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The improvement of the AGC regulation capability of thermal power plants is very
important for the secure and stable operation of the power grid, especially in the
situation of large-scale renewable energy access to the power grid. In this study,
the prediction and optimization for the AGC regulation capability of thermal
power plants is proposed. Firstly, considering parameters related to the AGC
regulation of the thermal power plant, the max-relevance and min-redundancy
(mRMR) is used to extract features from historical sequences of the parameters.
Next, amodel withmulti-long short-termneural networks (mLSTM) is constructed
to predict the AGC regulation capability; that is, the obtained feature set is
considered as the inputs of the first LSTM sub-model to predict future values
of the main steam pressure and main steam temperature, which are then utilized
as the inputs of the second LSTM sub-model to predict the actual power
generation during AGC regulation operation. Then, the AGC regulation index is
calculated according to the “management rules of grid-connected operation of
power plant in Northern China” and “management rules of auxiliary service of the
grid-connected power plant in Northern China” (i.e., “two rules”), and it is then
considered as the objective function to be maximized by optimizing the coal feed
rate, air supply rate, and feedwater flow rate. Finally, the actual AGC regulation
process of a 300 MW coal-fired power plant is used as an application, and the
results show that the proposed method can effectively predict and improve the
regulation capability when the AGC instruction is received from the power grid.
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1 Introduction

To achieve green and low-carbon development in energy, the Chinese government has
put forward the development strategy of “carbon peak and carbon neutrality”, and the
electrical power industry has continuously adjusted its energy structure (Yang et al., 2022). A
large number of uncertain and fluctuating renewable energy power, which mainly includes
solar energy and wind energy, has been connected to the power grid (Wang et al., 2023a).
Currently, it is impractical and expensive to build large-scale energy storage to absorb the
impact of the intermittent, strong fluctuations in the power supply of renewable energy to the
grid. Thus, the load regulation capacity of thermal power units in response to automatic
generation control (AGC) directly affects the power grid regulation security. Due to the need
for deep peak shaving conditions, the power grid has put forward higher requirements for
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the coordinated control ability of thermal power plants (Wang et al.,
2023b). Therefore, the accurate prediction and improvement of the
AGC regulation capability of thermal power plants is of great
significance for ensuring the safe operation of the power grid
system (Li et al., 2023; Zhou et al., 2023).

To encourage thermal power plants to improve regulatory
flexibility and AGC regulation capability, the Chinese National
Energy Administration laid down the rules suitable for grid-
connected entities involving power dispatching, that is,
“management rules of grid-connected operation of power plant
in Northern China” and “management rules of auxiliary service
of the grid-connected power plant in Northern China” (i.e., “two
rules”). The “two rules” clarifies the calculation method of the
regulation capability index Kp of thermal power plants and the
profit value under different capabilities. The AGC regulation
capability of coal-fired thermal power plants are closely related to
the coordinated control system of the units (Peng et al., 2023). Ref
(Eslick et al., 2022) develops a physics-based coordinated control
system model to improve load-following performance and optimize
other boiler operating variables of a 245 MW subcritical pulverized
coal-fired power plant. In Ref. (Liu et al., 2022), conventional AGC
strategies were proposed to calculate the total adjustment power
based on the information collected from Supervisory Control and
Data Acquisition system including frequency deviation, tie-line
power deviation, and area control error (ACE); however, the field
test process is usually tedious and may bring influence to the normal
power generation process. Wang et al. (Wang J. et al., 2019)
proposed an AGC performance evaluation method by comparing
themagnitude change of the generated power and the desired power,
which is more convenient than the field test process. However, this
method failed to consider the dynamic characteristics of the unit and
the influence of noise, and its accuracy needs to be improved. Egido
et al. (Egido et al., 2007) proposed using operational data analysis to
evaluate AGC performance, in which the dynamic characteristics of
the unit were considered, thereby improving the accuracy of the
evaluation results. Wang et al. (Wang et al., 2017) applied genetic
algorithms to optimize the controller parameters of the AGC
assessment index to improve the AGC performance index of
thermal power units.

