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Inspired from sharing economy and advanced energy storage technologies,
hybrid shared energy storage (HSES), as an innovative business model, can
provide flexible storage leasing services to new energy stations (NESs) and
bring additional profits to the energy storage owner. Under this business
model, pricing and planning issues are the main focus of the HSES operator to
increase revenues but are rarely considered in current studies. Therefore, a
Stackelberg game-based three-stage optimal pricing and planning strategy of
HSES is formulated for the operator. First, an HSES model considering two leasing
options is developed to provide two kinds of short-term use rights of energy
storage resources for NESs. Then, the interactions between selfish NESs and the
HSES operator are characterized as a Stackelberg game, and a bi-level pricing and
planning strategy optimization model is developed to help the HSES operator
make optimal decisions. Finally, considering different characteristics in each stage
of the Stackelberg game, a three-stage solution method based on the genetic
algorithm (GA) and mixed-integer linear programming (MILP) models is proposed
to solve the optimization problem. Case studies on six NESs in a certain region are
taken to verify the effectiveness of the proposed strategy. Simulation results show
that the HSES operator can obtain maximum profit under the proposed pricing
and planning strategy. In addition, the proposed HSES leasing model can provide
additional benefits to both the operator and NESs.
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1 Introduction

Driven by energy transition and the decarbonization goal, new energy sources such as
photovoltaic and wind power have developed rapidly in the last decade, and the high
penetration of new energy sources will be the typical characteristics of future power systems
(Liu et al., 2021a; Zhang et al., 2022a). Therefore, new energy generators will gradually
replace conventional units, and new energy stations (NESs) will become the major players in
the electricity market (Yang et al., 2021; Ma et al., 2022). However, due to the intermittency,
volatility, and uncertainty of wind power and photovoltaic power, the deviation assessment
mechanism of the energy market introduces deviation penalties for NESs, and there exists
the problem of wind and photovoltaic curtailment (Ahmed et al., 2020; Zhang and Qi, 2020).
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Energy storage, as one of the crucial flexible regulation
resources, shows great advantages in mitigating the fluctuations
of new energy output and supporting the grid connection of new
energy sources (Kebede et al., 2022; Yang et al., 2022). For NESs, the
utilization of energy storage resources can help cope with output
fluctuations, mitigate energy deviation penalty, improve the
consumption rate of new energy, realize price arbitrage, and
obtain additional market revenue (Liu et al., 2020). Nevertheless,
the high construction and maintenance costs of energy storage
devices usually bring high financial risks to NESs (Rahman et al.,
2020). In addition, the traditional single-user single-storage
investment and operation mode results in low equipment
utilization rate and poor economic efficiency (Sun et al., 2019),
which restrict the large-scale commercial application of energy
storage in power systems.

To address the aforementioned issues, the concept of shared
energy storage (SES) is proposed with the development of sharing
economy and Internet of Things technology. The superiority of the
SES business model is mainly reflected in the following aspects. For
energy storage owners, the sharing of idle energy storage resources
can help improve the equipment utilization rate and shorten the cost
recovery cycle (Wang et al., 2018; Kong et al., 2023). For energy
storage demanders, SES can provide a lower barrier for obtaining the
use rights of energy storage resources without great financial
pressure to participate in energy-sharing and obtain additional
benefits (Zhang et al., 2022b).

From the perspective of the sharing mode, current research
about SES can be classified into three categories, i.e., the co-
construction sharing mode, the interconnected sharing mode,
and the energy storage operator leasing mode. Under the first
sharing mode, multiple subjects cooperate as an alliance to invest
and utilize a large energy storage system jointly (Chen et al., 2022).
Du et al. (2022) and Li et al. (2021) proposed joint planning
strategies for SES systems among multiple micro-grids to obtain
maximum profits during the planning period. Li et al. (2022)
proposed an energy storage sharing scheme among prosumers
and established an optimal SES planning model for higher energy
market revenue. Liu et al. (2021b) analyzed the benefit of the SES for
several electricity retailers in the forward electricity market and
formulated an optimal joint planning strategy to minimize the
electricity purchase costs of retailers. The economic benefits of
SES in the residential community were thoroughly analyzed by
Walker and Kwon. (2021), and co-construction SES strategies for
residential communities and industrial parks were studied by Xie
et al. (2022) and Long et al. (2022). Even though the co-construction
sharing mode of energy storage can help each cooperator reduce the
investment risks and bring complementarity benefits, the ownership
of SES belongs to all cooperators, thus leading to problems in the
allocation of cooperation cost/profit and the coordination of energy
storage use rights. In practice, complex relationships among
cooperators make this type of sharing mode difficult to be
implemented. Under the second sharing mode, the distributed
energy storage resources existing within different subjects are
interconnected to enable mutual access. Zheng et al. (2022) and
Zhang et al. (2022c) utilized the distributed energy storage systems
of each residential user and wind power generator as the medium for
energy sharing. Cao et al. (2021) investigated energy interaction
strategies between multiple micro-grids to achieve energy

complementarity with the help of energy storage resources inside
the micro-grids. However, the premise of interconnected sharing
requires each participant to have independently configured energy
storage equipment, i.e., the ability of bidirectional energy transfer,
and is more suitable for those subjects who have already installed
distributed energy storage systems. In other words, this type of
sharing mode shows great limitations in practice.

Different from the first two modes, the operator leasing mode of
SES is more flexible in practice. Under this mode, demanders can
flexibly obtain the use rights of energy storage resources according to
their short-term demands from an independent SES aggregator
under clear leasing rules, without considering the negotiation and
coordination challenges that need to be encountered in the
cooperation. Liu et al. (2017) first proposed the concept of cloud
energy storage to provide virtual use rights of energy storage
resources for demand-side users, which is one of the forms of
this leasing mode. However, the pricing problem was not
discussed. Zhang et al. (2023) set SES leasing prices based on
real-time electricity prices, but the profit of the SES operator was
ignored. Gong et al. (2022) divided the use rights of SES into energy
use rights and power use rights for leasing, but the rationality needs
to be further explored. Brijs et al. (2016) proposed a novel pricing
strategy of SES through competitive bidding, but the model is too
complex to be promoted and applied in the actual leasing market.

All the aforementioned research works have made great
contributions to the application and promotion of SES, but there are
still some limitations and research gaps that need to be considered. First,
the leasing models of SES, in the majority of existing studies, are
developed based on a single time scale and a single type of energy
storage, and the superiority of hybrid energy storage and the
coordination between different leasing time scales are ignored. In
fact, coordination between multiple types of energy storage
(i.e., hybrid energy storage) and the diversity of leasing time scales
can bring additional benefits to both the operator and demanders.
Second, most studies did not develop pricing strategies from the
perspective of the energy storage owner and did not analyze the
rationality of leasing prices in detail. For the operator, deciding the
leasing price based on demand is the key to enhancing its own revenue,
and thus the rationality of the pricing strategy should be well-concerned.
Third, most of the existing works about the pricing strategy ignored the
planning problem, which is also a main focus of investors. Therefore,
developing a planning strategy based on leasing requirements along with
the pricing strategy is also an urgent issue that needs to be addressed by
the operator.

Given this background, a Stackelberg game-based three-stage
optimal pricing and planning strategy of the hybrid shared energy
storage (HSES) is proposed in this work to address the
aforementioned issues for the operator, and the main
contributions are summarized as follows.

