3 0.0963 32.94 2.03

4

M1 0.6452 36.64 0.31

M2 0.2036 40.23 2.65

M3 0.0998 32.14 2.36

5

M1 0.6564 37.65 0.76

M2 0.1980 48.95 3.39

M3 0.1513 33.68 2.39

6

M1 0.7654 36.94 0.47

M2 0.3237 39.65 2.39

M3 0.2247 29.74 1.97

7

M1 0.7122 35.33 0.34

M2 0.3039 41.06 2.10

M3 0.1905 28.84 2.03

8

M1 0.7640 35.23 0.35

M2 0.3012 41.09 1.89

M3 0.2239 33.19 1.76

9

M1 0.5631 37.56 0.33

M2 0.3037 48.56 2.56

M3 0.2144 30.69 2.29

in Eq. 23:

zx,y =
∑n

i=1
(xi − x) • (yi − y)

√∑n
i=1
(xi − x)

2 • (yi − y)
2

(24)

Where, ̃z represents the sample Pearson correlation coefficient;
And ̃x′ = x- ̃x, ̃y′ = y- ̃y represents zero averaging of the variables x
and y, so their Pearson correlation coefficient is actually the cosine
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FIGURE 8
Power prediction curve of 9 units for the next 12 h.

similarity of ̃x′and ̃y′:

zx,y = cos(x′,y′) =
(x′,y′)
|x′| • |y′|

(25)

The correlation between the variables is shown in the figure.The
value ranges from [−1,1], where a positive value indicates a positive
correlation and a negative value indicates a negative correlation.The
closer the value is to 1, the higher the correlation between the two
groups of variables, which can be used as a basis for selecting input
variables.

The correlation between the variables is shown in the Figure 3.
According to the thermal map, it can be seen that the two

variables with the highest correlation with the final output wind

power (wp) are wind speed (ws) and fan turbine speed (rs), and
the correlation is 0.72 and 0.86, respectively. Therefore, this paper
chooses these two variables as inputs to the LSTM model to predict
the future wind power.

4.1 Abnormal data detection and cleaning

4.1.1 Raw data
Numbers 1, 2, and 3 correspond to the three units in the

northwest power plant; 4, 5, and 6 to the center region; and 7, 8,
and 9 to the coastline region in the raw data of nine units from three
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TABLE 2 Error table of power prediction for the next 12 h by 9 units.

Error Method 1 2 3 4 5 6 7 8 9

MAPE/%

L Yuan
et al. (2019)

39.65 38.22 36.38 35.37 39.68 38.20 39.87 38.23 37.75

xg-L Wisdom
and Yar (2021)

28.56 27.21 28.69 29.95 20.15 28.17 26.47 25.20 29.65

P-L Du
et al. (2022)

31.23 32.79 33.10 34.65 30.58 29.15 28.46 29.99 31.78

A-L Wu
and Gao (2023)

22.14 23.51 25.02 22.65 24.86 23.05 22.73 21.06 24.38

L-L Hamed
et al. (2022)

19.46 18.22 17.41 21.06 22.65 20.03 20.45 18.77 19.41

LG-L 15.32 16.38 12.44 12.64 11.08 10.36 9.156 9.963 10.25

RMSE/MW

L Yuan
et al. (2019)

2.032 2.217 2.254 2.014 2.112 2.564 2.236 2.234 2.446

xg-L Wisdom
and Yar (2021)

1.985 1.996 1.211 1.345 1.579 1.665 1.547 1.358 1.697

P-L Du
et al. (2022)

1.563 1.425 1.658 1.788 1.896 1.975 1.674 1.801 1.944

At-L Wu
and Gao (2023)

1.564 1.544 1.531 1.203 1.336 1.437 1.487 1.883 1.873

L-L Hamed
et al. (2022)

1.204 1.345 1.437 1.230 1.236 1.744 1.223 1.478 1.654

LG-L 1.113 1.203 1.236 1.028 1.139 1.447 1.136 1.248 1.546

aL = LSTM; xg-L = xgBoost-LSTM; P-L = PSO-LSTM; At-L = Adaboost-LSTM; L-L = LSO-LSTM; LG-L = LSO-G-LSTM.

distinct wind farms. There are 10,000 samples chosen for each unit.
In the data pre-processing stage, the link betweenpower,wind speed,
and fan speed is examined to pinpoint the location information of
the anomalous data.