Considering the uncertainty and non-linearity of the process
characteristics of thermal power plants, researchers have
constructed neural network models to predict the regulation
capability of responding to the AGC instruction from the power
grid. For example, Chen et al. (Chen and Wang, 2016) proposed a
neural network-based predictive control algorithm to handle
nonlinear problems in the AGC response. Xi et al. (Xi et al.,
2020) proposed a novel DPDPN algorithm to improve AGC
power allocation, and the predictive capability of deep learning
was combined with the decision-making ability of reinforcement
learning in the DPDPN method. Peng et al. (Peng et al., 2019)
combined the optimization strategy of traditional predictive control
with a neural network and proposed a new system-fitting algorithm
based on the Bayesian neural network; however, it failed to consider
the screening of variables and features, which led to long training
time of the network and inadequate prediction accuracy. Wang et al.
(Wang et al., 2021) utilized a long short-term memory neural
network (LSTM) model to evaluate the performance of thermal
power plants, and the prediction results were more accurate and

stable, but they did not consider the feature selection problem in the
model construction. To solve this problem, Ref (Liang et al., 2019)
proposed a max-relevance and min-redundancy (mRMR) algorithm
for feature extraction, thereby improving the model training
efficiency. Therefore, in this paper, the AGC influencing factors
are analyzed and extracted by using the mRMR algorithm, and the
obtained variables are then taken as the inputs to the LSTMmodel to
predict the AGC regulation capability of the power plant.

At present, the common approaches to improve the power
generation change rate of thermal power units can include
condensate throttling, steam extraction of heating units,
refrigerant throttling of condensers, etc. (Hegazy et al., 2016;
Zhang et al., 2021; Liu et al., 2023). These methods can greatly
improve the dynamic characteristics of thermal power plants,
shorten the response time of units, and increase the primary and
secondary frequency regulation capabilities through rational
utilization of turbine-side energy storage. For example, the
condensate throttling control mainly uses the working medium
storage capacity provided by the condensate water tank and the
deaerator tank; thus, the energy originally used for heating the feed
water in the reheating system can be temporarily utilized to increase
the variable load rate of the unit.

It can be found that by changing the energy storage on the
turbine side, the main steam temperature and pressure of the power
plant can be quickly adjusted, thus improving the load change rate,
that is, the regulation capability to AGC instruction. Themain steam
temperature and pressure of the turbine are ultimately affected by
boiler side parameters, such as the coal feed rate, air supply rate, and
feedwater flow rate (Stevanovic et al., 2018; Wang Y. et al., 2019; Yin
et al., 2022). Therefore, this paper considers the construction of
multi-stage sub-models to describe the AGC regulation capability.
In the first sub-model, historical sequences of parameters such as
coal feed rate, air supply rate, and feedwater flow rate are taken as
inputs of an LSTM model; the main steam temperature and main
steam pressure are taken as output parameters to be predicted. In the
second sub-model, the prediction of the main steam temperature
and main steam pressure are taken as inputs of another LSTM
model, and the final power load change, that is, the actual power
generation, is taken as output. Based on the constructed model, the
particle swarm optimization (PSO) algorithm is proposed to
optimize parameters of coal feed rate, air supply rate, and
feedwater flow rate, to improve the AGC regulation capacity.

The rest of this paper is organized as follows. Section 2 details the
fundamental modeling theories. The AGC regulation capacity
model and optimization methods are presented in Section 3.
Section 4 gives an application to a 300 MW thermal power plant,
and Section 5 provides the conclusions.