1) An HSES model considering two leasing options is first
developed to provide two kinds of short-term use rights of
energy storage resources for NESs on different time scales.
Compared with the commonly used daily leasing model, the
proposed model is more flexible and can provide additional
benefits to both the provider and demanders.

2) A novel Stackelberg game-based HSES pricing and planning
strategy is formulated on the basis of the bi-level optimization
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model to help the HSES operator make optimal decisions. In this
model, the preferences and selfishness of both the “leader”
operator and “followers”NESs are well-considered and balanced.

3) A three-stage optimization solution approach based on genetic
algorithm and mixed-integer linear programming (MILP)
models is proposed to efficiently solve the bi-level
optimization problem.

The rest of this paper is organized as follows. First, the
sharing model of HSES and the interaction model between HSES
and NESs are elaborated upon in Section 2. On this basis, a
Stackelberg game-based bi-level pricing and planning
optimization model is proposed for the HSES operator in
Section 3. Then, a three-state optimization-based solution
method is introduced to solve the bi-level problem in Section
4. Finally, case studies are carried out in Section 5, and the
conclusions are summarized in Section 6.

2 Model formulation of hybrid shared
energy storage

2.1 The sharing model of a hybrid energy
storage system

In this work, HSES is invested and maintained by the energy
storage operator, providing leasing services to energy storage
demanders, i.e., NESs. The sharing model of the proposed HSES
system is presented in Figure 1.

As shown in Figure 1, NESs can obtain the use rights of energy
storage resources from the operator through leasing. During the
leasing period, NESs are allowed to freely dispatch the energy storage
within the physical constraints to mitigate energy deviations and
achieve price arbitrage in the energy market.

Due to the large variety of energy storage technologies with
different properties, hybrid energy storage will become an essential
means to meet the diversified and flexible demands of future power
systems (Hajiaghasi et al., 2019). Therefore, as shown in Figure 1,
based on the single-type SES system with a daily leasing period, an
additional short-term energy storage leasing option with a leasing
period of 4 h is introduced in this work so as to provide more
diversified choices for the NESs of wind power and photovoltaic.
The two types of SES models are introduced as follows:

1) 24 h-type daily SES (D-SES): D-SES is the dominant form of the
current SES, i.e., the SES providing leasing services on a 24-h
cycle. NESs make day-ahead decisions for their energy storage
using demands in the following 24 h based on day-ahead market
prices and forecasts of new energy generation. They submit their
energy storage leasing requirements for the next day to the
operator to obtain the use rights of energy storage and bid in
the day-ahead energy market. Then, in the real-time market,
NESs can freely dispatch the leased D-SES within physical
constraints to address the uncertainty and fluctuations in new
energy generation, thereby reducing penalties from energy
market deviation assessment. Additionally, the NESs can
leverage the right to use the leased D-SES to capitalize on
price differentials in the energy market and achieve greater
market revenues. It is worth mentioning that, considering
practical usage requirements, D-SES systems typically employ
energy storage units with a low power-to-capacity ratio.
Therefore, the lithium-ion energy storage system with 0.5 C is
employed in this work.

2) 4 h-type hourly SES (H-SES): Considering the volatility and
intermittency of new energy generation, leasing D-SES may
not be the most economical option for some NESs. To
address this issue, the H-SES with a leasing cycle of 4 h is
further utilized in this work, providing NESs with more
flexible choices. Thus, NESs can evaluate the benefits of
leasing D-SES and H-SES and then formulate the optimal
leasing strategy. In this way, NESs can lease H-SES or D-SES
independently, and they can also choose to lease D-SES and
utilize H-SES to compensate for the lack of flexibility resources
during certain time periods. Since the H-SES with a 4-h leasing
cycle is typically taken to handle short-term output fluctuations,
the requirement for energy storage duration is relatively small.
Therefore, the lithium-ion energy storage system with 2 C is
utilized in this work.

2.2 Interaction model between HSES and
NESs

As mentioned in Section 2.1, NESs can obtain the use rights of
energy storage from the HSES operator. During the leasing period,
NESs can charge and discharge the leased energy storage within the
leasing capacity limits. However, due to physical constraints, such as
geographical location and power transmission, NESs cannot directly
access the physical energy storage devices. Therefore, in this work,
the use rights obtained by NESs are virtual use rights of the energy
storage, while the actual dispatch control rights of the energy storage
devices remain with the HSES operator.

FIGURE 1
Sharing model of the proposed HSES.

Frontiers in Energy Research frontiersin.org03

Xu et al. 10.3389/fenrg.2023.1273929

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1273929


The HSES operator determines the centralized hybrid energy
storage system’s actual charging and discharging decisions based on
the aggregated demand from all NESs. Additionally, under this
business model, the HSES operator acts as an agent on behalf of the
NESs in market settlements. In other words, the operator
participates in the energy market after aggregating all the NESs
that have leased energy storage as a whole and pays the agent
electricity revenue to NESs based on the market rules and the day-
ahead energy market bids and real-time scheduling decisions
declared by the NESs. The interactions between HSES, NESs, and
the grid are illustrated in Figure 2.

2.2.1 New energy stations
Upon receiving information about energy market prices and

HSES leasing prices, NESs make day-ahead decisions on the HSES
capacities to be leased and the energy bids in the energy market.
Subsequently, based on the actual output of new energy during
intraday operations, they make decisions on the real-time energy
base points and energy storage dispatch demands. As shown in
Figure 2, NESs submit the information of all decisions to the HSES
operator via an information flow, and the operator acts on their
behalf to participate in the energy market. Energy flow #3 represents
the actual power generation of NESs, which is measured directly by
smart meters and is integrated by the operator to participate in the
energy market. Under this model, the operator can utilize Energy
flow #3 for charging (i.e., Energy flow #3 → #5) or for selling
(i.e., Energy flow #3→ #1). Since NESs entrust the HSES operator to
participate in the market settlement, the net profits from the energy
market are paid to NESs by the HSES operator, which is represented
as Cash flow #5. The HSES leasing fee of NESs is represented by
Cash flow #4.

2.2.2 HSES operator
The HSES operator owns independent energy storage

systems and presets the leasing price of the HSES for NESs.
Cash flow #3 represents the leasing revenue, which is the
primary profit source of the HSES operator. Energy flows
#1 and #2 represent the energy interchange between the
operator and the power grid. Correspondingly, Cash flows
#1 and #2 represent the energy-selling profit and the energy-
purchasing cost, respectively. As the HSES operator represents

NESs in the dispatch of energy storage and participates in energy
market transactions, the complementary effects of the charging
and discharging needs of various types of NESs bring additional
revenue. Based on the charging and discharging decisions of the
NESs, the operator collects the information of all stations and
acts on behalf of the stations in market bidding. Hence, Cash
flow #4 represents the net profit that needs to be paid to the NESs
based on their decisions. Cash flow #5 represents the energy
deviation penalty of the HSES operator.

It is noteworthy that both the HSES operator and the NESs
implement the samemarket policies. The determination of the HSES
leasing prices and capacities for the operator and the management of
the HSES in a manner that renders profitability for both the operator
and the NESs are the primary focal points of this work.

