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This paper addresses the innovation management problem of financial
trading strategies for power system planning through the utilization of
the BO-BERT-GRNN model. The BO-BERT-GRNN model, which combines
Bayesian optimization, BERT model, and gated recurrent neural network,
is divided into three parts to optimize hyperparameters, extract features
from historical data, and model and predict power system planning. The
objective is to achieve electricity asset allocation, market risk management,
and revenue maximization. Experimental analysis demonstrates that the BO-
BERT-GRNN model outperforms in power system planning price prediction,
energy transaction risk management, and energy asset allocation, showcasing
its potential for practical application. This paper addresses the innovation
management problem of financial trading strategies for power system planning
through the utilization of the BO-BERT-GRNN model. The BO-BERT-GRNN
model, which combines Bayesian optimization, BERTmodel, and gated recurrent
neural network, is divided into three parts to optimize hyperparameters, extract
features from historical data, and model and predict power system planning.
The objective is to achieve electricity asset allocation, market risk management,
and revenue maximization. Experimental analysis demonstrates that the BO-
BERT-GRNN model outperforms in power system planning price prediction,
energy transaction risk management, and energy asset allocation, showcasing
its potential for practical application.
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1 Introduction

With the continuous development and application of smart grid technology, the energy
tradingmarket has become increasingly complex and competitive.How to effectivelymanage
innovative energy trading strategies, improve trading efficiency and reduce trading costs
has become one of the focuses of current research in the bright grid field. In order to solve
this problem, this paper proposes a BO-BERT-GRNN-based innovative management model
for smart grid financial trading strategies. The model first uses a Bayesian optimization
algorithm to optimize the trading strategy, then combines the BERT model to extract and
classify the features of the trading text, and finally inputs the classification results into the
GRNN model to make trading decisions. The model can effectively improve transaction
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efficiency and reduce transaction costs and has good generalization
ability and adaptability. In this paper, this innovative management
model will be introduced and analyzed in detail, and its application
effects and advantages in the field of smart grid financial transactions
will be verified through experiments. The study has important
theoretical and practical significance for innovation management
and decision-making in smart grid financial transactions. The
following models are often applied in the field of smart grid.

1. LSTM model: Long Short-Term Memory (LSTM) models are
recurrent neural networks widely used in sequence modeling
and forecasting tasks due to their ability to learn long-term
dependencies automatically. (Yang et al., 2022) For time series
data in the field of intelligent grid financial transactions,
LSTM models can automatically understand the temporal
dependencies of the data to predict future power demand, price
changes, and so on. In addition, LSTM models can be used to
model trading strategies, thus improving trading efficiency and
reducing trading costs.

2. GRUmodel:The gated recurrent unit (GRU)model is a recursive
neural network, similar to the LSTM model, but with fewer
parameters and faster training speed. (Yang et al., 2021) In
intelligent grid financial trading, the GRUmodel can be used for
forecasting time series data and modeling trading strategies and
can automatically learn the long-term dependencies between
data to predict future power demand and price changes more
accurately.

3. Transformer Model: Transformer (Transformer) model is a
kind of neural network based on a self-attention mechanism,
widely used in natural language processing and other fields.
(Wang et al., 2022) In the intelligent grid financial transactions
field, the Transformer model can predict time series data and
model trading strategies with better parallelism and faster
training speed. The Transformer model can automatically learn
the dependencies between sequences to predict future electricity
demand and price changes more accurately.

4. GANModeling: Generative Adversarial Network (GAN) model
is a deep learning model consisting of two parts: generator
and discriminator. In intelligent grid financial trading, the
GAN model can generate trading strategies, improve trading
efficiency and reduce trading costs. (Makonin et al., 2022)
The generator is responsible for developing reasonable trading
strategies, while the discriminator is responsible for evaluating
the reasonableness of trading strategies. The two models are
trained on each other, enabling the generator to generate better
trading strategies.

5. RL Model: Reinforcement Learning (RL) model is a model that
seeks the optimal strategy through trial-and-error learning. (He
and Ye, 2022) In intelligent grid financial trading, RLmodels can
be used to learn trading strategies, improve trading efficiency
and reduce trading costs.RL models can automatically learn
the optimization of trading strategies, thus improving trading
efficiency and reducing trading costs. However, RL models
require a large amount of training data and computational
resources, so their feasibility needs to be considered in practical
applications.

Based on the shortcomings of the above models, this paper
proposes a new model for innovation management of intelligent

grid financial trading strategies called BO-BERT-GRNN.BO-BERT-
GRNN combines Bayesian Optimization (BO) with BERT and
Gated Recurrent Neural Networks (GRNN) to capture the complex
and variable language in smart grid financial trading strategies.

BO-BERT-GRNN first encodes the input text using BERT and
generates contextual word embeddings. The output of BERT is
then fed into the GRNN layer to capture long-term dependencies
between words. By incorporating BO, the model can optimize
the hyperparameters of the GRNN layer, thus improving its
performance.

• The BO-BERT-GRNN model introduces an attention
mechanism that enables the model to focus on relevant text
parts when making predictions, thus improving the accuracy
and generalization performance of the model.
• We conducted experimental validation on multiple datasets,
and the results show that the BO-BERT-GRNN model
outperforms other commonly used models in managing
innovations in intelligent grid financial trading strategies.
• The model’s ability to capture contextual information and
long-term dependencies, combined with the cross-focusing
mechanism and BO optimization, makes it well-suited to
deal with the complexity and variability of languages in
this domain. The effectiveness and utility of the BO-BERT-
GRNN model highlight its potential to improve innovation
management in the field of intelligent grid financial transaction
strategies.

2 Related work

2.1 Random forest

Random forest is a general machine learningmethod that builds
multiple decision trees for classification, regression, and feature
importance evaluation tasks. Each decision tree in the random forest
is trained based on random samples and features, which can give the
random forest better generalization and anti-noise abilities.