2 Modeling theories

2.1 mRMR feature selection

The max-relevance and min-redundancy (mRMR) is a filtering
feature selection algorithm, in which the evaluation function
considers both the correlation between features and categories
and the correlation between features. As a result, the filtered
variables can retain the maximum number of relevant features

Frontiers in Energy Research frontiersin.org02

Jin et al. 10.3389/fenrg.2023.1275243

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1275243


while ensuring the minimum number (R et al., 2016; Ding and Peng,
2003). The algorithm uses mutual information to measure the
correlation between variables, which can be expressed as follows:

I M;N( ) � ∫∫p m, n( )log p m, n( )
p m( )p n( )( )dmdn (1)

whereM and N are two characteristic variables, p(m) and p(n) are
marginal probability functions of the corresponding variables, and
p(m, n) is the joint probability distribution.

Given a subset of candidate features, the measures for maximum
correlation between features and categories and minimum
redundancy between features are calculated as follows:

maxD S, c( ), D � 1
S| | ∑fi∈S

I fi, c( ) (2)

minR S, c( ), R � 1

S| |2 ∑
fi,fj∈S

I fi, fj( ) (3)

where S is the set of features, fi is the i-th feature, c is the target
category, I(fi, c) is the mutual information between feature i and
target category c, I(fi, fj) is the mutual information between
feature i and feature j, D is the measure with the greatest
correlation between features and categories, and R is the measure
with the least redundancy between two different features.

Considering the relevance and redundancy of the selected
feature subset, the evaluation function of the mRMR feature
selection is obtained by combining Eqs. 2, 3, which is given as
follows:

max J D, R( ), J � D − R (4)
The above equation can be solved by gradually increasing a

single variable. Assuming that the set S is the full feature set, and St−1
is the already selected feature set with t − 1 features, then the t-th
feature is selected from the set S, which is different from the elements
in the set St−1, to maximize Eq. 4. In other words, we can use Eq. 5 to
maximize the differences between univariate relevance and
redundancy to determine the added t-th feature (Wang et al., 2018).

max
fi∈S−St−1

I fi, c( ) − 1
t − 1

∑
fi∈St−1

I fi, fj( )⎡⎢⎢⎣ ⎤⎥⎥⎦ (5)

2.2 LSTM neural network

Long short-term memory neural network is one variant of a
Recurrent Neural Network (RNN). An LSTM neural network has a
temporal recurrent neural network structure designed to solve the
problems of gradient disappearance and gradient explosion RNN
when processing long sequence data (Hochreiter and Schmidhuber,
1997). A typical LSTMmodel mainly consists of one input layer, one
output layer, and several hidden layers. The implicit layer has three
types of gate structures with a memory unit, which is responsible for
storing state information and passing it forward. The three types of
gates are the forgetting gate, the input gate, and the output gate
(Sahin and Kozat, 2019; Yu et al., 2019; Yuan et al., 2019). The
structure of the LSTM neural network is shown in Figure 1.

It is shown in Figure 1 that each LSTM has a cell, which can be
regarded as the memory unit of the LSTM. At the time t, there are
three inputs: the input value of the current moment memory unit xt,
the output value of the previous moment memory unit ht−1, the
memory unit state of the previous moment ct−1; and two outputs: the
output value of the current moment memory unit ht, the current
moment memory unit state ct.

LSTM can get and modify the information in each memory unit
through the input gate it, output gate ot and forget gate f t. The forget
gate determines how much of the unit state ct−1 at the previous
moment is retained until the current moment. The input gate
determines the information of input xt saved to the cell state at
the current moment. The output gate controls the information from
the current output value of the LSTM ct to the cell state ht. The
relation among all the variables can be calculated as follows:

it � σ wi ht−1, xt[ ] + bi( )
ot � σ wo ht−1, xt[ ] + bo( )
f t � σ wf ht−1, xt[ ] + bf( ) (6)

where w is the weight matrix, b is the corresponding bias term,
which can be obtained by the network training self-learning
optimization, and σ is the activation function sigmoid function,
with the output value ranging from 0 to 1.