2.3 Objectives of the HSES operator and
NESs

2.3.1 New energy stations
Each NES aims to maximize its daily net profit, which is the

difference between the net revenue from the energy market and the
cost of leasing HSES. To this end, NESs need to establish a rational
HSES leasing strategy and energy market bidding strategy in the
day-ahead phase, based on the HSES operator’s leasing prices,
forecasted energy market prices, and the anticipated output from
new energy to maximize their expected returns.

2.3.2 HSES operator
The operator’s objective is to maximize the total lifecycle

revenue of HSES, which is the difference between leasing revenue
and agency benefits, minus the costs of energy storage construction,
operation, andmaintenance. To this end, it is urgent for the operator
to establish reasonable leasing prices in response to the demand
changes from the NESs and subsequently optimize the energy
storage dispatch strategy to make capacity planning decisions.
The operator’s profit includes revenue from leasing virtual energy
storage use rights to NESs and income from acting as an agent for
NESs in energy trading. The costs include payments to the grid for
energy purchases, deviation penalty costs, and energy storage
investment and maintenance costs.

FIGURE 2
Interactions between the operator and NESs under the proposed HSES model.
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3 Stackelberg game-based bi-level
pricing and planning optimization
model of HSES

The study presented in this work involves two groups pursuing
different objectives: The NESs prefer lower HSES leasing prices in
order to lease more energy storage use rights and store more energy
during non-peak periods for use during peak periods, thereby
securing more arbitrage profits. In contrast, the HSES operator
prefers higher leasing prices in order to generate greater revenue
from NESs. Consequently, these two groups have conflicting
interests in the HSES leasing price setting, which can be resolved
through a Stackelberg game. Therefore, a bi-level optimization
model is utilized to capture the Stackelberg game problem
between the selfish operator and NESs.

The objective of the upper-level optimization problem is to
maximize the earnings of the leader in the game, specifically the
annualized profit of the HSES operator. The upper-level leader
determines the leasing prices for the use rights of energy storage
and announces the information to the lower-level followers.
Similarly, the objective of the lower-level optimization problem is
to maximize the earnings of each follower, specifically the net profits
from the energy market for the NESs. The lower-level followers
make decisions on the leasing strategy and the operation strategy
based on the price signal transmitted from the upper level and then
feed the optimization results back to the upper level. In response, the
upper-level leader schedules the centralized energy storage and
decides on the construction capacity for the HSES based on the
feedback information from the lower-level followers. The
interaction of information between the upper and lower levels in
this bi-level optimization model is presented in Figure 3.

3.1 Lower-level model: maximizing the net
profit of an NES

The goal of themarket operationmodel forNESs at the lower level is
to maximize the net profit for each NES over the dispatch period. The
decision variables comprise two parts: the first part is related to the
leasing strategy for energy storage use rights, specifically the leased
capacity of the HSES. The second part involves day-ahead bidding and

real-time operation decisions, i.e., day-ahead energy bids, real-time
energy base points, and energy storage dispatch decisions. The
objective function for the NES s is presented as follows:

maxRNES
s � 365∑Nn

n�1
γn · Re,bid

n,s + Re,rt
n,s − Ce,pun

n,s − Clea
n,s( ), (1)

where γn denotes the probability of scenario n. Re,bid
n,s represents the

bidding revenue of NES s under scenario n. Re,rt
n,s signifies the real-

time market revenue of NES s under scenario n. Ce,pun
n,s refers to the

energy market deviation penalty of NES s under scenario n. Clea
n,s

denotes the HSES leasing cost of NES s under scenario n.
The HSES leasing cost of NES s is determined by its leasing

decisions and the unit leasing prices, which can be expressed as
follows:

Clea
n,s � El,lea

n,s · ρl,lea ·∑Nt

t�1

cen,t
Nt

+ ∑
Np

p�1
Es,lea
n,s,p · ρs,lea ·∑

Nk

k�1

cen,4p−3+k
Nt/Np

, (2)

where El,lea
n,s signifies the capacity of D-SES leased by NES s under

scenario n. Es,lea
n,s,p represents the capacity of H-SES leased by NES s in

the pth phase under scenario n. cen,t and c
e
n,4p−3+k represent the energy

market prices at time t and time 4p-3+k under scenario n,
respectively. Nt denotes the number of time periods. Np denotes
the number of H-SES leasing phases, which is set as 6 in this work.
Nk represents the number of time periods within phase p. ρl,lea and
ρs,lea are the price coefficients of D-SES and H-SES, respectively.

The day-ahead bidding profit of NES s is determined by the day-
ahead bidding decisions and market prices, which can be expressed
as follows:

Re,bid
n,s � ∑Nt

t�1
cen,t · Pe,bid

n,s,t · Δt, (3)

where Pe,bid
n,s,t represents the bidding volume of the NES s at time

period t under scenario n.
The real-timemarket revenue of NES s is determined by the real-

time energy base points and can be represented as

Re,rt
n,s � ∑Nt

t�1
cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,s,τ − Pe,bid

n,s,t( ) · Δτ, (4)

where Pe,rt
n,s,τ is the real-time energy base point submitted by the NES s

to the HSES operator.
The energy deviation penalty for NES s is determined by the

difference between its reported day-ahead energy bids and real-time
energy base points and can be expressed as

Ce,pun
n,s � ∑Nt

t�1
π ·( ) · cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,s,τ − Pe,bid

n,s,t

∣∣∣∣ ∣∣∣∣ · Δτ, (5)

where π(·) denotes the energy market penalty coefficient, which is
positive when the output exceeds the upper limit and negative when
it falls below the lower limit.

Then, the constraints of the lower level are summarized as
follows.

1) The energy continuity constraint of the leased HSES:

Es
n,s,p,τ � Es

n,s,p,τ−1 + Ps,ch
n,s,p,τ · ηs,ch − Ps,dis

n,s,p,τ/ηs,dis( ) · Δτ, (6)

FIGURE 3
Interactions between the two levels of the optimization model.
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El
n,s,τ � El

n,s,τ−1 + Pl,ch
n,s,τ · ηl,ch − Pl,dis

n,s,τ/ηl,dis( ) · Δτ, (7)

where Es
n,s,p,τ and E

s
n,s,p,τ−1 are the remaining energy at time τ and τ-1

of the H-SES leased by NES s, respectively. ηs,ch and ηs,dis represent
the charging and discharging efficiency of H-SES, respectively.
Similarly, El

n,s,τ and El
n,s,τ−1 denote the remaining energy at time

τ and τ-1 of the D-SES leased by NES s, respectively. ηl,ch and ηl,dis are
the charging and discharging efficiency of D-SES, respectively.
Ps,ch
n,s,p,τ and Ps,dis

n,s,p,τ are the charging and discharging power of the
H-SES leased by NES s, respectively. Pl,ch

n,s,τ and Pl,dis
n,s,τ refer to the

charging and discharging power of the D-SES leased by NES s,
respectively.

2) The power balance constraint of NES s:

Pe,rt
n,s,τ � Pre

n,s,τ + Pl,dis
n,s,τ − Pl,ch

n,s,τ + Ps,dis
n,s,τ − Ps,ch

n,s,τ , (8)
where Pre

n,s,τ represents the actual output of the NES s at time τ in
scenario n.