Figure 4 shows the distribution range of wind speed for 9 units.
Among them, the wind speed is almost Normal distribution, and
most of the points are concentrated in the wind speed range of
(3–8) m/s. The points outside this range have a high probability of
being abnormal data. For example, the data distributed around the
wind speed of 0 m/s are called wind speed abnormal points, which
have the characteristics of wind speed (cut in wind speed, power>0).
Most of the power data are distributed at 0 and do not show Normal
distribution, which also indicates that the power data collected by
the SCADA system contains more abnormal data. The fan speed is
mainly concentrated between 8 and 15, and we can speculate that
there is a high possibility of abnormal data in fan speeds outside this
range (see attached materials for statistics on power and fan speed).

It was discovered that each of the nine units had varying degrees
of aberrant data through the visual inspection of the aforementioned
individual factors. Therefore, in this paper, using Unit 1 as an
example, the three-dimensional scatter plots of wind speed (x-axis),
power ( y-axis), and fan speed (z-axis) of Unit 1 are plotted. Results
as shown in Figure 5. This is because it is necessary to analyze the

combination of these three groups of characteristic variables in order
to further analyze the causes of the abnormal data distribution.

The distinctive scatter plots can be loosely categorized into three
groups, as can be seen in the image. The first category (in the yellow
dashed box) is the anomalous data piled up at the bottom, which
typically appears due to a communication or abandonedwind power
limit anomaly; The reason for the appearance of discrete anomalies
is typically Extreme weather, sensor failure, or signal propagation
noise; the third category (in the orange dashed box) has a small
amount of data scattered at the top, similar to the second category.

4.1.2 Abnormal data cleaning and
ablationexperiments

The anomalous data should be removed because, based on the
previous description and the analysis of the actual wind power plant
power, wind speed, and wind turbine speed, they are not uniformly
distributed in range and have a tendency to pile up at the bottom and
show dispersion in the middle and top. This makes it difficult for a
neural network to use timing logic to predict future wind power.

The ideal number of clusters is first determined using the Elbow
approach. The degree of aberration is the squared distance error
sum of the prime and sample points within each cluster, which is
calculated using k-means tominimize the squared sample and prime
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FIGURE 9
Power prediction curve of 9 units for the next 24 h.

error as the objective function. So, given a cluster, the tighter the
cluster members are, the lower the degree of aberration, and the
looser the cluster structure is, the greater the degree of aberration.
The degree of aberration decreases as the category size increases,
but for data with a certain level of differentiation, the degree of
aberration improves significantly when a particular critical point is
reached, then gradually declines Liu and Deng (2021). This critical
point can be thought of as the point where clustering performance
is best. Still using Unit 1 as an example, the Figure 6 shows the curve
of Elbow method for Unit 1.

From the graph, it can be seen that the curve starts to smooth
out at k = 2, and the distortion of the curve is greatly improved at
k = 2.5. However, since k can only be obtained as an integer, k =

2 is chosen as the clustering number in this paper. The left half of
Figure 7 shows the classified data. It can be seen that after clustering
processing, the original windspeed-windpower-rotorspeed scatter
plot is divided into two parts, one part (red) is stacked data, and
the other side (yellow) is discrete data. According to the literature,
K-means algorithm can handle data with high density, so this paper
usesK-means to clean the above part of the data. AlthoughDBSCAN
algorithm is not effective in identifying stacked abnormal data, it
does not need to set K value in advance and can improve cleaning
efficiency.Therefore, DBSCAN is chosen in this paper to process the
yellow abnormal data in the figure. In addition, set epsilon = 3 and
minpts = 4 in DBSCAN. The right half of Figure 7 shows the 3D
scatter diagram of 9 units after K-means and DBSCAN processing.
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TABLE 3 Error table of power prediction for the next 24 h by 9 units.

