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Combined economic/emission dispatch (CEED) is generally studied using
analytical objective functions. However, for large-scale, high-dimension power
systems, CEED problems are transformed into computationally expensive CEED
(CECEED) problems, for which existing approaches are time-consuming and may
not obtain satisfactory solutions. To overcome this problem, a novel data-driven
surrogate-assisted method is introduced firstly. The fuel cost and emission
objective functions are replaced by improved Kriging-based surrogate models.
A new infilling sampling strategy for updating Kriging-based surrogate models
online is proposed, which improves their fitting accuracy. Through this way, the
evaluation time of the objective functions is significantly reduced. Secondly, the
optimization of CECEED is executed by an improved non-dominated sorting
genetic algorithm-II (NSGA-II). The above infilling sampling strategy is also used to
reduce the number of evaluations for original mathematic fitness functions. To
improve their local convergence ability and global search abilities, the individuals
that exhibit excellent performance in a single objective are cloned and mutated.
Finally, information about the Pareto front is used to guide individuals to search for
better solutions. The effectiveness of this optimization method is demonstrated
through simulations of IEEE 118-bus test system and IEEE 300-bus test system.
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1 Introduction

In power systems, combined economic/emission dispatch (CEED) problem involves the
minimizations of cost and emission while meeting load demand and satisfying operation
constraints (Xu et al., 2022). It is an optimization problem with strongly real-time
requirements (Li et al., 2020). Mathematical methods for solving it include nonlinear
and linear programming methods (Lai et al., 2022). Meta-heuristic algorithms are
employed to solve it. For example, multi-objective hybrid bat algorithm (MHBA) (Liang
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et al., 2018), non-dominated sorting genetic algorithm (NSGA) (Deb
et al., 2002), and the improved non-dominated sorting genetic
algorithms (Muthuswamy et al., 2015), etc.

However, the above approaches are better suitable to solve
CEED problems in low-dimension, small-scale power systems.
Along with the expansion of the power grid, the complexity of a
power system is greatly increased (Wang et al., 2023), which
increases the decision-making dimension of CEED problems (Qu
et al., 2023). Unfortunately, existing methods become inefficient
when applied to computationally expensive combined economic/
emission dispatch (CECEED) problems (Zhang and Yu, 2023).
Existing methods are often time-consuming for real-time
dispatching, and their solutions generally have low accuracies or
may not even converge (Li and Xu, 2018). Therefore, for large-scale,
high-dimension power systems, traditional CEED problems are
transformed into CECEED problems (Li et al., 2022). New
method that is suitable for solving CECEED problems is urgently
required.

Data-driven surrogate-assisted schemes are widely applied for
solving computationally expensive problems by employing
surrogate models (Yu et al., 2022). Accurate surrogate model is
indispensable in data-driven optimization (Gao et al., 2023). Many
kinds of surrogate models are applied in industrial community
including support vector regression (SVR) models, artificial
neural network (ANN), linear regression models, etc. In Ref. (Lin
et al., 2023), SVR-based NSGA was applied for solving dispatching
problems. Objective functions were replaced by SVR models while
reducing the computing time. However, it was powerless for solving
high-dimension dispatching problems. In Ref. (Pang et al., 2023), a
data-driven bat algorithm was proposed for solving economic
dispatch (ED) problems. It allowed the ED problems to be
solved, but the computing time was spent still relatively long.
Ref. (Linka et al., 2021). proposed a data-driven ANN. Few data
were used to build ANN with good performance. Though it reduced
computing time, the accuracy was low. Based on the above analysis,
the data-driven surrogate-assisted method shows its feasibility and
superior performance in solving complex scheduling problems.

Effective meta-heuristic algorithms are also the keys to reducing the
execution time. For example, a dynamic crowding distance was added to
NSGA-II (Muthuswamy et al., 2015), and prohibited operating zones
(POZs) were considered for improving the accuracy. However, it did not
incorporate sufficient guidance for searching, and the computing time
remained a problem. MHBA (Liang et al., 2018) searched each single
dimension for excellent solutions in CEED problems. To reduce
computation time, parallel computing was used. However, MHBA
could only deal with the CEED problem in terms of improving the
performance of the algorithm, and does not take into account the time-
consuming objective function of CEED model. Thus, it is important to
build a meta-heuristic algorithm for fast and accurate convergence in
CECEED problems.

Based on the above analyses, CECEEDproblems need to be solved at
two levels. The first level involves employing accurate surrogate models
to replace computationally expensive objective functions. The second
level involves enhancing convergence and search ability of a meta-
heuristic algorithm. In this paper, a novel data-driven surrogate-assisted
NSGA-II is proposed for solving CECEED problems. The approach
combines a Kriging surrogate model and an enhanced NSGA-II to
reduce the execution time. Firstly, an online data-driven Kriging-based

surrogate model is introduced for replacing objective functions.
Secondly, the original NSGA-II is improved to enhance its
performance and to determine what data points should be used for
updating Kriging model. The major outcomes of this paper are.

(i) An improved online Kriging surrogate model is proposed.
Mathematic fuel cost and emission functions in CECEED
problems are replaced by online Kriging-based surrogate
models to reduce evaluation time. Specifically, initial Kriging
surrogate model is constructed by considering random
candidate solutions. As the optimization proceeds, additional
sampling points, selected from the Pareto front, are added into
the initial data set which is utilized for updating Kriging
surrogate models. By this way, evaluation time, accuracy,
and stability of the proposed surrogate model are improved.

(ii) Two improved strategies are applied to enhance convergence and
uniformity of Pareto front. Furthermore, more accurate dispatching
decisions of CECEED problems can be obtained. Convergence and
uniformity of the Pareto front are intuitively reflected in the
Euclidean distance between individuals. The convergence is
improved by reducing the distance between individuals far from
the Pareto front and individuals on the Pareto front. The uniformity
is then improved by increasing the Euclidean distance between
individuals that are too close to each other.

(iii) Two novel methods for enhancing the global and local search
capabilities of NSGA-II are proposed. Furthermore, more
diverse dispatching decisions of CECEED problems can be
obtained. Firstly, a cloned edge particles search approach is
proposed to improve both capabilities. Secondly, because the
search performance can be visualized in terms of Pareto front
extensibility, a linear combination method based on the
position relationship between current population extreme
values and Pareto front extreme values is proposed for
improving the extensibility.

The remainder of this paper is organized as follows. Section
2 describes traditional CEED problem and CECEED problems.
Section 3 describes an online Kriging-based data-driven surrogate
model and Kriging-based NSGA-II (K-NSGA-II). Section 4 presents
simulation results from the proposed method and existing
approaches on IEEE 118-bus and 300-bus test systems. Section
5 summarizes this paper by showcasing its contributions and
suggests some research directions for future work.