LSTM layer can calculate unit status updates at this time value ~ct
according to the last moment of the network output and the current
time of input; furthermore, the current state of unit ct can be

FIGURE 1
LSTM neural network structure diagram.
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calculated based on the forgotten gate and input, which is shown as
follows:

~ct � tanh wc ht−1, xt[ ] + bc( )
ct � ftct−1 + it~ct (7)

The cell state has two flow directions. One direction is to pass the
LSTM layer at the next moment in the feedback structure as a long-
term information feature; the other is to combine with the tanh
function and multiply with the result of the output gate to obtain the
predicted result of the current moment, that is, ht � ot ⊙ tanh(ct),
where ht is the final output of the network, ⊙ refers to the Hadamard
product.

3 AGC regulation capacity model and
optimization

3.1 Model structure

The structure of the AGC regulation capability model is
shown in Figure 2. The whole model contains multi sub-models,
one of which is the prediction model of boiler performance, and
the other is the prediction model of the actual generation power
of the generator. In the first sub-model, historical sequences of
coal feed rate, air supply rate, feedwater flow rate, main steam
pressure, and main steam temperature are taken as the model
input; the main steam pressure and main steam temperature
value at the next sampling period are taken as the model output,
to characterize the response of the boiler to the AGC instruction
from the power grid. In the second sub-model, the main steam
temperature and pressure predicted by the first sub-model are
taken as the input, and the actual generating power is taken as
the output.

When the AGC instruction is given, the main steam pressure
and main steam temperature response process are related to their
historical values; therefore, historical values of the coal feed rate, air
supply rate, and feedwater flow rate are utilized as the input of the
first sub-model. The prediction process is shown in Eq. 8.

p̂k+1 � f1 Pek, ck, ck−1,/, ck−T, ak, ak−1,/, ak−T, wk, wk−1,/, wk−T,(
pk, pk−1,/, pk−T−1, tk, tk−1,/, tk−T)

t̂k+1 � f2 Pek, ck, ck−1,/, ck−T, ak, ak−1,/, ak−T, wk, wk−1,/, wk−T,(
pk, pk−1,/, pk−T−1, tk, tk−1,/, tk−T) (8)

where k is the current time stamp, T is the maximum historical time
to be used (T≥ 1), Pek is the current value of the AGC instruction
received from the power grid, ck−i, ak−i, wk−i (1≤ i≤T) represent the
i th historical value of the coal feed rate, air supply rate, and
feedwater flow rate, ck, ak, wk represent the value of the coal
feed rate, air supply rate, and feedwater flow rate to be set; p̂k+1
and t̂k+1 represent the predicted value of the main steam pressure
and main steam temperature at next time stamp.

Definitely, the parameters of p̂k+1 and t̂k+1 to be predicted are
closely related to the current values of ck, ak,wk, pk, and tk. As to the
historical sequence of ck−1,/, ck−T, ak−1,/, ak−T, wk−1,/, wk−T,
pk−1,/, pk−T−1, and tk−1, tk−2,/, tk−T, not all historical sequence
values are used as model inputs. The optimal set of these parameters
can be determined by the mRMR method.

The actual power generation of a thermal power plant is closely
related to the main steam pressure and main steam temperature
according to the operation mechanism of the steam turbine.
Therefore, the actual power generation can be obtained based on
the prediction of the main steam pressure and main steam
temperature. That is, the AGC instruction value, the main steam
pressure, and themain steam temperature are used as input variables
of the LSTM network in the second sub-model to predict the final
actual power generation. The prediction process is shown in Eq. 9.

P̂k+1 � f3 Pek, p̂k+1, pk, t̂k+1, tk( ) (9)
where p̂k+1 and t̂k+1 represent the main steam pressure and main
steam temperature predicted by the first sub-model, P̂k+1 is the
prediction of actual power generation, which can characterize the
regulation capability to the AGC instruction of the power grid.