Error Method 1 2 3 4 5 6 7 8 9

MAPE/%

L Yuan
et al. (2019)

40.85 40.42 38.58 37.57 41.88 40.40 42.07 40.43 39.95

xg-L Wisdom
and Yar (2021)

29.76 29.41 30.89 32.15 22.35 30.37 28.67 27.40 31.85

P-L Du
et al. (2022)

32.43 34.99 35.30 36.85 32.78 31.35 30.66 32.19 33.98

A-L Wu
and Gao (2023)

23.34 25.71 27.22 24.85 27.06 25.25 24.93 23.26 26.58

L-L Hamed
et al. (2022)

20.66 20.42 19.61 23.26 24.85 22.23 22.65 20.97 21.61

LG-L 16.52 18.58 14.64 14.84 13.28 12.56 11.36 12.16 12.45

RMSE/MW

L Yuan
et al. (2019)

3.069 3.254 3.291 3.051 3.149 3.601 3.273 3.271 3.483

xg-L Wisdom
and Yar (2021)

3.022 3.033 2.248 2.382 2.616 2.702 2.584 2.395 2.734

P-L Du
et al. (2022)

2.600 2.462 2.695 2.825 2.933 3.012 2.711 2.838 2.981

At-L Wu
and Gao (2023)

2.601 2.581 2.568 2.240 2.373 2.474 2.524 2.920 2.914

L-L Hamed
et al. (2022)

2.241 2.382 2.474 2.267 2.273 2.781 2.264 2.515 2.691

LG-L 2.151 2.242 2.273 2.065 2.176 2.484 2.173 2.285 2.583

aL = LSTM; xg-L = xgBoost-LSTM; P-L = PSO-LSTM; At-L = Adaboost-LSTM; L-L = LSO-LSTM; LG-L = LSO-G-LSTM.

From the figure, it can be clearly seen that the K-means
algorithm effectively eliminates the abnormal data accumulated in
the power of 0, and also effectively deals with the discrete points of
the red scatter points. For the yellow scattered points, because most
of them are in the normal range, the cleaning effect is not obvious,
but the problem of mistakenly deleting normal data is also avoided.

It is suggested that the error of the cleaning result and the
standard power curve (Eq. 26), and the deletion rate (Eq. 27), the
cleaning time (t) be used as the judging cleaning indexes to test
the efficacy of the method in this study. The DBSCAN algorithm is
designated asM1, K-meansmethod asM2, and the algorithm in this
paper as M3, and the outcomes are displayed in Table 1.

AADi =
1
N

Ni

∑
j=1
|Pi − Pi,j| (26)

where AADi is the mean absolute error and root mean square error
for the ith wind speed interval; Ni is the amount of data in the ith
interval;Pi is the value of the standard power curve in the ith interval;
and Pi,j is the ith power data in the ith interval.

D% =
L0 − L1
L0
× 100% (27)

where, L0 is the data volume of the original data set; L1 is the data
volume of the remaining data set after removing the abnormal data
using the data cleaning method.

The cleaning time is the quickest when only the DBSCAN
method is used to clean the data, as its time complexity is typically
less than O(N2), according to the data in the table. However, the
deletion rate of this method is higher because the algorithm relies on
the problem of incorrect identification of dense data with the setting
of parameters as mentioned above in this paper, and the range of
the threshold value can only be set smaller in order to obtain better
cleaning effect of abnormal data, which in turn leads tomore normal
data being deleted by mistake.

Due to the mistaken deletion of normal data, the error between
M1 cleaning results and the standard power curve is the largest
among the three algorithms, Therefore, it is not feasible to use
DBSCAN alone to handle different units in different regions on a
large scale. Similar to the K-means method, which takes the longest
to clean up and has a higher error, it has the issue of deleting a lot
of data. The method used in this study has the lowest deletion rate
and smallest inaccuracy of the three, demonstrating that classifying
the original data and removing data from each class can optimize
each algorithm's benefits and more precisely identify the abnormal
data.

In a comprehensive view, although the algorithm in this paper
has the problem of insufficient recognition rejection efficiency, it has
the lowest deletion rate under the same conditions, the least damage
to the data integrity of the units, the smallest error between the
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cleaned results and the standard power curve, themost concentrated
near the standard power curve, and high generality for different
units.

4.2 Power prediction

The nine units cleaned from the prior data are input to
the network to test the generalizability of the neural network
model LSO-G-LSTM developed in this study, and the predicted
power is output after parameter training to identify the best
parameters.