3) The power constraint of the leased HSES:

0≤Pl,ch
n,s,τ , P

l,dis
n,s,τ ≤Pl,lea

n,s , (9)
0≤Ps,ch

n,s,p,τ , P
s,dis
n,s,p,τ ≤Ps,lea

n,s,p, (10)

where Pl,lea
n,s and Ps,lea

n,s,p are the power capacities of the leased D-SES
and HSES, respectively.

4) The remaining energy constraint of the leased HSES:

Es,lea
n,s,p · Ss,min

OC ≤Es
n,s,p,τ ≤Es,lea

n,s,p · Ss,max
OC , (11)

El,lea
n,s · Sl,min

OC ≤El
n,s,τ ≤El,lea

n,s · Sl,max
OC , (12)

where Ss,min
OC and Ss,max

OC are the lower and upper thresholds allowed
for the state of charge of HSES, respectively. Similarly, Sl,min

OC and
Sl,max
OC are the lower and upper thresholds allowed for the state of
charge of D-SES, respectively.

5) The initial and final consistency constraints of the leased HSES:

El
n,s,0 � El

n,s,te
, (13)

Es
n,s,4p−3 � Es

n,s,4p, p � 1, 2, ..., Np, (14)

where El
n,s,0 and El

n,s,te
represent the remaining energy of the D-SES

leased by NES s at the initial and final states of the scheduling cycle,
respectively. Similarly, Es

n,s,4p−3 and Es
n,s,4p are the remaining energy

of the H-SES leased by NES s at the initial and final states of the
phase p, respectively.

6) The charging/discharging state constraint of the leased HSES:

Bl,ch
n,s,τ + Bl,dis

n,s,τ ≤ 1
Bs,ch
n,s,p,τ + Bs,dis

n,s,p,τ ≤ 1
0≤Pl,ch

n,s,τ ≤Bl,ch
n,s,τ · Pl,lea

s

0≤Pl,dis
n,s,τ ≤Bl,dis

n,s,τ · Pl,lea
s

0≤Ps,ch
n,s,p,τ ≤Bs,ch

n,s,p,τ · Ps,lea
n,s,p

0≤Ps,dis
n,s,p,τ ≤Bs,dis

n,s,p,τ · Ps,lea
n,s,p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

where Bs,ch
n,s,p,τ and Bs,dis

n,s,p,τ are auxiliary binary variables of charging
and discharging states for H-SES at time τ for NES s, respectively.

Similarly, Bl,ch
n,s,τ and Bl,dis

n,s,τ are auxiliary binary variables of charging
and discharging states for D-SES at time τ for NES s, respectively.
The aforestated constraints ensure the unidirectionality of charging
and discharging of energy storage-invoked NESs.

7) The power-to-capacity ratio constraint of the leased HSES:

Es,lea
n,s � θs · Ps,lea

n,s , (16)
El,lea
n,s � θl · Pl,lea

n,s , (17)
where θs and θl represent the power-to-capacity ratios of H-SES and
D-SES, respectively. The power and capacity of the leased HSES
must adhere to physical constraints.

8) The new energy output constraint of the NES:

Pre
n,s,τ ≤Pre,pre

n,s,τ , (18)
where Pre,pre

n,s,τ represents the forecasted output of the NES s at time τ
in scenario n.

3.2 Upper-level model: maximizing the net
profit of the HSES operator

The goal of the objective function in the upper-level
optimization model is to maximize the annual net profit RHSES of
the HSES operator. The decision variables of the model consist of
two parts: the first part includes pricing and planning decisions,
i.e., the construction capacities Es,inv and El,inv of HSES and the
leasing price coefficients ρs,lea and ρl,lea of HSES; the second part
includes operation and scheduling decisions, i.e., day-ahead energy
biding and real-time scheduling strategies. Note that the operation
and scheduling decisions correspond to different scenarios, while
pricing and planning decisions are fixed values.

maxRHSES � 365∑Nn

n�1
γn · Rlea

n + Re,bid
n + Re,rt

n − Ce,pun
n( ) − Cmt − Cinv

− Cnes,

(19)
where Rlea

n refers to the leasing revenue of the operator in scenario n.
Re,bid
n and Re,rt

n represent the day-ahead bidding profit and real-time
energy market profit for the operator in scenario n, respectively.
Ce,pun
n represents the energy deviation penalty for the operator in

scenario n.Cnes represents the net energymarket revenue paid by the
operator to the NESs. Cinv stands for the investment cost of HSES.
Cmt denotes the operation and maintenance cost of HSES.

The annualized investment cost Cinv of HSES is determined by
the type of energy storage and invested capacities, which can be
expressed as

Cinv � r · cs,inv · Es,inv

1 − 1 + r( )−Ys + r · cl,inv · El,inv

1 − 1 + r( )−Yl , (20)

where r denotes the discount rate. Ys and Yl represent the lifespan of
H-SES and D-SES, respectively.

The operation and maintenance cost Cmt of HSES can be
calculated as follows:
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Cmt � cmt · Ps,inv + Pl,inv( ), (21)

where Ps,inv and Pl,inv represent the rated power capacities of the
constructed H-SES and D-SES, respectively. cmt represents the
annual unit operation and maintenance cost of the energy storage.

The leasing revenue of the operator is determined by the leasing
demands of NESs, which can be expressed as

Rlea
n � ∑Ns

s�1
Clea

n,s. (22)

The proxy market revenue paid by the HSES operator to all the
NESs is obtained based on the optimal operation results of NESs,
which can be expressed as

Cnes � ∑Ns

s�1
RNES
s . (23)

The aforementioned equation represents the settlement of NESs
by the operator in accordance with the energy market rules. In other
words, the relationship between each new energy power station and
the operator is merely agency-based rather than a cooperative one.

The day-ahead bidding revenue of the HSES operator is
determined by the day-ahead bidding volume, which can be
expressed as

Re,bid
n � ∑Nt

t�1
cen,t · Pe,bid

n,t · Δt, (24)

where Pe,bid
n,t denotes the bidding volume of the operator at time t in

scenario n.
The real-time market revenue of the HSES operator is

determined by the real-time output, which can be expressed as

Re,rt
n � ∑Nt

t�1
cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,τ − Pe,bid

n,t( ) · Δτ, (25)

where Pe,rt
n,τ denotes the real-time energy base points submitted to the

grid by the HSES operator. It is worth mentioning that the real-time
energy base points declared by the operator incorporate the actual
output of the NESs it aggregates. In other words, after acting as an
agent for each NES, the operator participates in the energy market as
a unified entity.

The energy market deviation penalty for the operator is
determined by the difference between the day-ahead bidding
volume and the real-time energy base point. It can be expressed
as follows:

Ce,pun
n � ∑Nt

t�1
π ·( ) · cen,t · ∑

τ∈ t,t+Δt[ ]
Pe,rt
n,τ − Pe,bid

n,t

∣∣∣∣ ∣∣∣∣ · Δτ. (26)

In the upper-level model, the operator coordinates the
centralized energy storage systems based on the real-time output
of new energy and the storage requirements of each NES. The model
constraints are summarized as follows.

1) The power balance constraint of the HSES:

Pe,rt
n,τ � ∑Ns

s�1
Pre
n,s,τ + Ps,dis

n,τ + Pl,dis
n,τ − Ps,ch

n,τ + Pl,ch
n,τ , (27)

where Pl,ch
n,τ and Pl,dis

n,τ represent the charging and discharging power
of the centralized D-SES invoked by the operator at time τ in
scenario n, respectively. Ps,ch

n,τ and Ps,dis
n,τ represent the charging

and discharging power of the centralized H-SES invoked by the
operator at time τ in scenario n, respectively.