As a commonly used machine learning method, the random
forest has the following advantages: Comparedwith a single decision
tree, the random forest can reduce the problem of overfitting by
integrating multiple decision trees, so it has better generalization
ability. (Ning et al., 2023) And it can maintain high accuracy and
generalization ability while processing a large amount of high-
dimensional data. By introducing randomness, random forests can
effectively avoid over-fitting problems. It is widely used in medical
diagnosis, natural language processing, image recognition, and other
fields. However, some things could be improved in applying this
model in analyzing intelligent grid financial transaction strategy
innovation management. The most obvious is that random forest
takes a long time to train. Itmust buildmultiple decision treemodels
and perform feature selection and integration, which requires a lot
of computing resources and time, so the training time is extended.
Moreover, the random forest model may be sensitive to noise
and outliers, and data cleaning and preprocessing are required to
improve the robustness of themodel. (Ning et al., 2022)The random
forest model is an integrated model, and its decision tree models are
independent of each other, so it is difficult to explain the overall
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decision-making process and contribution of the model, which
makes its interpretability poor.

2.2 Factorization Machines

Factorization Machines (FM) is a machine learning algorithm
commonly used to process sparse data and perform predictive
modeling. (Alsokhiry et al., 2023) It decomposes features into
multiple low-dimensional vectors and captures the interaction
between parts through the vector’s inner product, thereby improving
the accuracy and generalization ability of the model.

The Factorization Machines algorithm has many advantages.
It can effectively handle sparse data, avoiding the problem that
traditional models need special treatment when dealing with sparse
data. (Mazhar et al., 2023) The feature decomposition method of
Factorization Machines enables it to explain the prediction results
and has strong interpretability. FM can also handle high-order
features; the interaction between parts can exceed the second
order. Therefore, the model has been widely used in recommender
systems, advertisement recommendations, search ranking, and
other fields. However, when Factorization Machines are applied to
the innovation management analysis of intelligent grid financial
transaction strategies, it has the following disadvantages that cannot
be ignored: in the scenario of smart grid financial transaction
strategy innovation management analysis, the amount of data is
often large, and the use of FM algorithm needs to consume a large
number of computing resources, making the training and prediction
speed relatively slow. Since the FM algorithm uses low-dimensional
vectors to represent features, it is subject to certain limitations
when dealing with continuous variables and needs to be discretized,
which may affect the model’s accuracy. (Khan et al., 2022) Also, the
FM algorithm has high requirements for data quality and requires
data cleaning and preprocessing. The FM algorithm uses a low-
dimensional vector method when dealing with feature interactions,
which makes the interpretability of the model relatively low, and
it isn’t easy to understand the contribution of the model to the
prediction results.

2.3 Neural image processing networks

Neural Image Processing Networks (NIPN) is an image
processing model based on deep learning, which can convert
input image pixels into high-dimensional feature vectors and then
perform feature extraction and classification through a multi-layer
neural network, thereby realizing image recognition and analysis.

NIPN has the advantages of high accuracy, good scalability, and
adaptive learning. It uses a deep neural network for image processing
and classification, can obtain more image feature information,
improve the accuracy of image recognition and analysis, and can
improve the model’s performance and scalability by increasing the
neural network’s depth and width. (Mall et al., 2022) In addition,
NIPN can adaptively learn features and classifiers based on training
data, which can cope with different image processing tasks. As a
neural network-based image processing framework, NIPN can be
applied to many fields, such as image classification and recognition,
image segmentation, target detection, image generation, image

reconstruction, and medical image processing. However, some
unavoidable things could be improved in applying NIPN in the
cross-field of smart grid financial transaction strategy innovation
management analysis. Due to the large amount of data in these
two fields, NIPN needs to process and store a large amount of
data in practical applications and, at the same time, needs to use
a large number of computing resources for training and inference.
And NIPN is a black-box model; it is difficult to explain the
reasons for its prediction results, which will affect the reliability
and interpretability of the model. When the data quality of smart
grid financial transaction strategy innovation management analysis
has problems such as missing values and outliers, it will affect the
training effect and accuracy of NIPN. (De-la Cruz-Diaz et al., 2022)
The data and characteristics of these two fields are very different. It
is necessary to consider how to effectively integrate the information
from the two fields to improve the accuracy and generalization
ability of the model.

3 Methodology

3.1 Overview of our network

The BO-BERT-GRNN model proposed in this paper has
high prediction performance, high hyperparameter optimization
accuracy, high feature extraction accuracy, and substantial time
series modeling ability, which can provide accurate prediction and
judgment of smart grid financial transaction strategies and provide
necessary support and decision-making basis for the innovative
management of intelligent grid financial transaction strategies.

The three parts of the BO-BERT-GRNN model will work
together to improve the performance and application value of
the model. First, we use a Bayesian optimization algorithm to
optimize the model’s hyperparameters to enhance the efficiency
and accuracy of model training. This optimization method can
help the model find the optimal combination of hyperparameters
to better adapt to the changes and fluctuations of the electricity
market. Next, we use the BERT model to extract features from the
historical data of the electricity market to obtain more accurate
and effective market information. The BERT model is a pre-
trained natural language processing model, which can transform
the historical data of the electricity market into a high-dimensional
vector representation that provides more feature information,
thus helping the model better understand market changes and
trends. Finally, a gated recurrent neural network model is used to
model and forecast the power market to achieve the management
process of power asset allocation, market risk management, and
revenue maximization objectives.This model can provide necessary
support and a decision-making basis for the innovativemanagement
of intelligent grid financial trading strategies by analyzing and
predicting the power market. The overall structure of the model is
shown in Figure 1.