2 Problems description

This section describes CEED problems and CECEED problems.
It is also important to build data-driven surrogate models for
CECEED problems (Li et al., 2021). The objective functions and
constraints are given as follows.

2.1 Objective functions and constraints

The objective functions (Sheng et al., 2023) of fuel cost and
pollutant emission are described as follows. The first objective is
minimizing the total cost:
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C Pgi( ) � ∑Ng

gi�1 agiP
2
gi + bgiPgi + cgi[ + dgisin(egi Pmin

gi − Pgi( )∣∣∣∣∣ ∣∣∣∣∣,
(1)

where C (Pgi) represents the fuel cost function; Ng represents the
total number of units; Pgi represents the active power of gith unit;
Pgi

min represents the minimum active power of gith unit; agi, bgi, cgi,
dgi, and egi represent the coefficients of C (Pgi). (agiP2

gi + bgiPgi + cgi)
is the quadratic consumption characteristic curve of gith unit.
|dgisin(egi (Pmin

gi − Pgi)| represents the valve point effect of gith

unit. When the inlet valve of steam turbine is suddenly opened,
the phenomenon of wire drawing will superimpose a pulsation effect
on the consumption characteristic curve. This is the valve point
effect.

The second objective is minimizing the emission which is caused
by fuel burning. Atmospheric pollutants such as sulfur oxides (SOx)
and nitrogen oxides (NOx) produced by units can be simulated
separately. However, for comparison purposes, the total emission of
these pollutants (a comprehensive pollution emission model) is the
sum of the quadratic and exponential functions (the exponential
function provides more accurate representation):

E Pgi( ) � ∑Ng

gi�1 10−2 αgiP2
gi + βgiPgi + γgi( ) + εgiexp λgiPgi( )[ ], (2)

where E (Pgi) represents emission function; αgi, βgi, γgi, εgi, and λgi
represent coefficients of E (Pgi).

The constraints are described as follows.

(1) Active/reactive power constraints

Pgi
min ≤Pgi ≤Pgi

max (3)
where Pgi

min and Pgi
max are the minimum and maximum active

power of gith unit, respectively.

Qgi
min ≤Qgi ≤Qgi

max (4)
where Qgi

min and Qgi
max are the minimum and maximum reactive

power of gith unit, respectively.

(2) Power balance constraints and load flow calculation

The power balance can be satisfied with load flow calculation:

Pgi − Pdgi − Vgi ∑Nbuses

gj�1
Vgj Ggi,gj cos θgi,gj + Bgi,gj sin θgi,gj( ) � 0, (5)

where Pdgi represents the power load at gith bus; Vgi represents the
voltage at gith bus; Vgj represents the voltage at gjth bus; θgi,gj =
θgi − θgj (θgi and θgj represent the voltage angles of gith and gjth

buses, respectively.); Ggi,gj is transfer conductance within gith and
gjth buses; Bgi,gj is transfer susceptance within gith and gjth buses;
Nbuses represents that total Nbuses buses are contained in a power
system.

Qgi − Qdgi − Vgi ∑Nbuses

gj�1
Vgj Ggi,gj sin θgi,gj − Bgi,gj cos θgi,gj( ) � 0, (6)

where Qdgi represents the reactive load at gith bus.

(3) Voltage constraints

Vgi
min ≤Vgi ≤Vgi

max (7)
where Vgi

min, Vgi
max, and Vgi represent the minimum, maximum,

and current voltage of gith bus, respectively.

(4) Line flow constraints

Sl ≤ Sl
max, l � 1, . . . , Nlines, (8)

where Sl and Sl max represent line flow and upper limit line flow of lth

transmission line.

(5) Ramp rate constraints

Pgi − P0
gi ≤URgi,

P0
gi − Pgi ≤DRgi,

{ (9)

where P0
gi represents previous active power of gith unit; URgi and

DRgi represent up and down ramp rate of gith unit, respectively.

(6) Prohibited operating zones (POZs) constraints

Pgi
min ≤Pgi ≤Pl

gi,1

Pu
gi,gk−1 ≤Pgi ≤Pl

gi,gk, gk � 2, . . . , Kgi,
Pu
gi,Kgi−1 ≤Pgi ≤Pgi

max

⎧⎪⎪⎨⎪⎪⎩ (10)

where Kgi represents the number of prohibited operation zones of
gith unit; Pu

gi,gk−1 and Pl
gi,gk represent upper and lower limit

of kth POZ.

2.2 Descriptions of CECEED problems

Computationally expensive optimization problem refers to a
class of optimization problems that require expensive or even
unaffordable costs when evaluating alternative solutions. This
class of problems exists widely in many importantly practical
application scenarios. On one hand, “computationally expensive”
means that the evaluation itself needs to consume a lot of time or
other expensive costs. On the other hand, it also includes some
problems can be transferred to computationally expensive
optimization problem within a time-sensitive scene.

As to CECEED problems, on one hand, the computationally
expensive challenge is caused by the high-dimension decision
variables. On the other hand, due to the time-sensitive
dispatching cycle, the CEED problems become computationally
expensive. Thus, it is urgent to find a suitable method for solving
CECEED problems quickly and accurately.

To reduce execution time of CECEED problems, surrogate-
assisted technology can be employed. Original objective functions
are replaced by trained surrogate models. The replacements of
objective functions reduce evaluation time.

3 Description of Kriging-assisted
optimization approach

This section describes the Kriging-assisted optimization
approach for CECEED problems. Kriging models are constructed
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for replacing objective functions. To enhance accuracy of surrogate
model, a novel infilling sampling strategy is proposed to update
Kriging-based model online. The proposed K-NSGA-II method is
employed to execute the optimization of CECEED. As the iterations
proceed, the selected candidate solutions from the Pareto front are
used not only for the actual evaluation, but also for the updating of
the Kriging-based surrogate model.

3.1 Kriging-based surrogate model

3.1.1 Modeling of surrogate model
Existing approaches for solving CECEED problems usually

require long time (Sharifian and Abdi, 2023), which is too long
for scheduling cycle. Some methods suffer from “curse of
dimensionality”, which results in non-convergence. To overcome
this drawback, Kriging model is improved for replacing original
objective functions with short evaluation time (Li et al., 2022).