3.2 AGC regulation capability optimization

According to the AGC regulation mechanism, the boiler and
turbine will be tuned through the coordinated control system when
the thermal power plant receives the AGC instruction. The final
response of the plant is determined by the operating parameters of
the coal feed rate, air supply rate, and feedwater flow rate. Therefore,

FIGURE 2
AGC regulation capability prediction model.
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these parameters can be optimized to maximize the regulation
capability for a given AGC instruction.

According to the management rules of grid-connected operation
of power plants, the regulation capability index is calculated by the
Kp after the actual generated power is obtained by using multi sub-
models shown in Eqs. 8, 9.

To illustrate the calculation of Kp, an AGC regulation process is
considered, for example,. Figure 3 shows the curve of an actual
power generation (i.e., power load) responding to a given AGC
instruction, with a dead zone of 1% and a regulation dead zone of
0.5% of the unit-rated capacity. The response time from P0 to P1 in
Figure 3 and the calculation is as follows:

t � t1 − t0 (10)
The regulation rate refers that the output crosses the response

dead zone to enter the regulation dead zone. In Figure 3, the
regulation rate can be calculated in t1 ~ t2 or t3 ~ t4 period.
Taking load increasing process (t1 ~ t2 period) as an example
(same results can be obtained in the load decreasing process,
i.e., t3 ~ t4 period), the calculation formula is as follows:

v � P2 − P1

t2 − t1
(11)

The regulation accuracy refers to the integration of the absolute
value of the difference between the actual output and the set point
command over a while (the result is shown in the shaded part in
Figure 3), and then it is divided the integrated value by the
integration time, which is the regulation accuracy for that period.
The calculation is given as follows:

Δp � ∫t3

t2
P t( ) − Pe| |dt
t3 − t2

(12)

where Δp is the regulation accuracy, P(t) is the actual output of the
power plant, and Pe is the AGC instruction received from the
power grid.

According to the “two rules”, the regulation capability index is
calculated by the Kp after the actual power generation is obtained.
The detailed calculation equations are given as follows.

Kp � K1·K2 ·K3 (13)
where,

K1 � 2 − vN/v (14)

K2 � 2 − Δp/ΔpN (15)
K3 � 2 − t/tN (16)

where vN, ΔpN, and tN are intrinsic parameters of the investigated
power plant, and they refer to the standard value of regulation speed,
allowable deviation, and response time, respectively.

The task of regulation capability improvement is to
maximize the index of Kp value when an AGC instruction is
received from the power grid by optimizing the operating
parameters, including the coal feed rate ck, air supply rate ak,
and feedwater flow rate wk. However, the index Kp can only be
calculated after the whole AGC response process is finished. If
the index Kp is directly used as the objective function, the online
optimization cannot be realized, because the Kp index cannot be
obtained at each time stamp. From Eqs 10–16, it can be found
that if the actual power generation of the unit is closer to the
AGC instruction, the Kp index will be larger. Therefore, the
minimization of the difference between the actual power
generation and AGC instruction can be considered as the
objective function.

In addition, according to the secure operation of thermal power
plants, the following constraints are considered. For a given
300 MW thermal power plant, the upper and lower operation
limits of the main steam pressure are set to 22.7 MPa and
17.2 MPa, respectively; the upper and lower limits of the main
steam temperature are set to 569°C and 559°C, respectively. The
fluctuation limit of the main steam pressure per second is less than
0.5 MPa. The upper limit of the unit load is 300 MWwhile the lower
limit is 128 MW. Then we can obtain the following optimization
problem:

min
ck,ak,wk

1
2
P̂k+1 − Pek

���� ����2
s.t.

p̂k+1 − pk

∣∣∣∣ ∣∣∣∣< 0.5MPa
15.5MPa< p̂k+1 < 18.2MPa
559℃< t̂k+1 < 569℃
128MW< P̂k+1 < 300MW

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (17)

The particle swarm optimization (PSO) algorithm is utilized
here to obtain the optimal operating variables. These variables are
regarded as particles in multi-dimensional search space, and the
moving speed and direction of the particles are updated by iterating
to obtain the optimal solution (Zhang et al., 2015; Liu et al., 2020).
The variable to be optimized is denoted as x � [ck, ak, wk]T, and a
particle population is generated in the search space:

xi � x1, x2,/, xm{ }
vi � v1, v2,/, vm{ }{ (18)

where xi and vi are the position and velocity of the i th particle,
respectively, and m � 3 represents the variable dimension.