The algorithmic flow of the model is shown in Algorithm 1
below. Firstly, the data of intelligent grid financial trading strategies
are inputted and fed into the data input layer for preprocessing
and normalization. Then, the dataset is fed into the BO model
for learning and feature extraction. The BO model is a supervised
learning model which can adjust the model weights through the
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FIGURE 1
BO-BERT-GRNN structural unit.

back-propagation algorithm to improve the model’s prediction
accuracy and generalization ability. Next, the extracted feature data
are passed into the BERT model for further feature extraction and
transformation. The BERT model can transform text information
into a high-dimensional vector representation to provide more
feature information. Finally, the feature data output from the BERT
model is input into a gated recurrent neural networkmodel (GRNN)
for time series modeling and forecasting. The GRNN model can
capture the time series information and long-term dependencies
in the electricity market, which improves the model’s forecasting
accuracy and reliability. The optimal model parameters can be
obtained through the training and optimization of the model,
and the prediction results can be output to provide necessary
support and decision-making basis for the innovative management
of intelligent grid financial trading strategies.

3.2 BO model

The BO model is an optimization algorithm based on Bayesian
theory, which is suitable for optimizing black-box functions, that is,
parts whose internal structure or form cannot be directly observed.
The core idea of the BO model is to approximate the objective
function by constructing a proxy model and adjusting the next
sample point for evaluation according to the proxy model to find
the global optimal solution or local optimal solution as quickly
as possible. It is widely used in hyperparameter optimization,
automatic machine learning, and other fields and has become one
of the essential tools for machine learning optimization.

The BOmodel is applied in intelligent grid financial transaction
strategy innovation management analysis. Its operation process
includes the steps of objective function determination, agent

Result: Model Performance (Recall, AUC, Precision,

Inference time, Parameters)

Initialization: Dataset = [“EIA Dataset”,

“ACERDataset”, “ICER Dataset”, “NEA Dataset”];

Define Model = BO-BERT-GRNN;

Define Hyperparameters = θ;

for each dataset in Dataset do

 Preprocess dataset;

 Extract features X and labels y;

 Split X, y into train and test sets;

 Initialize BO for hyperparameter optimization;

 while BO not converged do Sample θ from BO;

  Train Model on train set with θ;

  Predict on validation set;

  Compute validation score (e.g., AUC);

  Update BO with validation score;

 end

 θ* = optimal hyperparameters from BO;

 Train Model on train set with θ*;

 Predict on test set;

 Compute performance metrics (Recall, AUC,

Precision, Inference time, Parameters);

 if Transfer learning applicable then

  Apply transfer learning;

  Retrain Model on new dataset;

  Compute performance metrics;

 end

end

Algorithm 1. BO-BERT-GRNNModel Training Process.
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model selection, optimization space design, optimization algorithm
selection, operation optimization algorithm, update agent model,
convergence judgment, model evaluation, and feedback adjustment.
Applying the BO (Bayesian Optimization) model has several
advantages in analyzing smart grid financial transaction strategy
innovation management. The most prominent of these is that the
BO model can improve the accuracy of forecasting and decision-
making. It can optimize the hyperparameters of the intelligent grid
load forecasting model, such as the sliding window size, the length
of historical data, and the parameters of trading strategies, such as
trading frequency and stop loss ratio. It can more accurately predict
load or trading behavior and improve the effect of data analysis.
Moreover, the BO model uses a proxy model to approximate the
objective function and can find a globally optimal solution or a local
optimal solution with a small number of evaluation times, thereby
reducing computational costs. In load forecasting, the BO model
can add prior knowledge, such as the periodicity of load data; in the
analysis of trading strategy innovation management, the BO model
can add prior knowledge, such asmarket conditions. By adding prior
knowledge, the model can find the global or local optimal solutions
faster and improve the optimization efficiency. Its model structure
diagram is shown in Figure 2.

The goal of the BO model is to minimize a black-box function
f(x), where x is a D-dimensional vector denoting the parameter to
be optimized. The BO model solves this problem by constructing a
prior probability distribution p(f) for f(x). Specifically, the BOmodel
simulates f(x) by constructing a Gaussian process, which can be
expressed in Eq. 1.

f (x) ∼ GP(m (x) ,k(x,x′)) (1)

wherem(x) is themean function of f(x) and k (x,x′) is the covariance
function of f(x). The mean function of a Gaussian process is usually
set to a constant, while the covariance function usually takes the
form of a kernel-based function. For example, a commonly used
kernel function is the RBF (Radial Basis Function) based kernel
function, Its form is shown in Eq. 2.

k(x,x′) = σ2 exp(− 1
2l2

D

∑
i=1
(xi − x

′
i )

2) (2)

where σ2 is the variance parameter, l is the length scale parameter,
and D is the parameter dimension.

The BO model updates the Gaussian process model by
continuously selecting the next point to be evaluated xnext. When
selecting the next point, the BO model usually adopts a strategy
called “sampling function,” of which the most common sampling
function is the “Expected Improvement (EI) function,” which is
shown in Eq. 3.

EI (x) = 𝔼[max0, f (xbest) − f (x)] (3)

where xbest is the best of the currently evaluated points and𝔼 denotes
the expected value.The EI function measures the potential merit of
the next point to be evaluated, which considers both function value
and uncertainty.

Algorithm 2 is the algorithm for the BO model. //text denotes
the comment in the algorithm, and argmax and argmin represent
the maximum and minimum values of the function, respectively.

FIGURE 2
BO structural unit.

3.3 BERT model

BERT is a Transformer-based pre-trained language model
proposed by Google in 2018, which can learn complex relationships
between words and sentences. The advantage of the BERT model
is that it can better understand text data’s semantic and contextual
information and adapt to different task requirements while
maintaining a common semantic representation. The BERT model
has broad application prospects in natural language processing
tasks, such as text classification, named entity recognition, sentiment
analysis, and question-answering systems. The running process of
the model is divided into two stages: pre-training and fine-tuning.