The input data of Kriging surrogate model is a certain candidate
solution (x), where x represents the power generating capacities of Ng

units (P1, ..., Pgi, ..., PNg). The output value of Kriging surrogatemodel is
the total fuel cost (C*(x)) or emission (E*(x)) when the power
generating capacities are P1, ..., Pgi, ..., PNg. The modeling method of
Kriging-based surrogate model can be described as follows. For training
a Kriging-based surrogate, the initial data set contains total n kinds of
different dispatching decisions x1, x2, . . . , xn. Taking the fuel cost
function as an example, the corresponding labels are
C(x1), C(x2), . . . , C(xn), where C(x1), C(x2), . . . , C(xn) are real
fuel cost values corresponding to x1, x2, . . . , xn. Kriging model aims
to compute the prediction value of unknown points through known
points. In other words, Kriging model is an interpolation model whose
expected result is a linearly weighted sum of known points. For another
candidate solution (dispatching decision) x, the expected fuel cost value
(C*(x)) can be obtained by:

C* x( ) � ∑n
k�1

λkb x( ) + Z x( ), (11)

where C*(x) is the expected fuel cost value (obtained by Kriging
surrogate model) of prediction point x; b(x) represents the basic
function; λk is the unknown weight coefficient of the k-th basic
function; Z(x) is the random error whose mean value is zero.
According to Eq. 11, modeling the Kriging-based surrogate model is
equal to determining the weight coefficients (λ1, ..., λk, ..., λn) (Liu
et al., 2022). One-order universal Kriging models are used to fitting
the objective functions in CECEED problems. The Kriging-based
surrogate model satisfy:

∑n
k�1

λkCov C* xk( ), C* xj( )[ ] + δb xj( ) � ∑n
k�1

Cov C* xk( ), C* xj( )[ ],
(12)

where δ is a Lagrange multiplier.

Cov C* xk( ), C* xj( )[ ] � σ2R R xk, xj( )[ ], (13)
where σ2 represents the variance of C*(x), R[·] represents a n × n
symmetric correlation matrix; R(xk, xj) represents the spatial
correlation function of xk and xj which can be described as
Gaussian covariance function:

R xk, xj( ) � exp −∑Ng

gi�1
θgi xk,gi − xj,gi( )2⎡⎢⎢⎣ ⎤⎥⎥⎦, (14)

where Ng is the dimension of x (equal to the number of units); θgi
represents the gith parameter of covariance function. The θgi is
obtained by the maximum likelihood estimation. Then, all λk in Eq.
12 can be obtained. Finally, the objective value of the expected point
x can be obtained by:

C* x( ) � ∑n
k�1

λkC* k( ), (15)

Compared with original objective functions, Kriging-based
surrogate models significantly reduce the evaluation time.
Different original objective functions (fuel cost function without
valve point effect, fuel cost function with valve point effect, and
emission function) for the CECEED in IEEE 118-bus test system are
chosen for verifying the effectiveness of Kriging-based surrogate
models. Total runtimes (sum of 50 runtimes) of original functions
are 0.001982 s, 0.001878 s, and 0.003166 s, respectively. Total
runtimes (sum of 50 runtimes) of surrogate models are
0.000792 s, 0.000458 s, and 0.002062 s, respectively. The Kriging
model reduce the evaluation time of three objective functions by
60.04%, 59.64%, and 34.87%, respectively. This demonstrates that
Kriging model greatly reduces the evaluation time of objectives.

3.1.2 Update of Kriging-based surrogate model
Due to the remarkable fluctuation of data, the accuracy of the

Kriging model might not be sufficient (Qian et al., 2023). Kriging
model is established on the principle that expected value is similar to
that of nearby points. This principle leads to inaccurate predictions
of volatile points by the Kriging-based surrogate model. To
overcome this drawback, a novel infilling sampling strategy is
proposed. The schematic diagram of the proposed infilling
sampling strategy is shown as Figure 1A. As the iteration goes
on, Pareto front is constantly updated. Some points (circular marks
in Figure 1A) with better convergence and diversity occur. However,
these points are not included in the data set of the trained Kriging
surrogate model. This results in a decrease in the accuracy of the
trained surrogate model (The fitting accuracy near the circular
marks is lower than that near the fork marks). Thus, these points
with circular marks can be added to the data set for updating the
Kriging surrogate model.

Figure 1A Schematic diagram of the proposed Figure 1B.
Infilling sampling strategy of Kriging infilling sampling strategy.
model in IEEE 118-bus test system.

To further illustrate the effectiveness of the proposed infilling
sampling strategy, a CECEED optimization of IEEE 118-bus system
is taken as an example. The process of adding points in this strategy
is shown in Figure 1B. This strategy enhances the accuracy degree of
Kriging model. The inspiration comes from changes in the Pareto
front. As the iteration proceed, Pareto front is continuously updated.
Assume that there are 100 iterations, and the current Pareto front is
recorded every 20 iterations. Candidate solutions, which are
inconsistent with the last recorded Pareto front, are selected from
the current Pareto front. They are then computed by the original
objective functions. This means that the real fitness values are
generated, representing the latest optimization information
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(sampling). The selected points are added to update Kriging-based
surrogate models (infilling).

The infilling sampling strategy is executed four times during the
optimization process, with 4, 19, 12, and 12 new data points added,
respectively. Generally, the added points have a higher degree of
convergence than the existing ones. This means that the current
Pareto front is closer to the real one. The principle of Krigingmodels is
that things that are closer to each other are more similar than things
that are farther away from each other. Thus, the principle and
proposed strategy are essentially consistent. More importantly, the
infilling sampling strategy guides direction of optimization, as shown
in Figure 1A. The accuracy of Kriging model is guaranteed. Figures
2A–D compare Kriging-based surrogate models with or without
updating in terms of the mean absolute percentage error (MAPE)
andmean square error (MSE). The number of iterations is 100 and the
results are averaged over 50 independent tests. Because update
strategy is executed every 20 iterations, average MAPE and MSE
of 20 generations are selected for comparison and shown in Table 1.

Figure 2AMAPE of Kriging model (emission). Figure 2B.MAPE
of Kriging model (fuel cost). Figure 2C. MSE of Kriging model (fuel
cost). Figure 2D. MSE of Kriging model (emission).

For the updated Kriging-based surrogate model, there are two levels
of improvement. The four updates improve the MAPE by 23.73%,
9.75%, 2.75%, and 0.45%, respectively. This illustrates that the accuracy
of Kriging-based surrogate model improves after each update and that
the infilling sampling strategy is effective. Compared with the original
model (Kriging-based surrogate model without updating), the
improvements in the MAPE are 3.93%, 16.15%, 16.42%, and 12.97%
in the four updates, respectively. This illustrates that the infilling
sampling strategy contributes to better model accuracy.

As for emission function, the situation is similar. The four updates
improve theMAPE by 0.55%, 0.03%, −0.16%, and 0.19%, respectively.
Although there is a slight decline in accuracy at the third update, the

other updates improve the accuracy. Compared with original model,
the MAPE improves by 3.93%, 16.15%, 16.42%, and 12.97% over the
four updates, respectively. Thus, this strategy enhances the
performance of Kriging-based surrogate model.