First, set the parameters of each model. The total number
of lions N = 20, the maximum number of iterations Tmax =
100, and the number of adult lions β = 0.5 were set in LSO.
Secondly, the initial learning rate of LSTM, LSO-LSTM and LSO-G-
LSTM was set as 0.01, inputsize as 2-dimensional, hiddensize = 4,
batchsize = 128; The initial values of LSO-G-LSTM network
parameters λ, ω and γ are all 0. Finally, take the number 1
as an example to illustrate the variable parameters of the input
model. Let this input be x1t, according to the meteorological
and unit characteristics analyzed above, only the wind speed
and fan speed are selected as the input to the model, so
the corresponding input variable matrix is x1t = [x

(1)
1t ,x
(2)
1t ], and

other units use the same method as the model input, where
the number (1) and (2) in the upper right corner represent
the wind speed and fan speed respectively. And ensure that
multiple groups of experimental environment under the same
condition.

Because the predicted wind power sequence in this paper
is short-term, it will not last longer than 3 days. The sampling
interval for each of the nine units is 10 min, and the predicted
sample points for the predicted power for the upcoming 12 and
24 h are 72 and 144, respectively. Figure 8 displays the wind
power forecast results for the upcoming 12 h for each of the nine
units.

Only a few data points from the nine sets of power estimates
for the upcoming 12 h show that the LSTM neural network makes
accurate predictions. This may be caused by the corruption of the
time series of the original data after data cleaning, which also
illustrates the shortcomings of LSTM in handling such data; Apart
from samples 2, 6, 7, and 8, which are relatively close, there are
large deviations from the initial data when predicting other units,
and the phenomenon of overfitting appears at a later stage, which
may be caused by the LSO algorithm entering a local optimum
when training the LSTM parameters; The LSTM has significantly
improved in terms of prediction accuracy after LSO optimization,
and the prediction trend is roughly the same as the actual power;
In this study, the model is able to concentrate on the impact
of features on power after the addition of the GCT attention
mechanism for LSTM. Additionally, after LSO training on three
sets of GCT parameters, the prediction accuracy is significantly
increased, and the curve fit is optimal, with deviation occurring
only after about 50 samples. This study evaluates the prediction
accuracy of several models using mean absolute percentage error
(MAPE) and root mean square error (RMSE), which are defined as
Equations (28)–(29), and the findings are displayed in Table 2. The
more accurate the model prediction, the lower the value of MAPE

and RMSE.

MAPE = 1
n

n

∑
i=1

|x′ (i) − x (i)|
x (i)

× 100% (28)

RMSE = √ 1
n

n

∑
i=1
(x′ (i) − x (i))2 (29)

When estimating the wind power for the following 12 h, it can
be noted that the MAPE and RMSE of the suggested models in
this research are the smallest when compared to other models.
Error (MAPE) of the nine units ranges from 9.156% to 16.38%
and the root mean square error (RMSE) ranges from 1.028 MW
to 1.546 MW. Taking the first unit as an example, compared with
LSTM, xgBoost-LSTM, PSO-LSTM, Adaboost-LSTM and LSO-
LSTM, MAPE increased by 61.36%, 46.36%, 50.94%, 30.80% and
21.27% respectively. RMSE increased by 45.23%, 43.93%, 28.79%,
28.83% and 7.558%, respectively. This demonstrates the LSO-G-
LSTM model's capacity to process vast amounts of data from
numerous units in various regions and its ability to predict the power
after 12 hmore correctly and steadily. Additionally, Figure 9 displays
each model's prediction curves for the power of 144 data points
throughout the course of the following day.

On the other hand, the LSO-LSTMmodel, which performs well
in the 12-h prediction, shows a decline in the performance of the
24-h prediction and frequently fails to fit the power accurately. The
model in this paper performs well in the 12-h prediction, but there
are large deviations in the prediction of units 3 and 6, possibly due
to the increase in step length and more data points. The models'
prediction errors are displayed in Table 3.

According to the curves in the figure and the error statistics
in the table, all models' accuracy when performing multi-step
prediction declines to varying degrees, but the error of the model
developed in this research is still the smallest. It can be demonstrated
that the LSTM is greatly enhanced by the addition of the GCT
attention mechanism and is better suited for use as a model for
short-term wind power prediction.