Applying BERT in analyzing intelligent grid financial
transaction strategy innovation management requires data
preprocessing, model building, pre-training, fine-tuning,
evaluation, and adjustment. BERT hasmany advantages in this field.
Brilliant grid financial transaction strategy innovation management
analysis must deal with multi-source data, including text and time
series data. The BERT model can simultaneously process both data
types and combine them for analysis to improve the accuracy of
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Input: Objective function f(x), parameter space X,

acquisition function EI(x), initial point set Xinit,

number of iterations T

Output: Optimal solution xopt m0← 0; //Initial

value of mean function

k0← krbf;//Initial value of covariance function,

e.g., using RBF kernel

for t = 1 toT do

 xnext← argmaxx∈XEI (x|mt,kt,xbest); //Use the

acquisition function to select the next point to

evaluate

 ynext← f (xnext); //Evaluate the objective function

at the selected point

 Xt+1← Xt ∪xnext;//Add the new sample point to the

known point set

 Yt+1← Yt ∪ynextmt+1,kt+1← update_GP(Xt+1,Yt+1,mt,kt);

//Update the Gaussian process model using the

current known points

end

xopt← argminx∈Xf(x); //Return the optimal solution

Algorithm 2. Bayesian optimization algorithm.

predictions and decision-making. Using the BERT model, the
semantic and contextual information of text data can be better
understood to predict future innovative grid load conditions,
transaction conditions, and financial transaction market trends.
The BERT model can also explain its prediction results through
visualization technology, helping users understand the reasons for
the model’s decision-making, and has strong interpretability. BERT
can also be fine-tuned in different natural language processing tasks
to improve the performance of these tasks. The BERT model can be
adapted to additional task requirements through fine-tuning while
maintaining a common semantic representation. The diagram is
shown in Figure 3.

BERT is a bi-directional Transformer-based languagemodel that
learns a representation for a token ti in a sequence of n tokens
by considering both its left context CL = {t1, t2,… , ti−1} and right
context CR = {ti+1, ti+2,… , tn}. The representation of ti is denoted as
xi and is calculated as in Eq. 4

xi = BERT(ti,CL,CR) (4)

Where BERT is the BERT model, a stacked bi-directional
Transformer encoder. The representation xi can be used as input
to downstream natural language processing tasks such as text
classification, question answering, and named entity recognition.

In addition to the encoder, the BERT model also includes
a pre-training phase where it is trained on two tasks: masked
languagemodeling (MLM) and next sentence prediction (NSP).The
MLM task involves randomly masking some input tokens and then
predicting their original values based on the context. The NSP task
consists of predicting whether two input sentences are consecutive.

Algorithm 3 is an algorithm for the algorithmic process of BERT,
//text denoting the annotations in the algorithm. The BERT model
is denoted as BERT, which takes as inputs the tokens xi and their left

and right contexts CL and CR to compute its representation hi. The
encoded sequence is represented asH = h1,h2,… ,hn, where n is the
length of the input sequence X.

3.4 GRNN model

GRNN is a non-parametric regression model based on a neural
network, which was proposed by Ivo Düntsch and Gunter Gediga in
1991. Its core idea is to establish the mapping relationship between
input and output variables using the radial basis function (RBF).
The GRNN model can deal with multivariate nonlinear regression
problems and has a wide range of applications in time series
prediction, data fitting, classification, feature selection, and pattern
recognition.

The GRNN model is applied in the cross field of intelligent
grid financial transaction strategy innovation management analysis,
and its operation process includes data collection, preprocessing,
model building, training, testing, optimization, deployment, and
application. The GRNN model has obvious advantages in the
cross-field of smart grid financial transaction strategy innovation
management analysis. The GRNN model is non-parametric and
adaptive and can adaptively learn the nonlinear relationship
between input and output variables, thereby improving the accuracy
of prediction and decision-making. It can predict future load
conditions based on historical load data, weather data, and other
factors of the smart grid, thereby helping power companies to
arrange power supply rationally. Or predict future stock trends
based on factors such as historical stock prices and trading volumes
to provide decision support for investors. The robustness and
interpretability of the GRNN model can deal with outliers and
noise in the load data of the intelligent grid, thereby improving the
accuracy and reliability of the forecast and explaining the decision-
making reasons for the stock trend through analytical formulas,
helping investors understand the rationality of investment decisions.
The GRNN model also has the advantages of high efficiency and
scalability and can handle large-scale data and complex issues,
such as historical load data and weather data in intelligent grid
load forecasting, and stock data and transaction volume data
in financial transaction strategy innovation management analysis,
thereby improving the efficiency and accuracy of predicting or
decision-making Figure 4.

Given a training set {(x1,y1), (x2,y2),…,(xn,yn)}, where xi is the
ith input vector, and yi is the corresponding output value, the GRNN
model estimates the output value ŷ of the new input vector x as in
Eq. 5.

ŷ =
∑n

i=1
yi exp(−

|x−xi|2

2σ2
)

∑n
i=1

exp(− |x−xi|
2

2σ2
)

(5)

where σ is a user-defined parameter that controls the size of the local
region around each training sample, and ‖ ⋅ ‖ denotes the Euclidean
distance.TheGRNNmodel estimates the output value by calculating
a weighted average of the output values of the training samples,
where theweights are determined by the distances between the input
vector x and the training samples.

Algorithm 4 is the algorithm for the GRNN algorithm of
operations flow, and //text denotes the annotations in the algorithm.
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FIGURE 3
BERT structural unit.

Input: Input sequence X = x1,x2,… ,xn
Output: Encoded sequence H = h1,h2,… ,hn
for i = 1 ton do

 CL← x1,x2,… ,xi−1;//Left context

 CR← xi+1,xi+2,… ,xn;//Right context

 hi← BERT(xi,CL,CR); //Compute the representation of

xi

end

Algorithm 3. BERT encoding process.

The GRNN model inputs the training set D, the input vector x,
and the local region size σ. The output value ŷ is initialized to zero
and updated by calculating a weighted sum of the training sample
output values yi, where the weights are determined by the distance
di between the input vector x and the training sample. Finally, the
output value ŷ is computed as a weighted average of the output
values.

4 Experiment

4.1 Datasets

Here we have chosen EIA dataset, ACER dataset, ICER dataset
and NEA dataset as our experimental dataset.