2) The capacity constraint of the HSES:

Es,inv ≥max Es,lea
n,s,p

∣∣∣∣∣∀n, s, p{ }, (28)
El,inv ≥max El,lea

n,s

∣∣∣∣∀n, s{ }, (29)

The aforestated constraints ensure that the maximum capacity
of the HSES leased by each NES does not exceed the capacity of the
centralized HSES, preventing violations of physical limits during the
leasing process.

3) The energy continuity constraint of the HSES:

Es
n,τ � Es

n,τ−1 + Ps,ch
n,τ · ηs,ch − Ps,dis

n,τ /ηs,dis( ) · Δτ, (30)
El
n,τ � El

n,τ−1 + Pl,ch
n,τ · ηl,ch − Pl,dis

n,τ /ηl,dis( ) · Δτ, (31)

where Es
n,τ and E

s
n,τ−1 represent the remaining energy of the H-SES at

time τ and τ-1, respectively. Similarly, El
n,τ and El

n,τ−1 represent the
remaining energy of D-SES at time τ and τ-1, respectively.

4) The remaining energy constraint of the HSES:

Es,inv · Ss,min
OC ≤Es

n,τ ≤Es,inv · Ss,max
OC , (32)

El,inv · Sl,min
OC ≤El

n,τ ≤El,inv · Sl,max
OC , (33)

5) The initial and final consistency constraints of the leased HSES:

El
n,0 � El

n,te
, (34)

Es
n,0 � Es

n,te
, (35)

where El
n,0 and El

n,te
represent the remaining energy of the D-SES at

the initial and final states of the scheduling cycle, respectively.
Similarly, Es

n,0 and Es
n,te

are the remaining energy of the H-SES at
the initial and final states of the scheduling cycle, respectively.

6) The charging/discharging state constraint of the HSES:

Bl,ch
n,τ + Bl,dis

n,τ ≤ 1
Bs,ch
n,τ + Bs,dis

n,τ ≤ 1
0≤Pl,ch

n,τ ≤Bl,ch
n,τ · Pl,inv

0≤Pl,dis
n,τ ≤Bl,dis

n,τ · Pl,inv

0≤Ps,ch
n,τ ≤Bs,ch

n,τ · Ps,inv

0≤Ps,dis
n,τ ≤Bs,dis

n,τ · Ps,inv,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(36)

where Bs,ch
n,τ and Bs,dis

n,τ are auxiliary binary variables of charging and
discharging states for H-SES at time τ, respectively. Similarly, Bl,ch

n,τ

and Bl,dis
n,τ are auxiliary binary variables of charging and discharging

states for D-SES at time τ, respectively.

7) The charging/discharging power constraint of the HSES:

0≤Ps,dis
n,τ , Ps,ch

n,τ ≤Ps,inv , (37)
0≤Pl,dis

n,τ , P
l,ch
n,τ ≤P

l,inv, (38)
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8) The power-to-capacity ratio constraint of the HSES:

Es,inv � θs · Ps,inv , (39)
El,inv � θl · Pl,inv. (40)

4 Three-stage optimization-based
solution method for the Stackelberg
game model

The bi-level optimization model given in Section 3 is an NP-
hard problem, which is difficult to solve directly. Moreover, the
interaction between the upper and lower levels in the bi-level
optimization model greatly increases the difficulty of the solution.
To this end, the effective solution to this problem is explored from
the essence of the Stackelberg game problem in this work.

In practice, the planning of the HSES should be referenced by
the storage demands of the game participants. Therefore, the HSES
planning decisions should be made after the followers declare the
storage leasing requirements and dispatching requirements.
Therefore, the bi-level optimization problem in this work can be
extended to a three-stage optimization problem. In this three-stage
optimization problem, the operator first decides the leasing price of
the HSES. After receiving the leasing price signal, NESs make HSES
leasing, market bidding, and real-time scheduling decisions and then
feedback the optimization results to the operator. Upon receiving
the detailed information from NESs, the operator makes HSES
planning decisions.

In the first and second stages of the game, the storage leasing
demands of the followers are influenced by the leasing prices, and
the leasing demands in turn affect the pricing strategy by affecting
the operator’s profit. Then, in the second and third stages of the
game, the HSES planning strategy of the operator is influenced by
the leasing and dispatching demand of each follower, and the storage
planning decisions will further affect the operator’s total profit,
thereby affecting the operator’s initiative in the decision-making of
the pricing strategy. Therefore, although the planning decision is
made in the last stage, the decisions of these three stages will affect
each other, so it is necessary to extend the original bi-level model
into a unified three-stage Stackelberg game problem.

For the constructed multi-stage Stackelberg game, which is a
large-scale mixed-integer programming problem, the number of
stages and integer variables makes it difficult to be simplified into a
single-layer mixed-integer linear programming (MILP) problem
using traditional model transformation methods such as the
Karush–Kuhn–Tucker (KKT) conditions or the dual theory.
However, adopting the genetic algorithm (GA) for price decision-
making can help effectively reduce the complexity of the model.
Meanwhile, during the decision-making process at the middle and
lower levels, each participant can utilize MILP to enhance the speed
and precision of the solution. In addition, while the upper level
employs the GA, the middle and lower levels utilize MILP based on
information from the upper level and their own profit models. Only
price signals and demand signals need to be transferred between
different optimization levels, which can well-simulate the
independent decision-making process by each participant in a
competitive market based on public information. Note that this

method can also help ensure the privacy and security of equipment
parameters and other sensitive information from all parties.

To sum up, a three-stage solution method based on
GA–MILP–MILP is adopted in this work, and the solution
process of the method is shown in Figure 4.

As shown in Figure 4, the proposed GA–MILP–MILP solution
algorithm involves the following steps:

1) Initially, generate the corresponding leasing price population of
HSES, i.e., the decision-making in the first stage.

2) Then, under each pricing population, solve the MILP problems
of all NESs by the commercial CPLEX solver and obtain the
optimal operation and leasing decisions, i.e., the decision-making
in the second stage.

3) After all followers complete optimization, their leasing and
dispatching demands can be aggregated. On this basis, the
operator makes a decision on the optimal planning strategy of
HSES, i.e., the decision-making in the third stage. Note that this
MILP problem can also be solved by the CPLEX solver. Then, the
operator’s profit, which serves as the fitness function in the GA, is
obtained.

4) Based on the result of the fitness function, the population
undergoes selection, crossover, and mutation to produce a
new generation population. The procedure returns to step 1)
and continues until it reaches equilibrium or exits the iteration
limit.

FIGURE 4
Flowchart of the proposed GA–MILP–MILP algorithm.

Frontiers in Energy Research frontiersin.org08

Xu et al. 10.3389/fenrg.2023.1273929

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1273929


Since the models in the middle and lower levels are MILP
problems, the optimal solutions obtained in the second and third
stages are subgame perfect equilibriums. When the best pricing
strategy found by the GA at the upper level is identical or converges
between two consecutive generations (i.e., the first stage reaches
optimality), it can be concluded that all participants reach optimality
at all stages, and the multi-stage Stackelberg game achieves a
subgame perfect equilibrium.