3.2 Introduction of K-NSGA-II

To solve CECEED problems, NSGA-II suffers from poor
convergence (Wei et al., 2022), uniformity, search ability, and
extensibility (Chen et al., 2023). To overcome these drawbacks,
optimization strategies are applied to Pareto front and search
pattern to enhance performance. The convergence, uniformity,
extensibility, and search ability of proposed K-NSGA-II are
enhanced through the proposed optimization strategies. Additionally,
the usage of Kriging surrogatemodels reduces evaluation time. The flow
tree of K-NSGA-II process is described in Figure 3. It can be seen that
original NSGA-II flowchart is shown in the black solid frame and the
improvements of K-NSGA-II are shown in red dashed box. The
evaluations of objective functions are replaced by the evaluations of
Kriging surrogate functions. Two kinds of optimization strategies are
added to original NSGA-II. The optimization of Pareto front, the
improvement of search ability, and the simulation results are
described in Section 3.2.1, Section 3.2.2, and Section 3.2.3, respectively.

3.2.1 Enhanced convergence and uniformity
The application of NSGA-II to CECEED problems would result

in insufficient convergence and uniformity (Li et al., 2022). The
variant operators in NSGA-II are liable to produce precocious genes
in early stages. Furthermore, these genes may constitute a high
proportion. This leads to some decreases in the convergence and
uniformity. To overcome these drawbacks, two optimal strategies
are applied to enhance convergence and uniformity, respectively.

FIGURE 1
The proposed infilling sampling strategy. (A) Schematic diagram of the proposed infilling sampling strategy. (B) Infilling sampling strategy of Kriging
model in IEEE 118-bus test system.
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3.2.1.1 Strategy to improve convergence
S1: For each individual xi, i � 1, . . . , N, where N is the

population number in the offspring set, the fitness values yv,i, i �
1, . . . , N are computed by Kriging model.

S2: For each yv,i, the nearest solution fv,i on Pv is identified
(where Pv is the current Pareto front).

S3: The distances d1,i, i � 1, . . . , N, between every yv,i and the
nearest fv,i are computed.

S4: The average dmean,1 of all distances is computed.
S5: If d1,i is greater than or equal to dmean,1, xi is replaced by

xnew,1
i according to:

R0 ∈ 1, 10[ ],
xnew,1
i j( ) � e j( ) + R0e j( )Φ,{ (16)

where R0 is a random constant between 1 and 10, Φ is a random
variable that obeys the normal distribution, j ranges from 1 to V

FIGURE 2
Accuracy comparison of Kriging model. (A)MAPE of Kriging model (emission). (B)MAPE of Kriging model (fuel cost). (C)MSE of Kriging model (fuel
cost). (D) MSE of Kriging model (emission).

TABLE 1 MAPE and MSE comparisons of Kriging-based surrogate model.

Mean value of 20 iterations Original fuel cost
model

Updated fuel cost
model

Original emission
model

Updated emission
model

Index MAPE MSE MAPE MSE MAPE MSE MAPE MSE

1–20 iterations 0.7049 8.13E-02 0.7049 8.13E-02 0.9890 1.58E-04 0.9890 1.58E-04

21–40 iterations 0.8392 1.46E-01 0.8722 1.58E-01 0.9933 3.54E-04 0.9944 3.10E-04

41–60 iterations 0.8241 1.41E-01 0.9572 1.78E-02 0.9929 3.32E-04 0.9947 2.73E-04

61–80 iterations 0.8448 7.26E-02 0.9835 1.50E-03 0.9914 2.31E-04 0.9931 1.60E-04

81–100 iterations 0.8745 1.92E-02 0.9879 1.10E-03 0.9933 3.73E-05 0.9950 3.17E-05
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(dimension of individual), and e(j) represents the solution
corresponding to fitness value fv,i. As shown in Figure 4A, this
strategy improves convergence by replacing points far from the
Pareto front with points near the Pareto front.

3.2.1.2 Strategy to improve uniformity
S1: For each individual xi, i � 1, . . . , N, the fitness values

yv,i, i � 1, . . . , N, are computed by the surrogate models.
S2: For each yv,i, the nearest corresponding fitness value

yv,k, k ≠ i, is identified in the offspring set.
S3: The distances d2,i, i � 1, . . . , N, between yv,i and

corresponding yv,k are computed.
S4: The average value d2,mean of all distances is computed and

compared with every d2,i.
S5: If d2,i is less than or equal to d2,mean, xi is replaced by xnew,2

i

according to:

R1 ∈ 1, 2[ ],
xnew,2
i j( ) � xi j( ) − R1 b1 − b2( ) xi j( ) − xk j( )[ ],{ (17)

where R1 is a random constant between 1 and 2, b1 and b2 are
random variables between 0 and 1 that obey the average distribution,
and j � 1, . . . ,V is the dimension of the variable. The schematic
diagram is shown in Figure 4B. This strategy improves uniformity by
moving particles that are close together further away from each
other.

3.2.2 Improving the search ability of NSGA-II
NSGA-II easily become trapped around a local optimal

solution (Yadav et al., 2022). Search directions toward better
values are retained with high probability, and search directions
toward poor values are retained with a lower probability. In the
case of a local optimal value, the probability that NSGA-II will
move in other directions is extremely low, so the premature
convergence appears. To overcome this drawback, two
optimization strategies are applied to improve the search
ability of NSGA-II.

Figure 4A Strategy to improve convergence. Figure 4B. Strategy
to improve uniformity. Figure 4C Strategy to improve extensibility.
Figure 4D. Strategy to improve search capability.

3.2.2.1 Strategy to improve uniformity
The search ability can be visualized in terms of Pareto front

extensibility. Thus, a linear combination method based on positional
relationship between the current population extremes and current
Pareto front extremes is used to enhance extensibility. The method is
shown as Figure 4C and described as follows:

S1: For each individual xi, i � 1, . . . , N, the fitness values
yv,i, i � 1, . . . , N, are computed by the Kriging surrogate models.

S2: For the fitness value of each objective function, the
maximum value is ya,max, a ∈ [1,M], where M is the number of
objectives.

FIGURE 3
Flowchart of K-NSGA-II.
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S3: For the fitness value of the current Pv, the maximum
f a,max, a ∈ [1,M], of the function in Pv is recorded and the
corresponding candidate solution ta (a ∈ [1,M]) is determined.

S4: For every ya,max, the corresponding candidate solution
xa (a ∈ [1,M]) is updated according to:

xnew
a � xa + c1ta, (18)

where c1 is a random variable between 0 and 0.5 that obey the
average distribution. This strategy improves extensibility of
NSGA-II by calculating the vector sum of the scaled
population extremum candidate solution and the Pareto front
candidate solution. In other words, the strategy mixes all the
information of the population extremal candidate solution and
part of the information of the Pareto front extremal candidate
solution.