For the i th particle at the t th iteration, the velocity and position
are denoted as xti and vti , respectively, and the individual optimal
value and the global optimal value are pt

best and gbest. The particle
updates its velocity and position information according to Eqs. 19
and (20) in (t + 1) th iteration:

vt+1i � ωvti + c1r pt
best − xti( ) + c2r gbest − xti( ) (19)

xt+1i � xti + vt+1i (20)

FIGURE 3
AGC regulation process of a thermal power plant.
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where ω, c1, c2 are the weight and learning factors of particles during
velocity update, r represents a random number from 0 to 1.

With Eq. 17 as the fitness function, the speed and position of the
particles are updated according to Eqs 19, 20. The best solution x
corresponds to the optimal values of [ck, ak, wk]T to be set.

3.3 Model implementation procedure

The implementation process of the AGC regulation modeling
and optimization is shown in Figure 4, and the specific steps are
given as follows:

(1) Collect historical operating data of the power plant in several
periods of the AGC regulation process, including the parameters
of coal feed rate, air supply rate, feedwater flow rate, the main
steam pressure, and main steam temperature.

(2) Calculate mutual information between input and output
variables, and select the optimal historical sequences of coal
feed rate, air supply rate and feedwater flow rate as the inputs of
the first sub-model.

(3) Construct the first sub-model with the extracted parameters in
(2) as the inputs, to predict the main steam pressure and main
steam temperature at the next time stamp by using the LSTM
network.

(4) Construct the second sub-model, with the outputs of the first
sub-model in (3) as the inputs, to predict the actual power
generation at the next time stamp by using LSTM network.

(5) Given a new AGC instruction, optimize the values of coal feed
rate, air supply rate, and feedwater flow rate by minimizing the
difference between the actual power generation and AGC
instruction.

(6) Obtain the optimal coal feed rate, air supply rate, feedwater flow
rate and go to (5) to get a new AGC instruction.

4 Application analysis

4.1 Data acquisition

In this paper, we obtain a high-resolution operation data set
from the DCS system of a 300 MW coal-fired subcritical unit in
North China. The unit is equipped with a subcritical parameter
natural circulation steam package boiler with a maximum
continuous output of 1,016 t/h. AGC regulation experiments were
conducted to collect operation data containing the parameters
shown in Table 1. The data samples were acquired with an
interval of one second, with a total of 3,600 samples obtained.
The AGC regulation curve is shown in Figure 5, including load-
raising or decreasing processes.

FIGURE 4
Flowchart of the AGC regulation modeling and optimization.
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The data samples were preprocessed by using the z-score
normalization to make them conform to a standard normal
distribution, that is, with a mean of 0 and a standard deviation
of 1. We use the above data to construct a LSTM model to achieve
the prediction of unit power generation and the validation of unit
AGC capability optimization strategy. The first 3,000 sets of
collected data are used as the training set, and the last 600 sets
of data are used as the test set to verify the training and
optimization results of the model. Because the input data of the
LSTM model is sequence data, the training set and test set data
were divided into 43 and 10 sequence data based on AGC
instructions’ changing.

4.2 Model accuracy analysis

The mRMR was used to extract the feature variables, and the
correlation score of each variable was calculated comprehensively, as
shown in Figure 5. The characteristic variables with correlation
scores greater than 0.5 were selected as input variables. Therefore,
the maximum historical time T of the coal feed rate, air supply rate,
and feedwater flow rate were set to 3, 3, and 2, respectively; the
maximum historical time T of the main steam pressure and main
steam temperature are both set to 2.