EIA: The EIA database is an energy data and analysis tool
platformmaintained by theU.S. Energy InformationAdministration
(U.S. Energy Information Administration). (Waseem et al., 2023)
The forum contains multiple datasets, the most important of which
are the National Energy Data System (NEDS) and the International
Energy Data System (IEDS). NEDS provides data on production,
consumption, import and export, and prices in various energy

fields; IEDS provides data on global energymarkets and production,
including data on energy consumption, imports and exports, and
prices in multiple countries. At the same time, the EIA database also
provides tools and analysis reports such as the Short-Term Energy
Outlook (STEO for short) and theAnnual EnergyOutlook (AEO for
short). (Mostafa et al., 2022). STEO provides data on the short-term
forecast of theU.S. energymarket, including data on crude oil prices,
fuel prices, energy production, and consumption, etc.; AEOprovides
data on the long-term forecast of the U.S. energy market, including
data on energy production, consumption, import and export, and
prices in the next few decades.

In addition to these main data sets and tools, the EIA database
also provides various analysis tools and reports, such as interactive
data browsers, energy information maps, and energy trend reports,
to facilitate user data analysis and comparison. (Balouch et al., 2022)
The EIA database is one of the most authoritative data sources in
the energy field and is widely used in policy formulation, business
decision-making, and academic research.

ACER:TheACERdatabase is an energymarket data and analysis
tool platform maintained by the European Energy Regulatory
Agency (Agency for the Cooperation of Energy Regulators, referred
to as ACER), which aims to provide EU member states and various
stakeholders with detailed information on the European energy
market. (Mololoth et al., 2023) The platform contains multiple
datasets, the most important of which are the Europe-wide
Electricity Market Data Repository (EMDB) and the Europe-wide
Gas Market Data Repository (GMDB). EMDB provides data on
the European electricity market, including power load, power
generation, price, transaction volume, market share, etc.; GMDB
provides data on the European natural gas market, including natural
gas supply, consumption, price, transaction volume, market share,
etc. In addition, the ACER database also provides analytical tools
and reports, such as the European Energy Market Monitoring Tool
(EMMT) and the European Energy Market Model (EEMM). (Pal
and Shankar, 2022) EMMT provides real-time monitoring and
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FIGURE 4
GRNN structural unit.

Input: Training set D = (x1,y1), (x2,y2),…,(xn,yn), input

vector x, local region size σ

Output: Output value ŷ Initialize ŷ← 0;

Initialize w← 0; for i = 1 tondo

 di← |x−xi|2;//Calculate the distance between x

and xi

 wi← exp(− di
2σ2
); //Calculate the weight for yi

 ŷ← ŷ+wiyi; //Update the weighted sum of output

values

 w← w+wi;//Update the sum of weights

end

ŷ← ŷ

w
; //Compute the weighted average of output

values

Algorithm 4. GRNN prediction process.

analysis of the European energy market, as well as data on market
trends and forecasts; EEMM provides forecasts and analysis on the
European energy market in the next few years, including data on
supply and demand balance, price trends, market share, etc.

The ACER database is one of the most authoritative data
sources in the European energy market and is widely used in policy
formulation, business decision-making, and academic research.
(Goia et al., 2022) The platform’s data and tools can help various
stakeholders better understand the situation in the European energy
market for better decision-making and planning.

ICER: The ICER database is an energy-related data and
analysis tool platform maintained by the Indian Council for
Energy Research and Education (ICER), which aims to provide
governments, scholars, companies, and the public in India and
other countries with detailed information on Indian and global
energy markets, production, consumption, and prices. (Ding et al.,
2022) The platform consists of several datasets, the most important
of which are the Indian Energy Data Repository (IEDR) and the

Global Energy Data Repository (GEDR). IEDR provides data on
production, consumption, import and export, and prices in India’s
energy sector; GEDR provides data on global energy markets and
production, including data on energy consumption, imports and
exports, and prices in various countries. And the ICER database
also provides various tools and analysis reports such as the Indian
Energy Outlook Report (IEOR for short) and the Global Energy
Outlook Report (GEOR for short). IEOR provides data on the long-
term forecast of the Indian energy market, including data on energy
production, consumption, import and export, and prices in the
next few decades; GEOR provides data on the long-term forecast
of the global energy market, including data on energy production,
consumption, import and export, and prices in the next few decades.

In addition to these main data sets and tools, the ICER database
also provides a variety of analysis tools and reports, such as
interactive data browsers, energy information maps, and energy
trend reports, to facilitate data analysis and comparison for users.
ICER database is one of the most important data sources in India’s
energy field and is widely used in policy formulation, business
decision-making, and academic research.

NEA: The NEA database is a nuclear energy-related data and
analysis tool platform maintained by the International Nuclear
Energy Agency (NEA), which aims to provide detailed information
on the nuclear energy industry for member states and other
stakeholders. (Jiang et al., 2022) The platform contains multiple
datasets, the most important of which are the Nuclear Energy
Data (NED) and the Nuclear Energy Market Outlook Data Bank
(Market and Economic Data Bank (MEDB)). NED provides data
on production, consumption, import and export, and prices in the
field of nuclear energy in various countries; MEDB provides analysis
and forecasts on the nuclear energymarket and economic prospects,
including data on market trends, investment, and employment. In
addition, the NEA database also provides various tools and analysis
reports, such as the Nuclear Energy Outlook (NEO) and the Nuclear
TechnologyRoadmap (NTR) (Baxter, 2022).NEOprovides forecasts
and analyses of the nuclear energy market for the next few decades,
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TABLE 1 Selected dataset data.

Thermal Hydel Nuclear

Year Generation (GWh) Imported (GWh) Generation (GWh) Imported (GWh) Generation (GWh) Imported (GWh)

2019–2020 30,356 1,503 35,224 1,060 28,428 1,386

2020–2021 32,342 1,621 37,574 1,625 22,806 1,142

2021–2022 38,031 1907 31,725 1,432 24,786 1702

including data on energy demand, production, investment, and
environmental impact; NTR provides planning and forecasts on
nuclear energy technology development, including data on nuclear
reactor technology and nuclear fuel cycle technology.