3.2.2.2 Mutation strategy to improve search ability
As stated above, NSGA-II is prone to become trapped around

local optimal solutions. As another means of overcoming this
drawback, a new local and global optimization method based on
cloned individuals is proposed. In K-NSGA-II, genes that represent
extreme values for a single objective are cloned. A schematic
diagram is shown in Figure 4D. Two variation distribution
indices are used. The first enables genes to jump away from local
optima, and the second is used to improve convergence. The
K-NSGA-II with this strategy has stronger ability to jump out of
local optimum and enhance global search ability.

3.2.3 Testing of benchmark functions
Three benchmark test functions (ZDT1, 2, and 3) are utilized

for illustrating the improvements of K-NSGA-II. The population
is set to 40, the number of iterations is 200, cross-distribution

FIGURE 4
Optimization strategies for improving NSGA-II. (A) Strategy to improve convergence. (B) Strategy to improve uniformity. (C) Strategy to improve
extensibility. (D) Strategy to improve search capability.
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index is 20, variation distribution index is 100, and mutation
probability is 1/30; benchmark functions are 30- dimensional.
For the cloning strategy, variation distribution index for global
and local search are 30 and 180, respectively. The results are
shown in Figures 5A–C. Performance statistics from the original
and improved algorithms are compared in Table 2.

Compared with NSGA-II, the mean convergence of
K-NSGA-II on the three benchmark functions improves by
57.17%, 97.31%, and 88.98%, respectively. The mean square
deviations (MSD) are improved by 48.13%, 99.75%, and
58.80%, respectively. These improvements illustrate that
K-NSGA-II performs much better than NSGA-II of
convergence and stability. The mean diversity of K-NSGA-II
on benchmark functions has improved by 59.36%, 81.81%, and
25.25%, respectively. It indicates that K-NSGA-II outperforms
NSGA-II of diversity.

Although the mean square deviation of diversity is less than
that for NSGA-II, the worst diversity over the 20 tests is better
than that of NSGA-II, as presented in Table 2. Compared with
NSGA-II, the worst diversity score for each benchmark function
improves by 52.10%, 42.85%, and 2.65%, respectively. Overall,

K-NSGA-II is able to execute multi-objective optimization
effectively.

Figure 5A Pareto front for ZDT1. Figure 5B. Pareto front for
ZDT2. Figure 5C. Pareto front for ZDT3.

4 Examples and results

In this section, three simulation cases using IEEE 118-bus and
IEEE 300-bus systems are considered to illustrate the
effectiveness of the proposed method. For emission, cost,
power, and time, the units in following tables are ton/h, $/h,
MW, and s, respectively. The population number of K-NSGA-II
is 50, the number of repetitions is 20, cross-distribution index is
20, variance distribution index is 100, and variation rate is the
reciprocal of the units. The given execution time in the following
tables contains the update and evolution time of Kriging
surrogate models. Additionally, modified NSGA-II (M-NSGA-
II) (Muthuswamy et al., 2015), MHBA (Liang et al., 2018),
NSGA-II (Deb et al., 2002), and real coded genetic algorithm
(RCGA) (Muthuswamy et al., 2015) are chosen for comparison.

FIGURE 5
Pareto fronts for ZDT1, 2, and 3. (A) Pareto front for ZDT1. (B) Pareto front for ZDT2. (C) Pareto front for ZDT3.

TABLE 2 Statistical results of K-NSGA-II (20 tests).

Algorithm Index ZDT1 ZDT2 ZDT3

K-NSGA-II mean convergence 0.014340 0.001949 0.012616

NSGA-II mean convergence 0.033482 0.072391 0.114500

K-NSGA-II MSD of convergence 0.002464 0.000080 0.003271

NSGA-II MSD of convergence 0.004750 0.031689 0.007940

K-NSGA-II mean diversity 0.158623 0.207601 0.552062

NSGA-II mean diversity 0.390307 0.430776 0.738540

K-NSGA-II MSD of diversity 0.010147 0.014684 0.065412

NSGA-II MSD of diversity 0.001876 0.004721 0.019706

K-NSGA-II mean of the worst diversity 0.186958 0.246197 0.736580

NSGA-II mean of the worst diversity 0.390307 0.430776 0.738540

The bold values are the best comparison results.
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4.1 Case 1: IEEE 118-bus test system

Total load demand is set as 3668 MW. The parameters of fuel
cost and emission come from reference (Paul et al., 2022). The
simulations of this test system are split into two different simulation
cases according to the restrictions applied: (a) All constraints
mentioned above are included, although valve point effects and
POZs are neglected. (b) All constraints are considered.

4.1.1 Case 1.1: Without POZs and valve point
Total 20 solutions are produced on the Pareto front, and they

are given in Figures 6A, B. When minimizing fuel cost, the
solution (fuel cost, emission) is (10180.37, 5.5416), and when
minimizing emission, the solution is (11396.50, 5.5116).
Comparisons with other algorithms are shown in Table 3. The
minimum value of cost is 10180.37 $/h, and it is less than the fuel
costs given by other four algorithms. The runtime of K-NSGA-II

FIGURE 6
Simulation results (Pareto fronts) simulation cases. (A) The best fuel cost in case 1.1. (B) The best emission in case 1.1. (C) The best fuel cost in case 1.2.
(D) The best emission in case 1.2. (E) The best fuel cost in case 2. (F) The best emission in case 2.
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is significantly lower than that of the other algorithms. Compared
with other four algorithms, the runtime is reduced by 66.84%,
95.81%, 95.85%, and 99.89%, respectively. Further, let us focus on
the saved time for evolutions of objective functions. In the
optimization process (in terms of the best cost), the surrogate-
based evolutions are executed 5,000 (50 × 100 = 5,000) times. For
executing two strategies in 3.2.1.1 and 3.2.1.2, due to the number of
additional evolutions (based on Kriging surrogate model) is uncertain,
the total number of additional evolutions is 9,857. For executing the
strategy in 3.2.2.1, the number of additional evolutions is 40000 (400 ×
100 = 40000). As for the strategy in 3.2.2.2, the number of additional
evolutions is also 40000 (400 × 100 = 40000). Then, the total saved time
of evolutions can be computed (94857×(0.001982–0.000792)/
50)+94857×(0.003166–0.002062)/50) = 4.35 s). The saved time
accounts for 12.52% of the total running time. When obtaining the

best emission, the saved time is 4.21 s. It accounts for 12.05% of the total
running time. Thus, the proposed Kriging-based surrogate model is
time-saving and effective.

Figure 6A. The best fuel cost in case 1.1. Figure 6B. The best
emission in case 1.1. Figure 6C. The best fuel cost in case 1.2.
Figure 6D. The best emission in case 1.2. Figure 6E. The best fuel
cost in case 2. Figure 6F. The best emission in case 2.