The first sub-model of the LSTM network is set up to predict the
main steam pressure and the main steam flow, respectively. The

second sub-model of the LSTM network was used to predict the final
actual power generation. Taking one sequence data containing
100 samples in the test set data as an example, the prediction
results are shown in Figure 6, where the predicted and actual
curves of the model nearly coincide. Figure 7 shows the model
prediction error between the actual power generation and the model
prediction is within 1.81 MW, which validates the accuracy of the
proposed model.

The average relative error (ARE), root mean square error
(RMSE), and normalized root mean square error (NRMSE) were
used as indexes to qualitatively evaluate the accuracy of the model,
and each index was defined as follows:

ARE � 1
n
∑n
i�1

P̂i − Pi

∣∣∣∣ ∣∣∣∣
Pmax − P min

× 100% (21)

RMSE �
������������
1
n
∑n
i�1

P̂i − Pi( )2√
(22)

NRMSE � 1
�P

������������
1
n
∑n
i�1

P̂i − Pi( )2√
× 100% (23)

where Pi, P̂i represents the actual and predicted value of the power
generation, �P represents the mean value of actual power generation,
Pmax and Pmin represent the maximum and minimum values of Pi,

FIGURE 5
Ranking of variable relevance scores.

TABLE 1 Range of parameters.

Number Features Range Unit

1 Actual power generation 164.42–233.87 MW

2 AGC instruction 162.78–234.75 MW

3 Main steam temperature 563.69–578.94 ℃

4 Main steam pressure 15.65–19.37 MPa

5 Coal feed rate 94.05–140.66 t/h

6 Air supply rate 758.60–935.87 t/h

7 Feedwater flow rate 498.92–720.29 t/h

FIGURE 6
The mRMR-mLSTM model prediction.

FIGURE 7
The mRMR-mLSTM model prediction error.
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and n is the sample number. The ARE, RMSE, and NRMSE of the
model on the test sets are 9.4%, 1.53 MW, and 0.97%, respectively.
The results showed that the error of the proposed model was
adequate to give an accurate prediction of actual power
generation with a given AGC instruction.

To further verify the prediction performance of the proposed
model with multi sub-LSTMs and mRMR-based feature selection
(denoted as mRMR-mLSTM model), the model was compared
with a single LSTM neural network model (denoted as LSTM
model), and a model with multi sub-LSTMs and no mRMR-based
feature selection (denoted as mLSTM model). The comparison of
model prediction results and errors is shown in Figures 8–11. It
can be seen that the predicted power generation of the single
LSTM neural network model differs significantly from the actual
power generation with a given AGC instruction, and the peak
value of the model prediction errors reaches 3.94 MW. The
mLSTM model has improved the accuracy compared with the
single LSTM network, but the error is still larger than that of the
mRMR-mLSTM model.

The comparison results of the single LSTM model, the
mLSTM model, and the mRMR-mLSTM model are given in
Table 2. The results showed that the error of the mRMR-
mLSTM model was significantly lower than that of the LSTM
model and the mLSTM model. Specifically, compared with the

single LSTM model, the prediction RMSE error of the mLSTM
model is reduced by 1.15 MW, with a 35.1% decrease, and the
results show that it conforms to the real responding
characteristics better by dividing the AGC process into multi-
stages, which are described by different sub-models. In addition,
the prediction RMSE error of the proposed mRMR-mLSTM
model is less than 1.74 MW and reduced by 53.2% compared
with the single LSTM model, which means the feature selection
based on mRMR is beneficial to filter the relevant variables
related to the AGC response. In general, the proposed mRMR-
mLSTM model can be adequate to give an accurate prediction of
actual power generation with a given AGC instruction.