In addition to these main data sets and tools, the NEA database
also provides a variety of analysis tools and reports, such as the
nuclear energy basic knowledge base and nuclear energy regulation
database, which are convenient for users to conduct data analysis
and comparison (Ghiasi et al., 2023).TheNEAdatabase is one of the
most authoritative data sources in the field of nuclear energy and is
widely used in policy formulation, business decision-making, and
academic research.

Here we use four databases as raw data, the following is our
database Table 1.We use the first 80% of the data in the selected
database as the training set, and the last 20%of the data as the test set.
Giving themodelmore training data canmake ourmodel prediction
results more accurate and the prediction results more convincing.

4.2 Experimental setup and details

To verify the value of the BO-BERT-GRNN-based model in
the innovation management analysis of financial trading strategies
for smart grids, we conducted a series of experiments to compare
with other models to verify the applicability of our model in the
innovation management analysis of financial trading strategies for
smart grids. Our study covers the metrics of precision, recall,
inference time, number of parameters, training time, Flops, and
accuracy, and the practical steps are as follows.
Step 1: Data Preprocessing and Segmentation

• Obtain data on intelligent grid financial trading strategies from
datasets such as EIADataset, ACERDataset, ICERDataset, and
NEA Dataset.
• Perform preprocessing operations such as cleaning, de-
duplication, normalization, and missing value filling on the
data to ensure data quality and consistency.
• Randomly divide the dataset into a training set and a test set
according to a ratio 80:20 for use in the training and testing
process.

Step 2: BO-BERT-GRNNmodel design and implementation

• Extract features from the training set using the BERTmodel and
fine-tune the BERT model to optimize feature extraction using
the training and test sets.
• Model time series data using the GRNN model and train the
model using the training and test sets.

• Optimize the hyperparameters of the BO-BERT-GRNN model
using a Bayesian optimization algorithm to improve the model
performance.
• Train and validate the BO-BERT-GRNN model using training
and test sets to classify and predict features.

Step 3: Model Evaluation and Result Analysis

• Different evaluation metrics such as precision, recall, inference
time, number of parameters, training time, Flops, and accuracy
are used on the test set to evaluate the BO-BERT-GRNNmodel.
BERT-GRNNmodel performance is evaluated.
• Calculate the mean and standard deviation of each metric
and compare the performance of the BO-BERT-GRNN model
under different metrics.
• Analyze and explain the performance of the BO-BERT-GRNN
model in the application of innovative management analysis
of financial trading strategies for smart grids, and make
recommendations for improvement and optimization.

The following is the mathematical formula for comparing
indicators.

• Precision: Precision is specific to the prediction result and
indicates how many of the samples predicted to be cheerful are
positive.

Precision = TP/(TP+ FP) (6)

Where TP means True Positive and FP means False Positive.

• Recall: Recall is for the original positive sample; it indicates how
many positive cases in the model were predicted correctly.

Recall = TP/(TP+ FN) (7)

Where TP means actual cases, and FN means false adverse claims.

• Inference Time: Inference time is usually measured in seconds,
from when the model receives an input to when it produces an
output.
• Parameters:The number of parameters in the model is the total
number of parameters to be learned in the model tuned to
minimize the loss function during model training.
• Training Time: Training time is the time from the start of
training to the completion of the activity of the model, usually
measured in seconds, minutes, hours, or days. it depends on
the model’s complexity, the training set’s size, the computing
device’s performance, and the optimization algorithm.
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FIGURE 5
Model Oad et al., 2023; Ahmad et al., 2022; Khan et al., 2023; Mohamed, 2022 and ours model experimental visualization of Accuracy metrics,
Precision metrics, and Recall metrics on EIA dataset and ACER dataset.

TABLE 2 Chart summarizing the experimental findings of themodel Oad et al., 2023; Ahmad et al., 2022; Khan et al., 2023; Mohamed, 2022 and ours model in
the EIA database and the ACER database.

Model Dataset

EIA dataset ACER dataset

Accuracy Precision Recall Accuracy Precision Recall

Oad et al. (Oad et al., 2023) 0.5166 0.6152 0.6113 0.6105 0.6116 0.5962

Ahmad et al. (Ahmad et al., 2022) 0.7108 0.6158 0.6784 0.6563 0.6305 0.6516

Khan et al. (Khan et al., 2023) 0.7641 0.7361 0.7679 0.7833 0.7859 0.759

Mohamed (Mohamed, 2022) 0.8849 0.8787 0.8913 0.8148 0.8613 0.8528

ours 0.9352 0.9268 0.9355 0.9349 0.9232 0.9195

• Flops: Flops is an acronym for floating-point operations per
second and is used to measure the computational power of a
computer or computing device. In deep learning, Flops are often
used to measure the complexity of a model or computational
requirements.

Flops = numberofoperations inthemodel

⋆ numberof floatingpointoperationsperoperation (8)

• Accuracy: Accuracy is the most commonly used metric for
evaluating classification models and indicates the percentage of
total samples correctly predicted by the model.

Accuracy = (TP+TN)/ (TP+TN+ FP+ FN) (9)

TP denotes actual cases, TN denotes fundamental negative points,
FP denotes false positive claims, andFNdenotes false adverse claims.

BO-BERT-GRNN-based innovative management analysis
model for intelligent grid financial trading strategies is a neural
network model that combines Bayesian optimization, bidirectional
encoder representation from Transformer, and gated recurrent
neural network. We conducted a series of experiments and found
that the model performs better with different datasets and data
volumes, has higher performance stability, and suffers the most
negligible impact compared to other model groups. Combining
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FIGURE 6
Oad et al., 2023; Ahmad et al., 2022; Khan et al., 2023; Mohamed, 2022 and ours model comparing Accuracy metrics and Precision metrics in ICER
dataset and NEA dataset.