Let us see what performance the proposed K-NSGA-II can
obtain. Firstly, better convergence and diversity are obtained.
Thanks to the K-NSGA-II, better diversity is the reason of more
powerful search ability. Secondly, excellent decisions are
obtained because of promotion of convergence and uniformity
in K-NSGA-II. Finally, runtime is reduced. This is due to the
utilization of Kriging-based surrogate model. K-NSGA-II is
effective and time-saving to solve CECEED problems.

TABLE 3 Best solutions in terms of the best fuel cost and emission for case 1.1.

Items K-NSGA-II MHBA M-NSGA-II NAGA-II RCGA K-NSGA-II MHBA M-NSGA-II NAGA-II RCGA

In terms of the best fuel cost In terms of the best emission

P1 816.51 787.58 611.29 640.18 673.52 314.73 299.12 330.36 314.74 310.33

P2 10.00 499.45 62.23 54.08 73.06 12.89 482.28 436.53 396.63 425.52

P3 62.14 10.00 89.07 83.84 76.07 10.23 10.00 89.83 82.98 89.99

P4 214.79 30.00 298.65 285.21 299.99 41.18 30.00 299.49 299.49 299.99

P5 1.04 231.01 40.07 40.49 40.00 1.00 40.00 394.78 395.52 399.99

P6 3.00 1.00 5.32 1.44 1.02 3.42 1.00 5.68 8.83 1.66

P7 61.25 3.00 9.50 12.74 17.65 239.67 3.22 8.78 22.66 18.70

P8 5.00 30.00 31.86 30.03 30.00 5.26 240.00 239.60 236.20 239.99

P9 20.00 5.00 41.87 48.72 10.39 136.11 5.00 40.01 49.48 49.98

P10 21.30 27.81 195.86 151.96 138.69 194.86 146.19 197.99 199.66 199.95

P11 399.07 20.00 197.05 190.13 199.99 399.95 200.00 194.05 198.92 199.99

P12 396.26 399.21 395.26 394.83 399.59 399.84 399.95 303.40 340.86 291.42

P13 448.95 398.85 398.51 397.63 399.95 499.96 400.00 385.21 386.81 399.83

P14 552.68 598.30 582.46 590.54 599.99 600.00 599.86 157.57 174.59 167.68

P15 1.00 1.00 3.02 3.99 3.68 1.00 1.00 3.78 4.89 1.64

P16 598.57 625.27 658.53 672.04 690.62 699.97 699.49 310.37 303.70 307.75

P17 204.92 152.11 243.36 240.91 228.31 298.71 300.00 291.66 276.89 292.74

P18 5.01 5.00 10.79 36.10 5.31 5.26 5.00 46.15 38.28 49.98

P19 4.01 4.00 5.70 6.96 8.30 4.03 5.01 39.74 39.80 26.84

Losses 157.49 160.58 212.5 213.90 228.50 200.07 199.12 107.1 103 106.0

Cost 10180.37 10186.8 11552.0 11577.5 11509.7 11396.50 11433.0 18311.0 17993.4 18227.5

Emission 5.5416 5.5417 13.7960 14.1910 14.9726 5.5116 5.5117 5.5466 5.4950 5.4876

Time 34.751 104.797 825.875 838.171 31806.1 34.939 104.797 825.875 838.171 31806.1

It is notable that the other algorithms require 20000, 50000, 30000, and 50000 evaluations, respectively, whereas the K-NSGA-II, requires 189 evaluations. Significant time gap and

fewer evaluations illustrate the advantages of K-NSGA-II, for CECEED, optimization. The minimum emission achieved by K-NSGA-II, is 5.5116 ton/h. Compared with other

algorithms, time is reduced by 66.66%, 95.77%, 95.83% and 99.89%, respectively. K-NSGA-II, requires only 176 evaluations. Thus, K-NSGA-II, is accurate and time-saving for

solving CECEED, problems.
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4.1.2 Case 1.2: All proposed constraints
In this case, total 20 solutions are produced on the Pareto front

in Figures 6C, D. These solutions when minimizing the fuel cost and
emission are (10839.80, 5.53285) and (12179.29, 5.5117),
respectively. Comparisons with the other algorithms are
presented in Table 4. The minimum fuel cost is only 10839.80
$/h, and it is less than the best results of three other algorithms,
i.e., M-NSGA-II, NSGA-II, and RCGA. Again, the runtime is
significantly lower than for the other algorithms. Compared with
other methods, the runtime is reduced by 65.71%, 95.68%, 95.66%,
and 99.88%, respectively. The number of evaluations required by
these algorithms are 20000, 50000, 30000, and 50000, respectively,
whereas K-NSGA-II requires only 233 evaluations. The time gap
and the fewer iterations further illustrate the advantages of
K-NSGA-II for CECEED. Table 4 indicates that the minimum
emission achieved by the proposed method is 5.5117 ton/h.
Compared with four algorithms, runtime is reduced by 59.49%,
94.90%, 94.88%, and 99.86%, respectively. K-NSGA-II requires only
296 evaluations.

In the optimization process (in terms of the best fuel cost), the
surrogate-based evolutions are executed 5,000 times. For executing
two strategies in 3.2.1.1 and 3.2.1.2, the total number of additional
evolutions is 9,765. For executing the strategy in 3.2.2.1, the number
of additional evolutions is 40000. As for the strategy in 3.2.2.2, the
number of additional evolutions is also 40000. Then, the total saved
time of evolutions is 4.78 s. The saved time accounts for 12.72% of
the total running time in this case. When obtaining the best
emission, the saved time is 4.81 s. It accounts for 10.83% of the
total running time. This further demonstrates that the proposed
method is time-saving and effective.

Let us see what performance the proposed data-driven
surrogate-based method can obtain. In this case, more
complex constraints are involved. Proposed method also
obtains excellent Pareto fronts for making dispatching
decisions in CEED problems. On one hand, the K-NSGA-II is
effective to solve optimization problems with complicated
constraints. On the other hand, more importantly, the
execution time is still very short. This illustrates the Kriging-

TABLE 4 Best solutions in terms of the best fuel cost and emission for case 1.2.