4.3 AGC capability optimization results

Figure 12 shows the variation trend of the actual power
generation of the thermal power plant in response to the AGC
instruction. It can be seen that when the power plant receives the
AGC instruction from the power grid, the values of the coal feed rate,
air supply rate, and feedwater flow rate start to vary, and then the
main steam pressure and main steam temperature also change at the
same time, which results to the change of the actual power
generation. Finally, the actual power generation reaches around

FIGURE 9
The mLSTM model prediction error.

FIGURE 8
The mLSTM model prediction result.

FIGURE 10
The LSTM model prediction result.

FIGURE 11
The LSTM model prediction error.
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the AGC command value. In addition, we can use Eqs 10–16 to
calculate the Kp value for the entire response.

With the error between the actual power generation and AGC
instruction as the objective function, PSO is used to obtain the
optimal values of the coal feed rate, air supply rate, and feedwater
flow rate. Taking the optimization of the first time stamp as an
example, the iterative process of PSO is shown in Figure 13. It can be
seen that after 19 iterations, the objective function achieves the
optimal value, and the deviation reaches 0.18 MW. Similarly, the
optimization can be conducted online and we can get the optimal
coal feed rate, air supply rate, and feedwater flow rate at each
moment during the AGC regulation process. Correspondingly,
the actual power generation can be obtained by using Eq. 9,
which is shown in Figure 14.

As illustrated in Section 4.2, the LSTM model can give
accurate predictions, which means the model is adequate to
represent the actual operating characteristics of coal-fired unit.
Thus, we consider it may be reasonable to use the calculation
results for the comparison. During the experiment, the
investigated power plant receives 52 AGC instructions from
the power grid, and most of instructions maintain for
approximately 1–2 min. According to the AGC instruction and
actual power generation, the Kp index can be calculated in each
AGC regulation process by using Eqs. 10)-16. The Kp index of the
AGC regulation before and after PSO optimization is shown in
Figure 15. It is easily obtained that the average Kp value of the
AGC regulation before the optimization is only 2.98, and its value
increases to 3.448 after optimizing the coal feed rate, air supply
rate, and feedwater flow rate by using PSO, with a 15.7%
improvement. Thus, it can be concluded that the proposed
method can effectively improve the AGC regulation capability
of the thermal power plant.

5 Conclusion

This paper proposes a prediction and optimization model for
the AGC regulation capacity of thermal power units. Firstly,

FIGURE 12
AGC instruction data.

TABLE 2 Prediction accuracy comparison of different models.

Models Test sets

ARE/% RMSE/MW NRMSE/%

LSTM 16.8 3.27 1.9

mLSTM 13.3 2.12 1.2

mRMR-mLSTM 9.4 1.53 0.97

FIGURE 13
Particle fitness value iteration.

FIGURE 14
Actual power generation after optimization and AGC instruction.

FIGURE 15
AGC regulation index comparison.
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optimal historical sequences of the coal feed rate, air supply rate,
feedwater flow rate, main steam temperature, and pressure are
selected by using mRMR theory and are taken as the first sub-
model of LSTM to predict the future values of main steam
temperature and pressure, which are then considered as the
inputs of the second LSTM sub-model to predict the power
generation with a given AGC instruction. Then, based on the
model, the PSO is applied to obtain optimal values of the coal feed
rate, air supply rate, and feedwater flow rate by minimizing the
difference between the actual power generation and AGC
instruction. Finally, an application to a 300 MW power plant
AGC regulation process is conducted. Comparisons results of
different modeling methods show that the proposed mRMR-
mLSTM model is adequate to predict the AGC regulation
capability after introducing the mRMR feature selection and
multi-stage process modeling, and the prediction RMSE error
is 1.53 MW, which is reduced by 53.2% compared with the single
LSTM model. In addition, after optimization by PSO, the AGC
regulation index Kp reaches 3.448, which is improved by 15.7%.
Thus, the proposed method can effectively predict and improve
the adjustment capability of grid AGC recommendation.
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