5 Case studies

5.1 Experimental settings

In this work, case studies are performed in a region with six
NESs, i.e., three wind power stations and three photovoltaic power
stations, to verify the effectiveness and superiority of the proposed
pricing and planning strategy. The rated capacities of these six NESs
are set as 25 MW, 15 MW, 10 MW, 25 MW, 13 MW, and 12 MW.
The typical scenario sets of wind power and photovoltaic power are
generated by the historical RES data from the NREL dataset and the
stochastic programming method based on the typical scenario
generation technique, as shown in Figure 5. Meanwhile, the
historical market data of PJM are taken to generate the price
scenario of the energy market, and all subjects in this work are
assumed as price-takers.

The other parameters are set as follows: Three typical scenarios
are set for summer, winter, and transition seasons. The parameters
of hybrid energy storage systems are summarized in Table 1. The
discount rate r is set as 0.05. The deviation penalty coefficients of the
energy market, π+ and π−, are set as 0.8.

The simulation is carried out on a 64-bit server with 2 Intel Xeon
Gold 2.00-GHz CPUs and 64-GB RAM on the MATLAB platform.
The proposed optimization problems are solved by the GA

algorithm and the commercial solver CPLEX in the YALMIP
toolbox.

5.2 Analysis of the pricing and planning
results for the HSES operator

5.2.1 The simulation results under the optimal HSES
pricing and planning strategy

To explore the impact of leasing price on the profits of NESs and
the HSES operator, the results under optimal pricing and planning
strategies of HSES based on the proposed Stackelberg game-based
method are analyzed in this subsection. Through the
GA–MILP–MILP solution method, the optimal price coefficients
for HSES are obtained as ρl,lea = 1.02 and ρs,lea = 0.22. Then, the
optimization results under the optimal pricing strategy are
summarized in Table 2.

5.2.1.1 For NESs
The HSES provides a new method for these entities to access

flexible and adjustable energy storage resources. By leasing D-SES
and H-SES, they can obtain the rights to use short-term energy
storage resources, which in turn allows them to reduce penalties
associated with energy market deviation assessments and enhance
their market profits. Taking NES#1 as an example, as shown in
Table 2, its original profit is 5.83 × 106 $ when participating in the
energy market without energy storage. After leasing the use rights of
HSES, NES#1 is required to pay the leasing fee of 6.17 × 105 $.
However, its net profit increases to 5.92 × 106 $, an increase of 1.5%
compared to the original earnings.

5.2.1.2 For the HSES operator
First, it can be observed from Table 2 that, under the optimal

pricing strategy, the optimal energy storage construction
capacities can be obtained as 21.3197 MWh for D-SES and
15.8138 MWh for H-SES, with an annualized total investment
cost of 1.14 × 106 $. It is apparent that the total leasing profit of
the HSES operator (i.e., 2.01 × 106 $) notably outweighs the
construction costs, and the net profit (i.e., 1.65 × 106 $) equates
to 145% of the annualized total investment costs. This allows for
an approximate calculation of the investment cost recovery
period, which is around 4.1 years. In addition, as depicted in
Table 2, if the operator does not lease the energy storage use
rights to NESs and participates in the market independently, it
would not be able to recover the investment cost, resulting in a
negative original profit (i.e., −0.32 × 106 $). In contrast, under
the proposed HSES model, the operator can garner substantial
additional profits by leasing virtual use rights of HSES to NESs,
effectively shortening the cost recovery period. It is noteworthy
that as the actual control rights of energy storage belong to the
operator, the construction capacity of the HSES is less than the
total demand capacity of the NESs. In other words, the operator
can reduce the investment cost by accommodating the
complementary demands of NESs.

To sum up, for NESs, obtaining short-term use rights of D-SES
and H-SES through the leasing market can help them deal with
energy deviation and obtain additional market revenues. For the
energy storage operator, profits from the leasing market can help

FIGURE 5
Three typical scenarios of wind and photovoltaic power. (A)Wind
power. (B) Photovoltaic power.
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increase the energy storage utilization rate and shorten the
investment recovery cycle.

5.2.2 Profits of the HSES operator under different
leasing price coefficients

To investigate the impact of different pricing strategies on the
revenue of the HSES operator, the profits of the HSES operator
under different leasing price coefficients are analyzed in this
subsection. In this case, the price coefficient of D-SES ranges
from 1 to 1.2, and the price coefficient of H-SES ranges from
0.1 to 0.5. The changes in the HSES operator’s profit are shown
in Figure 6.

As observed from Figure 6, when the leasing price coefficient of
D-SES remains constant, the profit of the operator generally
increases first and then decreases as the leasing price coefficient
of H-SES increases. The reason for this phenomenon can be
explained as follows: when the leasing price of H-SES is relatively
low, the NESs lease as much H-SES as possible under the established
leasing rules to gain additional market revenue. Nevertheless, the
low leasing price forces the operator to forfeit substantial revenue.
As the leasing price increases, the reduction rate of the NESs’ leased
capacity is slower than the growth rate of the leasing price; therefore,
the operator’s profit exhibits an upward trend. As the leasing price
further increases, the hefty leasing costs force the NESs to lower their
leasing demands for H-SES, resulting in decreased revenue for the
operator.

Similarly, when the leasing price coefficient of H-SES is kept
constant, as the leasing price coefficient of D-SES increases, the
operator’s profit presents a similar trend. The underlying
reasons are congruent with the previous analysis and will not
be reiterated here.

Interestingly, as can be clearly observed from Figure 6, the
operator’s profit experiences a precipitous drop within the range
of 1–1.05. The reason can be elucidated as follows: since D-SES is
leased on a daily basis when the price coefficient is lower than a
certain threshold, the marginal revenue for NESs from leasing
D-SES significantly exceeds the leasing cost. This encourages
NESs to lease as much D-SES as possible, thereby bringing
substantial revenue for the operator. However, once this
threshold is exceeded, NESs need to weigh the benefits of
reducing deviation assessment penalties and the high-generation
benefits associated with low storage against leasing as much D-SES
as possible. This consideration leads to a sharp decline in the
operator’s profit.

In summary, the leasing price coefficients show a large impact
on the leasing demands of NESs and the benefit of the operator; thus,
the operator should set the price coefficient reasonably according to
the demand changes to maximize its own benefit.

5.2.3 Leasing results of HSES under different
leasing price coefficients

To further investigate and explain the phenomena observed in
Section 5.2; Section 5.2.2, the HSES leasing demands under different
leasing price coefficients are analyzed in this subsection. With the
price coefficient of D-SES fixed (i.e., 1.02), the leasing results under
different price coefficients of H-SES (i.e., 0.16–0.30) are depicted in
Figure 7. Similarly, with the price coefficient of H-SES held constant
(i.e., 0.22), the leasing results under different price coefficients of
D-SES (i.e., 1–1.14) are shown in Figure 8.

As shown in Figure 7, when the leasing price coefficient of D-SES
is fixed and that of H-SES is adjusted, the low leasing price
coefficients of D-SES encourage NESs to lease as much D-SES as

TABLE 1 Basic parameters of HSES systems.