Items K-NSGA-II MHBA M-NSGA-II NAGA-II RCGA K-NSGA-II MHBA M-NSGA-II NAGA-II RCGA

In terms of the best fuel cost In terms of the best emission

P1 616.42 876.82 647.70 619.24 657.56 300.14 300.05 318.55 309.40 299.24

P2 10.04 483.11 52.96 95.49 56.72 10.09 499.49 406.68 413.20 429.01

P3 14.04 10.95 88.71 89.43 83.98 30.28 10.00 80.82 84.30 83.29

P4 299.53 31.11 295.43 299.84 295.47 40.02 30.00 297.83 284.14 283.87

P5 1.00 250.00 41.97 40.39 40.36 1.10 40.00 396.48 395.50 399.73

P6 3.28 1.00 7.01 2.91 3.99 3.07 1.02 8.39 6.53 9.87

P7 1.05 3.00 16.57 10.56 17.01 240.00 3.00 22.85 22.85 22.16

P8 5.35 30.00 30.89 33.21 30.11 5.01 239.76 232.41 238.81 236.78

P9 21.75 5.00 47.87 33.63 46.01 133.83 5.65 43.54 49.86 44.70

P10 21.08 20.00 171.92 198.87 152.79 198.51 126.86 199.39 178.82 199.21

P11 399.97 20.00 192.81 191.02 199.62 399.79 200.00 198.89 194.30 199.48

P12 397.92 385.48 399.75 386.31 399.86 399.79 400.0o 330.96 320.01 362.94

P13 435.62 396.17 399.46 395.33 384.55 495.41 399.49 390.69 389.45 371.46

P14 597.74 599.63 581.20 548.72 597.15 600.00 600.00 177.04 159.18 168.44

P15 1.01 1.00 1.18 1.09 2.93 1.01 1.66 4.80 3.02 1.88

P16 699.99 698.72 602.69 661.36 651.21 699.96 700.00 316.59 347.36 282.91

P17 298.51 30.00 271.81 252.20 239.03 299.88 300.00 263.65 288.18 296.96

P18 6.83 5.00 6.76 5.97 23.03 5.00 6.37 47.78 48.76 49.15

P19 4.09 4.21 6.16 4.80 5.50 4.64 4.65 34.53 37.94 31.69

Losses 167.21 198.07 194.93 202.46 218.98 199.51 200.05 103.95 103.69 104.86

Cost 10839.80 10537.6 11944.0 12043.8 12039.2 12179.29 12222.9 18482.0 18533.6 18795.7

Emission 5.5329 5.5446 13.5930 13.2770 14.2840 5.5117 5.5117 5.5210 5.5390 5.5630

Time 37.60 109.664 870.523 867.342 31938.32 44.42 109.664 870.523 867.342 31938.32
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based surrogate model is capable for replacing original objective
functions with complicated constraints. In a word, this data-
driven surrogate-assisted algorithm is effective and time-saving
for solving CECEED problems with complex constraints.

4.2 Case 2: IEEE 300-bus test system

Total load demand is 23525.85 MW (Paul et al., 2022). In this
case, total 20 solutions are produced in Figures 6E, F. Solutions
given by K-NSGA-II when minimizing the fuel cost and emission
are (62719.58, 11.6688) and (67853.11, 11.4796), respectively.
Comparison results given by MHBA are presented in Tables 5, 6.
The best cost given by K-NSGA-II is 62719.58 $/h, and it is better
than that of MHBA. Runtime of K-NSGA-II is lower, by 56.79%,
than that of MHBA. MHBA requires 20000 evaluations,
compared with just 304 for K-NSGA-II. This time gap and
reduced number of evaluations further illustrate the
advantages of K-NSGA-II for CECEED. In Table 5, minimum
emission is 11.4796 ton/h. Compared with MHBA, runtime is
reduced by 58.59% and 20000 evaluations of MHBA is reduced to
288. Thus, K-NSGA-II has strong potential to be applied in
CECEED problems. In this case, the number of iterations is

set as 100. Total runtimes (sum of 50 runtimes) of fuel cost
and emission function are 0.009092 s and 0.012639 s,
respectively. Total runtimes (sum of 50 runtimes) of surrogate
models are 0.001631 s and 0.004326 s, respectively. In terms of
the best cost, the saved time of evolutions is 29.39 s (the number
of surrogate-based evaluations is 93165). The saved time
accounts for 25.66% of the total running time. In terms of the
best emission, the saved time of evolutions is 29.80 s (the number
of surrogate-based evaluations is 94447). The saved time
accounts for 26.99% of the total running time. This further
demonstrates the advantages of the proposed surrogate-based
method in solving high-dimension CECEED problems.

Let us see what performance the proposed data-driven
method can obtain. In this case, a power grid with more units
is used to verify the effectiveness of the proposed Kriging-based
optimization method. The proposed method obtains excellent
Pareto fronts of CECEED problems. On one hand, the K-NSGA-
II is effective for solving CECEED problems. On the other hand,
execution time is dramatically reduced in a CECEED problem.
This illustrates the Kriging surrogate model is effective to replace
original high-dimension objective functions. In a word, the
proposed method is effective and time-saving to solve
CECEED problems with a high dimension.

TABLE 5 Best solutions in terms of cost for case 2.

Items K-NSGA-II MHBA Items K-NSGA-II MHBA Items K-NSGA-II MHBA

P1 361.87 464.10 P20 1292.13 1191.94 P39 1127.68 1238.36

P2 211.20 30.01 P21 595.56 600.00 P40 321.08 241.13

P3 310.94 158.95 P22 1628.62 1927.58 P41 334.24 396.03

P4 45.69 20.58 P23 376.39 479.90 P42 346.64 373.71

P5 122.10 25.00 P24 364.47 302.89 P43 110.75 188.83

P6 1600.86 1551.29 P25 139.86 20.58 P44 406.28 487.19

P7 161.79 278.32 P26 491.46 526.34 P45 599.98 556.67

P8 256.25 269.76 P27 175.34 229.43 P46 20.59 20.75

P9 779.15 751.84 P28 326.15 333.00 P47 1079.02 846.45

P10 140.33 91.81 P29 499.92 372.98 P48 19.66 15.08

P11 215.08 180.91 P30 298.75 296.88 P49 42.92 159.13

P12 82.16 25.58 P31 695.15 686.11 P50 449.27 477.57

P13 482.92 446.96 P32 37.20 225.36 P51 397.64 398.78

P14 82.77 154.78 P33 635.44 610.49 P52 97.77 90.04

P15 97.19 225.79 P34 649.54 540.44 P53 1397.58 1106.03

P16 91.53 222.96 P35 147.64 142.99 P54 766.86 715.88

P17 50.25 131.09 P36 39.55 94.67 P55 643.85 620.79

P18 87.51 188.83 P37 599.44 478.86 P56 18.01 21.42

P19 1202.27 1134.53 P38 479.55 641.20 P57 26.76 21.25

Cost 62719.58 62897.2 Losses 535.27 504.58

Emission 11.6688 11.6701 Time 114.548 265.118

The bold values are the best comparison results.
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4.3 Comparative results with Cplex and
Guribo solvers