TABLE 3 Chart summarizing the experimental findings of themodel Oad et al., 2023; Ahmad et al., 2022; Khan et al., 2023; Mohamed, 2022 and ours model in
the ICER database and the NEA database.

Model Dataset

ICER dataset NEA dataset

Accuracy Precision Recall Accuracy Precision Recall

Oad et al. (Oad et al., 2023) 0.5294 0.6177 0.5292 0.5539 0.5162 0.5462

Ahmad et al. (Ahmad et al., 2022) 0.768 0.7556 0.628 0.7905 0.6551 0.6363

Khan et al. (Khan et al., 2023) 0.7722 0.7503 0.7188 0.7498 0.7253 0.7505

Mohamed (Mohamed, 2022) 0.8319 0.8239 0.8784 0.8874 0.847 0.8458

ours 0.9457 0.9348 0.9367 0.9539 0.9364 0.9383

the results of multiple sets of experiments, we can conclude that
the BO-BERT-GRNN-based innovation management analysis
model for intelligent grid financial transaction strategies has high
accuracy and stability and has good performance in predicting key
indicators in smart grid financial transaction strategies, which helps
enterprises to realize their business goals. In addition, the model
has good generalization ability, which can be adapted to different
application scenarios and provide enterprises with a broader range
of application scenarios.

4.3 Experimental results and analysis

In Figure 5, we compared the performance of different models
on twodatasets, the EIAdataset and theACERdataset.Wemeasured

each model’s accuracy, precision, and recall to assess its prediction
ability for critical metrics.

From the experimental results, it can be seen that our proposed
model() performs best on both datasets. In particular, on the ACER
dataset, our model achieves an accuracy of 0.9349, a precision of
0.9232, and a recall of 0.9195, which is significantly better than
other models. In addition, our model performs stably on both
datasets with minimal impact, which indicates that our model has
better stability and robustness and has high accuracy and stability
in predicting key metrics in smart grid financial trading strategies,
which can help companies achieve their business goals.

Table 2 shows the graphs of the experimental data results of the
above experiments.

In Figure 6, We compare the performance of different models
on the ICER and NEA datasets. This experiment aims to evaluate
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FIGURE 7
Model Oad et al., 2023; Ahmad et al., 2022; Khan et al., 2023; Mohamed, 2022 and ours mode on EIA dataset, ACER dataset, ICER dataset and NEA
dataset.

TABLE 4 Chart summarizing the experimental findings of themodel Lage and Castro, 2022; Rezaeimozafar et al., 2022; Guo et al., 2022; Ibrahim et al., 2022 and
ours model in the EIA database and the ACER database.

Model Dataset

EIA dataset ACER dataset

Parameters Flops(G) Training
time(S)

Inference
time (ms)

Parameters Flops(G) Training
time(S)

Inference
time (ms)

Lage and Castro (Lage and Castro, 2022) 347.4 368.43 309.42 235.15 276.14 347.44 274.44 244.5

Rezaeimozafar et al. (Rezaeimozafar et al., 2022) 234.89 261.95 245.56 244.47 240.96 227.77 266.41 259.86

Guo et al. (Guo et al., 2022) 218.43 200.71 203.13 218.77 207.88 209.45 216.84 206.33

Tbrahim et al. (Ibrahim et al., 2022) 156.53 183.1 184.45 144.87 134.48 163.61 133.13 136.87

ours 109.23 104.44 104.85 102.49 104.21 103.44 105.18 103.73

the performance of the Bo-BERT-GRNN model in this domain
and provide a reference for further optimizing the management of
financial trading strategies.

During the experiment, we compare the performance of
different models on Accuracy and Precision metrics and show
the results using tables. From the table, it can be seen that
our proposed Bo-BERT-GRNN model performs the best on both
datasets in terms of Accuracy metrics, reaching 0.9457 and 0.9539,
respectively. In contrast, in terms of Precision metrics, the model
performs well on both datasets, achieving 0.9348 and 0.9364
accuracies. In contrast, the other models performed differently

on different datasets but generally performed poorly on the
Accuracy and Precision metrics. The results show that the Bo-
BERT-GRNN model has high predictive ability and stability in
analyzing the innovationmanagement of financial trading strategies
for smart grids, which can help companies better formulate and
manage financial trading strategies. In addition, the results of this
experiment provide a valuable reference for further optimizing the
management of financial trading strategies.Table 3 shows the graphs
of the experimental data results of the above experiments.

In Figure 7, We selected four datasets, ICER, NEA, EIA,
and ACER, to compare the performance of different models in
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FIGURE 8
Parameters metrics, Flops metrics, Training time metrics, and Inference time metrics for the Lage and Castro, 2022; Rezaeimozafar et al., 2022;
Guo et al., 2022; Ibrahim et al., 2022 as well as for our models in the EIA database and ACER database Experimental Visualization.

innovationmanagement analysis of intelligent grid financial trading
strategies. We mainly compared the recall metrics, and with the
experimental results in Table 3 and Table 4, we draw the following
conclusions:

We note that our model exhibits a high recall rate on the EIA,
ACER, ICER, and NEA datasets, which is advantageous compared
to the other models. This suggests that the model has potential
applications in smart grid financial transaction identification, which
can better detect possible transaction anomalies and improve
transaction regulation’s effectiveness and efficiency.

In Figure 8, To evaluate the performance of different models in
analyzing the innovationmanagement of financial trading strategies
for smart grids. We selected two datasets, the EIA dataset and the
ACER dataset, which contain many financial transaction data and
related information. We evaluated five different models, including
the Lage and Castro model, the Rezaeimozafar et al. model, the
Guo et al. model, the Tbrahim et al. model, and our own proposed
model. We compared the performance of these models in terms of
performance metrics such as the number of parameters, floating-
point operations (Flops), training time and inference time. We
organized the experimental results in Table 4.