θ ηdis/ch SOCmin SOCmax cinv ($/Wh) cmt ($/MW) Y (yr)

D-SES 2 0.95 0.10 0.90 0.2083 15.7 10

H-SES 0.5 0.95 0.10 0.90 0.2778 16.3 10

TABLE 2 Optimization results under the optimal HSES pricing and planning strategy.

Maximum
leased

capacity/MWh

Construction
capacity/MWh

Leasing cost/105 $ Leasing profit/106 $ Net profit/106 $ Original profit/106 $

D-SES H-SES D-SES H-SES

NES#1 19.1478 15.8138 — — 6.17 — 5.92 5.83

NES#2 11.4887 9.4883 — — 3.70 — 3.55 3.50

NES#3 7.6591 6.3255 — — 2.47 — 2.37 2.33

NES#4 21.3197 14.4775 — — 3.85 — 1.96 1.91

NES#5 11.0863 7.5283 — — 2.00 — 1.02 0.99

NES#6 10.2335 6.9492 — — 1.85 — 0.94 0.92

HSES Operator — — 21.3197 15.8138 — 2.01 1.65 −0.32
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possible under the leasing rules; thus, the maximum leasing
capacities of D-SES are same at 0.16 and 0.18. However, as the
leasing price coefficient of H-SES increases, the total leasing capacity
of H-SES generally decreases. Consequently, since the initial
increase in price coefficient does not significantly impact the
leasing capacity, the operator’s total leasing profit demonstrates a
trend of initial growth followed by a decrease, which aligns with the
phenomenon observed in the previous subsection.

Similarly, when the leasing price coefficient of H-SES is held
constant and that of D-SES varies, due to the low leasing price of
H-SES, NESs also lease as much H-SES as possible under the rules at
1 and 1.02, resulting in a constant maximum leasing capacity of
H-SES. Furthermore, as can be observed from Figure 8, the leasing
capacity of D-SES decreases abruptly at 1.02 and 1.04, a
phenomenon that corresponds with the one observed in the
previous subsection. This is because when the price coefficient
exceeds a certain threshold, NESs have to consider the marginal
benefits of energy storage instead of leasing blindly, thus causing the
abrupt change. Correspondingly, the curve of the operator’s leasing
revenue exhibits the same characteristic.

5.3 Comparisons between the cases under
different energy storage utilizing modes

5.3.1 Results for the operator under different
energy storage utilizing modes

To validate the advantages of the proposed HSES model and the
optimal pricing and planning strategy, the results under different
energy storage utilization modes are analyzed in this subsection.
Table 3 presents the results for the operator under different energy
storage utilizing modes. Note that “HSES” in the table represents the
original case in this work, “only D-SES” represents the case where
the operator only invests and leases the D-SES, “only H-SES”
represents the case where the operator only invests and leases the
H-SES, and “no leasing” represents the case where the operator
utilizes the energy storage systems itself.

As shown in Table 3, under the “no leasing” case, the
operator cannot profit from participating in the energy
market independently, with the total net profit less than 0,
making it impossible to recover the investment costs within the
planning period. In contrast, in the three cases considering

FIGURE 6
Profits of the HSES operator under different leasing price coefficients.

FIGURE 7
Leasing results under different leasing price coefficients of H-SES
and fixed leasing price coefficient of D-SES.

FIGURE 8
Leasing results under different leasing price coefficients of D-SES
and fixed leasing price coefficient of H-SES.
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shared energy storage, the operator’s net profits are all greater
than 0. This indicates that the shared energy storage model can
help the operator gain substantial revenue. In the “HSES” case,
the total net profit of the operator is maximized, compared to
the “no leasing” case, the “only D-SES” case, and the “only
H-SES” case increased by 1.97 × 106 $, 0.18 × 106 $, and 1.40 ×
106 $, respectively. It is not difficult to find that although the
concurrent configuration of D-SES and H-SES brings
additional investment costs, the substantial increase in
leasing profit can bring greater benefits. Additionally, even
though the return on investment of HSES is lower than that
of “only D-SES,” the operator can still recover investment costs
in the short term.

To sum up, compared with other energy storage utilizing modes,
the proposed HSES model shows better economics. It can make up
for the shortcomings of the traditional energy storage usage model in
terms of slow cost recovery speed and can further improve the
operator’s revenue compared with the traditional single-type
sharing model.

5.3.2 Results for new energy stations under
different energy storage utilizing modes

To further explore the impact of the model proposed in this
work on NESs, this subsection takes NES#1 as an example to analyze
the economic benefits of NESs under different energy storage
utilization modes. The results of NES#1 under different energy
storage utilization modes are shown in Table 4. Note that “self-
built ES” represents the case where NES#1 invests and utilizes the
energy storage system itself and “no ES” represents the case where
NES#1 participates in the energy market without energy storage
resources.

As shown in Table 4, when no energy storage resources are
utilized, the energy deviation penalty of NES#1 is as high as 1.59 ×
106 $, thereby affecting its net market profit. When investing and
utilizing energy storage devices independently, the high investment
cost of energy storage brings additional expenditure to NES#1.
However, the flexible regulation capability provided by the
energy storage device significantly reduces the energy market
deviation penalty (i.e., 1.48 × 106 $), enhancing NES#1’s market
profit. Therefore, compared to the scenario without using energy
storage resources, the net profit of NES#1 in the self-built energy
storage case increased by 0.05 × 106 $.

It can be observed in Table 4 that the mode of leasing shared
energy storage can further improve the net profit of NES#1, among
which the additional profit brought by leasing both D-SES and
H-SES is the highest. As can be seen from Table 4, although the
annual leasing costs are higher than the annual investment cost, the
net profits are higher than that of self-built energy storage due to the
larger amount of energy storage resources that NES#1 can utilize
under the shared energy storage model. It is worth mentioning that
leasing shared energy storage can also reduce the investment risk of
NESs. In practice, if future market policies and its own power
generation scale change, the NES can freely adjust the capacity of
leased energy storage, which is more flexible and less risky compared
to self-built energy storage.

Above all, the model proposed in this work shows the following
advantages: for NESs, the HSES leasing market provides them with a
flexible way to obtain adjustable resources. They can obtain the
short-term use rights of hybrid energy storage resources without
having to configure energy storage equipment themselves. In
addition, compared to traditional single-type SES, NESs can lease
both H-SES and D-SES according to their additional needs in certain

TABLE 3 Results for the operator under different energy storage utilizing modes.

Different cases HSES Only D-SES Only H-SES No leasing

Construction capacity/MWh D-SES 21.32 21.32 — 21.32

H-SES 15.81 — 15.81 15.81

Annual construction cost/106$ 1.14 0.58 0.57 1.14

Annual leasing profit/106 $ 2.01 1.50 0.53 —

Total net profit/106 $ 1.65 1.47 0.25 −0.32

Return on annual investment 145% 253% 44% −28%

TABLE 4 Results for NES#1 under different energy storage utilizing modes.