In addition, we should not ignore the influence of model output
parameters on the prediction results. First of all, for the situation
reflected by LSTM in the figure, we know that the model has an
underfitting. Taking Group 1 as an example, the LSTM model is
trained by calling the fit () function.This function returns a variable
named. history, which contains loss and accuracy during model
compilation. This information is displayed at the end of each epoch
training session. For 12 h prediction, the total amount of data needed
to be trained for each group of models is 9928, batchsize = 128, so
the batch required for training is = 9928/16 = 621 (rounded up), and
the hidden layer is defined as [LSTM:2× the number of layers by
default 1, batchsize, each unit contains hidden units]. And output,
(hn, cn), where output:LSTM output of the last hidden state, hn:
the hidden state result of the last timestep, cn: the cell unit result
of the last timestep. Table 4 shows the loss value and accuracy of
training set parameters during 12 h short-term power prediction for
9 units.

According to Table 4, the epoch = 780 obtained when the LSTM
model stops training. At this time, loss780 = 0.7234, accuracy780 =
0.6198, the values of loss1-loss780 decrease monotonically, while
the accuracy1-accuracy780 increases monotonically. This indicates
that there is still room for loss to decrease while accuracy has room
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TABLE 4 LSTMmodel training set parameters.

Windnumber Method Epoch Loss Accuracy

1

L Yuan
et al. (2019)

780 0.7234 0.6198

L-L Hamed
et al. (2022)

1800 0.1498 0.8124

LG-L 1265 0.2627 0.9533

2

L 615 0.7753 0.5985

L-L 1800 0.157 0.7451

LG-L 1147 0.2753 0.8867

3

L 746 0.7456 0.6074

L-L 1800 0.1074 0.8046

LG-L 1327 0.2936 0.9137

4

L 802 0.7007 0.6454

L-L 1800 0.1742 0.7984

LG-L 1204 0.2056 0.8967

5

L 807 0.7724 0.6873

L-L 1800 0.1985 0.8543

LG-L 1264 0.2438 0.9072

6

L 743 0.7521 0.6558

L-L 1800 0.1612 0.8072

LG-L 1024 0.2918 0.975

7

L 784 0.7753 0.6887

L-L 1800 0.1107 0.8375

LG-L 1210 0.2711 0.8894

8

L 869 0.7654 0.6194

L-L 1800 0.1375 0.8643

LG-L 1042 0.2724 0.9459

9

L 843 0.7345 0.6208

L-L 1800 0.1724 0.8647

LG-L 947 0.2185 0.9466

aL = LSTM; L-L = LSO-LSTM; LG-L = LSO-G-LSTM.

for improvement at the end of the separate LSTM training. After
retraining, it is found that the epoch stops when loss943 = 0.6751,
accuracy943 = 0.8845, and accuracy943 = 0.8845. It is showndirectly
that the model falls into local optimality in the first training, and the
model appears underfitting. For the LSO-LSTMmodel, after adding
the LSO disturbance factors αf and αc, the model has not converged

during training and the training will be stopped when the epoch =
1800,when loss 1800= 0.1498 and accuracy 1800= 0.8124.However,
when the epoch = 1700, the accuracy 1800 = 0.8124. loss1700 =
0.2075, and accuracy1700 = 0.8724. It can be seen that when the
epoch is reduced, the accuracy of the training model will increase;
however, when the epoch = 1900 is continued, the loss and accuracy
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FIGURE 10
Prediction error in the next 12 h before Data cleansing.

will decrease at the same time, indicating that themodel is overfitting
and it will be difficult for the model to converge. In most cases,
the model can not fit the real value well, and the generalization
ability is poor. With the epoch = 1265, loss1265 = 0.2627, and
accuracy1265 = 0.9533, accuracy1265 can be set with the epoch
= 1000 and 1100, and the loss will increase and the accuracy will
decrease. With the epoch = 1300 and 1400, the loss will no longer
decrease.The value of accuracy does not change. Combined with the
curve in the figure above and the error value in the table, it indicates
that the model has converged and does not fall into the local
optimal.

The input data for the aforementioned tests are all of the
predictions after K-means and DBSCAN cleaning, and they serve
merely to demonstrate the success of the LSTMmodel improvement
shown in this research. This research examines the errors of
each model without rejecting the identification of anomalous data
using the 12 h anticipated power as an example, as shown in

Figure 10 in order to demonstrate the significance of data pre-
processing.