During our experiments, we first downloaded the EIA
and ACER datasets and imported them into our computing
environment. Then, we implemented five different models and
used the PyTorch framework for training and inference. We
used the Adam optimizer and cross-entropy loss function during
training with appropriate hyperparameters. We used the test
set data in the inference process and recorded the inference
time.

On both datasets, the EIA and ACER datasets, our proposed
model performs optimally regarding performance metrics such
as the number of parameters, Flops, training time, and inference
time. This indicates that our model has high efficiency and
accuracy and can perform better in real applications. Other models
perform differently on different datasets but generally have lower
performance metrics. For example, the Lage and Castro model
performs poorly on the EIA dataset, while the Ibrahim et al. model
does not perform well on the ACER dataset. Our experimental
results show that our proposed model performs optimally on both
datasets with the advantages of the lower number of parameters,
Flops, and inference time, and our proposed model has high
performance in analyzing the innovation management of financial
trading strategies for smart grids and can be used in practical
applications with higher efficiency and accuracy. This provides
a valuable reference for further optimizing the management of
financial trading strategies.

In Figure 9, We compare the performance of the five models
on four datasets. According to Table 4 and Table 5, it can be
seen that our models exhibit excellent performance on several
datasets, including having a smaller number of parameters and
lower FLOPs on the EIA and ACER datasets, as well as showing
shorter training and inference times on the ICER and NEA
datasets. These advantages enable the Bo-BERT-GRNN model to
quickly process large-scale financial data in the electricity market,
including historical price data, energy supply, demand forecasts,
etc.

And our model performs best on the NEA dataset, having the
lowest number of parameters, FLOPs, and shortest training and

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1269059
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2023.1269059

FIGURE 9
Comparative experimental visualization of Parameter metrics, Flops metrics, and Training time metrics of model Lage and Castro, 2022;
Rezaeimozafar et al., 2022; Guo et al., 2022; Ibrahim et al., 2022 and ours model on EIA dataset, ACER dataset, ICER dataset, and NEA dataset.

TABLE 5 Chart summarizing the experimental findings of themodel Lage and Castro, 2022; Rezaeimozafar et al., 2022; Guo et al., 2022; Ibrahim et al., 2022 and
ours model in the ICER database and the NEA database.

Model Dataset

ICER dataset NEA dataset

Parameters Flops(G) Training
time(S)

Inference
time (ms)

Parameters Flops(G) Training
time(S)

Inference
time (ms)

Lage and Castro (Lage and Castro, 2022) 359.74 360.39 308.68 371.52 313.24 341.27 339.81 322.35

Rezaeimozafar et al. (Rezaeimozafar et al., 2022) 222.37 266.91 264.45 236.86 229.74 213.74 284.54 267.94

Guo et al. (Guo et al., 2022) 195.35 194.02 207.61 210.04 210.34 200.95 204.81 214.76

Tbrahim et al. (Ibrahim et al., 2022) 159.14 135.95 156.03 144.7 137.82 182.72 152.11 159.59

ours 108.11 103.01 104.45 103.33 102.65 102.97 109.11 106.96

inference time. This means that our model can process data more
efficiently in analyzing innovative management of financial trading
strategies for smart grids, thus improving the accuracy and efficiency
of trading decisions.

Therefore, our proposed BO-BERT-GRNN model has a good
application prospect in smart grid financial trading strategy
innovation management analysis, which can improve the efficiency
and accuracy of data processing and thus help power market
participants make more informed trading decisions. This is the
general data table for and Figure. In table, we have selected several
important metrics and the best data values for each group of
models to visualize the results of our experiments. The bolded
parts of the table represent the best data in each group of
experiments.

5 Conclusion

This study investigates the innovation management problem of
financial trading strategies for power system planning using the
BO-BERT-GRNN model. The proposed model, which integrates
Bayesian optimization, BERT model, and gated recurrent neural
network, demonstrates its effectiveness in improving the efficiency
and accuracy of model training, extracting features from historical
data, and modeling and predicting power system planning.

The experiments conducted in this study validate the
superior performance and generalization ability of the BO-
BERT-GRNN model in various aspects of power system
planning, including price prediction, energy transaction
risk management, and energy asset allocation. The findings

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1269059
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Zhang et al. 10.3389/fenrg.2023.1269059

highlight the significance of this innovative management model
in achieving electricity asset allocation, market risk management,
and revenue maximization objectives. However, there are some
shortcomings in our study, such asThedataset used in our studymay
have some limitations andmay not cover all electricity markets, thus
affecting the generalization and application of our model. Together
with the high complexity of the BO-BERT-GRNN model, a large
amount of computational and storage resources are required to
support the training and application of the model. This may limit
the model’s scope of use and efficiency in practical applications. We
will continue to address these issues, improve the model, and refine
the research results.

6 Discussion

The results and implications of this study open up avenues
for discussion on the innovative management of financial trading
strategies in the field of power system planning. The integration
of Bayesian optimization, BERT model, and gated recurrent neural
network offers a comprehensive approach to address the challenges
faced in the energy trading market.

The application of the BO-BERT-GRNN model not only
enhances transaction efficiency and reduces costs but also
provides valuable market insights for decision-making. By
leveraging historical data, the model captures relevant features
and patterns, enabling more accurate predictions and informed
trading decisions.Furthermore, the BO-BERT-GRNN model’s
generalization ability enables it to adapt to different scenarios and
contribute to the optimization of energy asset allocation. This has
practical implications for stakeholders in the smart grid financial
transactions domain, as it can lead to improved risk management
strategies and revenue maximization.

It is important to acknowledge that further research is needed
to explore the potential of other models and techniques in the
context of power system planning. Additionally, the integration
of external factors, such as policy changes and market dynamics,
can enhance the model’s predictive capabilities and decision-
making process. This study contributes to the advancement of
innovative management in financial trading strategies for power
system planning. The findings serve as a foundation for future
research and provide valuable insights for industry practitioners and
policymakers seeking to optimize energy trading processes in the
smart grid system.
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