Different cases HSES Only D-SES Only H-SES Self-built ES No ES

Leased capacity/MWh D-SES 19.15 19.15 — — —

H-SES 15.81 — 15.81 — —

Construction capacity/MWh — — — 8.36 —

Annual penalty cost/106$ 0 0.04 0.01 0.10 1.59

Annual leasing cost/106$ 0.62 0.44 0.19 — —

Annual construction cost/106$ — — — 0.11 —

Total net profit/106 $ 5.92 5.90 5.91 5.88 5.83

Frontiers in Energy Research frontiersin.org12

Xu et al. 10.3389/fenrg.2023.1273929

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1273929


periods to further reduce deviations. To sum up, leasing HSES can
help NESs reduce energy deviations and increase market revenues.
For the operator, leasing the virtual use rights of HSES to NESs can
help obtain considerable leasing profit, thereby shortening the
recovery period of investment costs. Moreover, compared to the
traditional single-type leasing mode, the proposed leasing mode of
HSES can bring more additional profit.

6 Conclusion

Pricing and planning of energy storage systems are urgent issues
that need to be addressed for the energy storage owners. Therefore, a
Stackelberg game-based three-stage optimal pricing and planning
strategy of hybrid shared energy storage is formulated in this work
for the operator to maximize the profit during the whole planning
cycle. In addition, the three-stage GA–MILP–MILP algorithm is
proposed to efficiently solve the Stackelberg game-based model. The
effectiveness and advantages of the proposed strategy are verified
through the case studies, and the following conclusions and
suggestions are drawn for the HSES operator and NESs.

1) Compared to the traditional single-type leasing model, the
proposed hybrid shared energy storage model considering two
leasing options can bring additional profits for both the operator
and NESs.

2) The proposed Stackelberg game-based pricing and planning
strategy takes the preferences and selfishness of both the
“leader” operator and “followers” new energy stations into
consideration and can help the operator make optimal
decisions with maximum profit.

3) For new energy stations, obtaining short-term use rights of
D-SES and H-SES through the leasing market can help them
deal with energy deviation and obtain additional market
revenues.

4) For the energy storage operator, profits from the leasing market
can help increase the energy storage utilization rate and shorten
the investment recovery cycle.

In future works, NESs utilizing the HSES to participate in the
joint energy and frequency regulation market will be studied, and
the battery degradation will be considered in the pricing model.
Moreover, the energy storage demander can be extended to include
demand-side users, prosumers, integrated energy systems, etc.
Furthermore, more flexible leasing options and more types of
energy storage will be considered to perfect the business model
of energy storage.
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Nomenclature

Abbreviations

HSES Hybrid shared energy storage

NES New energy station

GA Genetic algorithm

D-SES Daily SES

H-SES Hourly SES

KKT KarushKuhnTucker

Sets and indices

t ∈ Nt Hourly time horizon, Δt = 1 h

τ ∈ [t, t+Δt] 15-min time horizon, Δτ = 15 min

s ∈ Ns Index of the new energy station

n ∈ Nn Index of the typical scenario

p ∈ Np Index of the H-SES leasing phase

k ∈ Nk Index of the time period within leasing phase p

Parameters

γn Probability of scenario n

cen,t The energy market price at time t under scenario n

π+/π- Coefficient of energy deviation penalty for positive deviation/
negative deviation

ηs,ch/ηs,dis Charging/discharging efficiency of H-SES

ηl,ch/ηl,dis Charging/discharging efficiency of D-SES

Ss,min
OC / Ss,max

OC
Lower/upper threshold allowed for the state of charge of H-SES

Sl,min
OC / Sl,max

OC
Lower/upper threshold allowed for the state of charge of D-SES

θs/θl Power-to-capacity ratio of H-SES/D-SES

Pre,pre
n,s,τ Forecasted output of the NES s at time τ in scenario n

Ys/Yl Lifespan of H-SES/D-SES

cmt Annual unit operation and maintenance cost of the energy storage

Variables

RNES
s Annual net profit of the NES n

RHSES Annual net profit of the HSES operator

Re,bid
n,s

Bidding revenue of NES s under scenario n

Re,rt
n,s Real-time market revenue of NES s under scenario n

Rlea
n

Leasing revenue of the operator in scenario n

Re,bid
n

Day-ahead bidding profit of the operator in scenario n

Re,rt
n Real-time energy market profit of the operator in scenario n

Ce,pun
n,s Energy market deviation penalty of NES s under scenario n

Clea
n,s

HSES leasing cost of NES s under scenario n

Ce,pun
n Energy deviation penalty for the operator in scenario n

Cnes Net energy market revenue paid by the operator to the NESs

Cinv Investment cost of HSES

Cmt Operation and maintenance cost of HSES

Ps,inv/Pl,inv Rated power capacity of the constructed H-SES/D-SES

El,lea
n,s

Capacity of D-SES leased by NES s under scenario n

Es,lea
n,s,p

Capacity of H-SES leased by NES s in the pth phase under
scenario n

ρl,lea/ρs,lea Price coefficient of D-SES/H-SES

Pe,bid
n,s,t

Bidding volume of NES s at time period t under scenario n

Pe,rt
n,s,τ Real-time energy base point submitted by NES s to the HSES

operator at time τ under scenario n

Pe,bid
n,t

Bidding volume of the operator at time t in scenario n

Pe,rt
n,τ Real-time energy base points submitted to the grid by the HSES

operator at time τ under scenario n

Es
n,s,p,τ / E

s
n,s,p,τ−1 Remaining energy at time τ/τ-1 under scenario n of the H-SES

leased by NES s

El
n,s,τ / E

l
n,s,τ−1 Remaining energy at time τ/τ-1 under scenario n of the D-SES

leased by NES s

Es
n,τ / E

s
n,τ−1 Remaining energy of the H-SES at time τ/τ-1

El
n,τ / E

l
n,τ−1 Remaining energy of the D-SES at time τ/τ-1

Ps,ch
n,s,p,τ / P

s,dis
n,s,p,τ

Charging/discharging power of the H-SES leased by NES s at time
τ under scenario n

Pl,ch
n,s,τ / P

l,dis
n,s,τ

Charging/discharging power of the D-SES leased by NES s at time
τ under scenario n

Pl,ch
n,τ / P

l,dis
n,τ

Charging/discharging power of the centralized D-SES invoked by
the operator at time τ in scenario n

Ps,ch
n,τ / P

s,dis
n,τ

Charging/discharging power of the centralized H-SES invoked by
the operator at time τ in scenario n

Pre
n,s,τ Actual output of NES s at time τ in scenario n

Pl,lea
n,s / P

s,lea
n,s,p

Power capacity of the leased D-SES/H-SES of NES s in scenario n

El
n,s,0/ E

l
n,s,te

Remaining energy of the D-SES leased by NES s at the initial/final
state of the scheduling cycle

Es
n,s,4p−3/ E

s
n,s,4p Remaining energy of the H-SES leased by NES s at the initial/final

state of the phase p

El
n,0/ E

l
n,te

Remaining energy of the D-SES at the initial/final state of the
scheduling cycle

Es
n,0/ E

s
n,te Remaining energy of the H-SES at the initial/final state of the

scheduling cycle

Bs,ch
n,s,p,τ / B

s,dis
n,s,p,τ

Auxiliary binary variable of the charging/discharging state for
H-SES at time τ for NES s

Bl,ch
n,s,τ / B

l,dis
n,s,τ

Auxiliary binary variable of the charging/discharging state for
D-SES at time τ for NES s

Bs,ch
n,τ / B

s,dis
n,τ

Auxiliary binary variable of the charging/discharging state for
H-SES at time τ

Bl,ch
n,τ / B

l,dis
n,τ

Auxiliary binary variable of the charging/discharging state for
D-SES at time τ
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