In addition, the errors of the model before and after data
processing for the next 12 and 24 h are also compared, as shown in
Figure 11.

The error values are all increased to varying degrees, but
the error increase of units 1, 2, 8 and 9 is larger, which also
corroborates the hypothesis that the analysis of discrete abnormal
data in Figure 7 has a greater impact on the prediction results.
These results come from the prediction histogram of each model
for the next 12 h without abnormal data detection and rejection.
The errors of MAPE and RMSE predicted by LSTM for Unit 1
increased by 19.08% and 34.45%, respectively; those predicted by
xgBoost-LSTM increased by 24.84% and 31.55%; those predicted
by PSO-LSTM increased by 24.58% and 37.48%; those predicted by
Adaboost-LSTM increased by 29.27% and 34.83%; those predicted
by LSO-LSTM increased by 30.50% and 46.49%; and those predicted
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FIGURE 11
Error analysis of the model before and after data cleaning.

by the model in this These data also show how cleansing the
raw wind power series is necessary for anomaly data analysis and
identification.

Additionally, the figure supports the aforementioned
conclusion. The red dash depicts the error indicators without data
processing, whereas the blue dash shows the error indicators of each
unit for the model's 12 and 24 h wind power predictions in this
research. The blue dash is consistently smaller than the red line for
the future 12-h power prediction, but for the future 24-h prediction,
both error values rise and the blue and red curves converge due to
the future wind power's instability and uncertainty as the prediction
step increases. Nevertheless, when compared to other models and
to itself both before and after cleaning the data, the KD-LSO-G-
LSTM model suggested in this study produces the best prediction
results.

5 Conclusion

In order to improve the accuracy of wind power prediction,
this study proposed a short-term wind power prediction model
of KD-LSO-G-LSTM based on abnormal data detection and

cleaning. In the manuscript, the stability and universality of the
algorithm were discussed by taking wind turbines in different
regions of China as examples. Firstly, in the data preprocessing
part, K-means and DBSCAN algorithm are combined to detect
and clean abnormal data to improve the stability of prediction.
Secondly, by combining GCT attention mechanism module with
LSTM input parameters, a new feature vector is constructed to
ensure the optimal feature selection for prediction. Finally, the
lion pride algorithm is used to optimize the model to avoid its
parameters falling into local optimality in the training process,
and also to ensure that underfitting and overfitting will not occur
in the prediction, so as to improve the prediction accuracy. The
proposed algorithm fills the gap in anomaly data cleaning and
prediction accuracy. Three sets of experiments were conducted in
this section.

The first set is an ablation experiment for KD abnormal
data cleaning algorithm, aiming to evaluate the effectiveness of
combining the two algorithms for data cleaning. The error, deletion
rate and cleaning time of the cleaning data of 9 units are evaluated,
and the result proves the superiority of KD algorithm in removing
abnormal data. The second experiment evaluated the error of
different algorithms in predicting the same wind power. Through
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the prediction results of 12 and 24 h in the future, it can be seen that
the accuracy and stability of the proposed algorithm in predicting
the power of more units are the least error among all models. The
third set of experiments verified the prediction errors of different
models before and after data cleaning, aiming to show the necessity
of abnormal data cleaning.The results also showed that the errors of
the models with abnormal data processing were smaller than those
without processing.

Combined with the results of the above three groups of
experiments, the effectiveness and universality of KD-LSO-G-LSTM
in short-term power prediction can be obtained. However, due
to the elimination of the original data in this paper, the original
time series is damaged, which makes the efficiency of such time-
serial-dependent prediction models as LSTM decrease. In future
work, we will consider adding some series reconstruction methods
to improve its prediction efficiency. In addition, China has a vast
territory and a large population, which has high requirements for the
stability and safety of electricity consumption, and its dependence
on this kind of new energy is increasing year by year. Therefore,
the forecast results of only three regions cannot prove whether
the study is equally applicable in other regions of China. Future
prospects for this study therefore include evaluating the proposed
method on larger data sets and over more areas to confirm the
superiority of the proposed method for short-term wind power
prediction.
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