The comparative results with Cplex (Huo et al., 2022) and
Guribo (Ma et al., 2021) solvers for solving the case 1.1, case 1.2,
and case 2 are displayed in this section. Mathematical
programming and precise algorithms are preferred in most of
the real-world applications. However mathematical methods
(by using Cplex and Guribo solvers) are usually powerless to
solve multi-objective optimization problems. To use the two
mathematical solvers, original multi-objective CECEED
problems are transferred to single-objective optimization
problems by weight sum method (Zuo et al., 2014):

F P( ) � θC P( ) + 1 − θ( )E P( ), (19)
where θ represents the weight factor. For obtaining Pareto fronts
in case1.1, case1.2, and case2, the θ shrinks from 1 to 0 with a step
size 1/19. After the proposed transition, due to the non-convex
objective functions, the piecewise linear method should be
applied (Wu and Dong, 2023):

ΔP � P max − P min( )/Pie

Fpiece P( )

Fpiece,1 P( ), P min ≤P≤P min + ΔP
Fpiece,2 P( ), P min + ΔP≤P≤P min + 2ΔP

. . .
Fpiece,i P( ), P min + i − 1( )ΔP≤P≤P min + iΔP

. . .
Fpiece,Pie P( ), P min + Pie − 1( )ΔP≤P≤P max

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)

where ΔP is the width of P in a piece; Fpiece(P) represents the
piecewise linear function of original objective function (F(P));
Fpiece,i(P) represents the i-th piecewise linear function in
Fpiece(P); Pie represents total Pie pieces are contained in
Fpiece(P). Then, the original objective function F(P) can be
described as:

F P( ) � ∑Pie

i�1 biFpiece,i P( );
bi ∈ 0, 1{ };∑Pie

i�1 bi � 1;

⎧⎪⎪⎨⎪⎪⎩ (21)

where bi is a constant which is equal to 0 or 1; bi � 1 represents that
the i-th piecewise linear function (Fpiece,i(P)) is used as the current

TABLE 6 Best solutions in terms of emission for case 2.

Items K-NSGA-II MHBA Items K-NSGA-II MHBA Items K-NSGA-II MHBA

P1 361.87 464.10 P20 698.92 1238.53 P39 467.41 1097.37

P2 211.20 30.01 P21 599.42 577.99 P40 370.06 251.65

P3 310.94 158.95 P22 942.43 1968.67 P41 500.00 407.55

P4 45.69 20.58 P23 600.00 592.64 P42 437.79 383.19

P5 122.10 25.00 P24 189.71 322.53 P43 284.17 191.92

P6 1600.86 1551.29 P25 183.19 109.29 P44 600.00 592.76

P7 161.79 278.32 P26 600.00 599.37 P45 549.28 581.46

P8 256.25 269.76 P27 292.97 247.09 P46 134.60 13.70

P9 779.15 751.84 P28 401.37 332.69 P47 1656.92 1658.71

P10 140.33 91.81 P29 500.00 413.40 P48 18.34 23.60

P11 215.08 180.91 P30 399.99 332.15 P49 151.37 186.94

P12 82.16 25.58 P31 672.40 665.50 P50 467.05 435.70

P13 482.92 446.96 P32 289.21 258.23 P51 500.00 440.77

P14 82.77 154.78 P33 695.77 581.47 P52 33.57 127.46

P15 97.19 225.79 P34 699.82 695.81 P53 922.72 1075.08

P16 91.53 222.96 P35 229.79 192.25 P54 792.89 718.64

P17 50.25 131.09 P36 116.49 96.00 P55 790.95 615.76

P18 87.51 188.83 P37 599.07 589.89 P56 20.90 62.56

P19 1202.27 1134.53 P38 745.77 724.05 P57 66.16 24.12

Cost 67853.11 66317.4 Losses 1156.58 1299.27

Emission 11.4796 11.5385 Time 110.40 266.581

The bold values are the best comparison results.
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objective function; ∑Pie

i�1 bi � 1 represents that only one piecewise
linear function can be chosen (only one bi is equal to 1). After the
following additional processing, the mathematical programming
methods (Cplex and Guribo solvers) can be used to solve the
proposed CECEED problems.

As shown in Table 7, for case 1.1, compared with Cplex solver
and Guribo solver, the best fuel cost obtained by the proposed
method is reduced by 0.76% and 0.66%, respectively. As for the
execution time, it is reduced by 32.33% and 28.14%, respectively.
In terms of pollutant emission, the best emission is reduced by
0.56% and 0.56%, respectively. As for the execution time, it is
reduced by 32.83% and 29.17%, respectively. In case 1.2, the
improved degrees are similar to the comparative results in case
1.1. In case 2, a large-scale system with more dimensions,
compared with Cplex and Guribo solvers, the best fuel cost
obtained by the proposed method is reduced by 5.47% and
4.43%, respectively. As for the execution time, it is reduced by
79.30% and 39.91%, respectively. In terms of the best emission in
case 2, the best emission is reduced by 0.15% and 0.15%,
respectively. As for the execution time, it is reduced by 78.82%
and 40.18%, respectively. Compared with the test system with
118 buses, the proposed surrogate-assisted method has a stronger
advantage. In other words, it is effective for handling the
CECEED problems with more dimensions and larger scale.

5 Concluding remarks

This paper proposes a novel data-driven Kriging-assisted
method for solving CECEED problems. The optimization process
includes two aspects. Kriging-based surrogate models are used to
replace the original computationally expensive objective functions,
reducing the evaluation time. Additionally, the NSGA-II method is
improved to enhance its ability to handle high-dimensional
optimization problems. A new infilling sampling strategy is
proposed to update the Kriging-based surrogate models, thus
enhancing the accuracy of these models. Novel optimization
strategies were added to improve NSGA-II, focusing on
convergence, uniformity, extensibility, and search ability,
respectively. The effectiveness of this method has been illustrated
by conducting simulations of the IEEE 118-bus and 300-bus
systems. The results indicate that this data-driven Kriging-
assisted method is suitable for solving CECEED problems. Note

that time-consuming unit commitment problems could be solved by
such a surrogate-assisted approach and left as future research.
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TABLE 7 Comparative results with Cplex and Guribo solvers. (The execution time is in parentheses).

Items The best fuel cost: $/h The best emission: ton/h

Index of cases This paper Cplex Guribo This paper Cplex Guribo

1.1 10180.37 (34.751 s) 10258.50 (51.35 s) 10247.91 (48.36 s) 5.5116 (34.939 s) 5.5426 (52.01 s) 5.5430 (49.33 s)

1.2 10839.80 (37.60 s) 11031.06 (60.17 s) 11031.26 (57.36 s) 5.5117 (37.60 s) 5.5136 (59.27 s) 5.5137 (54.28 s)

2 62719.58 (110.10 s) 66346.96 (531.87 s) 65625.83 (183.21 s) 11.4796 (110.40 s) 11.4975 (521.28 s) 11.4974 (184.56 s)
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