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The gradient differences of economic development and industrial structure
differences in Jing-Jin-Ji Region are significant. The ability of Jing-Jin-Ji
Region to pay for environmental protection is imbalanced. The above two
situations make it difficult to achieve coordinated pollution reduction and
carbon reduction governance. Accurately measuring carbon emission
efficiency and thoroughly analyzing the cooperation and competition
relationship of regional carbon emission reduction based on fully considering
stakeholders are of great significance for the joint construction, prevention and
control of regional ecological environment. The research is also of great
significance for promoting high-quality economic development and ensuring
effective protection of the regional ecological environment. This study
combines game theory and DEA theory to measure the carbon emission
efficiency of the Jing-Jin-Ji Region, and then uses spatial game theory to
analyze the average degree of being attacked, anti-attack ability, strongest
attacker, and optimal partner for the carbon emission efficiency of different
DMUs. The study concluded that: 1) Xicheng District and Hedong District have
higher carbon emission efficiency, while Mentougou District, Fengtai District,
Changping District, Fangshan District, Shijingshan District, Pinggu District and
Yanqing County have the lowest carbon emission efficiency. 2) From an analysis of
the degree of being attacked, it can be observed that economically developed
areas experience a higher average degree of being attacked compared to
economically underdeveloped areas. In regions with lower economic
development, the influence of the local government on reducing carbon
emissions is not significant, whether acting independently or in collaboration.
Regions with contrasting industrial structures could be ideal partners, and areas
with higher carbon emission efficiency could collaborate with regions with lower
carbon emission efficiency to achieve greater reduction potential.
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1 Introduction

Along with the long-term sound development of our economy
and the continuous improvement of industrialization and
urbanization, the economic models and approaches to land
expansion are also evolving. However, this progress has
significant implications for the environment and natural
resources. The traditional development model has resulted in a
massive increase in energy consumption and carbon emissions. It is
crucial to adopt a more sustainable approach to ensure the long-
term health of our economy and environment. Urban
agglomerations are a significant source of carbon emissions in
our country. Controlling these emissions is crucial to
implementing effective carbon management. Achieving carbon
neutrality and reaching peak emissions are vital goals for
promoting green and low-carbon development within Chinese
urban agglomerations. Achieving carbon peaking and carbon
neutralization in urban agglomerations is a necessary condition
for China to reach its goals in this area, and these regions are key
players in the country’s strategic plan to achieve carbon peaking and
carbon neutralization. An in-depth analysis of the “dual-carbon”
goal in the future process of high-quality development of urban
agglomerations has significant practical significance and far-
reaching influence on China’s “dual-carbon” goal of achieving
carbon peak by 2030 and carbon neutrality by 2060.

Currently, the level of pollution emissions in the Jing-Jin-Ji
Region far exceeds its environmental carrying capacity.
Furthermore, improper industrial cooperation development is
leading to a deterioration of the ecological environment. The
Outline of the Plan for the Coordinated Development of the
Jing-Jin-Ji Region proposes measures to address environmental
pollution in the area. Key among these is the need to prioritise
ecological environmental protection, break down administrative
restrictions, and expand the region’s ecological space. Proactive
steps in these areas can help mitigate the effects of pollution and
promote ecological wellbeing in the region. During the forum on the
coordinated development of the Jing-Jin-Ji Region in January 2019,
General Secretary Xi underscored the importance of preserving the
natural resources of the region, emphasizing the enduring value of
“lucid waters and lush mountains.” Additionally, he called for
strengthened measures to jointly address ongoing environmental
and ecological challenges. While policies aim to overcome regional
boundaries and enhance collaborative governance, the three
provinces and cities located in Beijing, Tianjin, and Hebei exhibit
diverse environmental and resource characteristics, as well as
distinct functional roles. To successfully coordinate the interplay
between economic growth, environmental protection, and resource
utilization across the three regions, and create sustainable
development strategies based on their functional differences, is
not only a matter of respecting nature’s laws, but also a
necessary requirement for the coordinated development of
Beijing, Tianjin, and Hebei.

The key to reducing regional carbon emissions and developing a
low-carbon economy is to improve carbon emission efficiency
(Wang and Ma, 2018). Carbon emission efficiency essentially
considers the production technology efficiency of carbon
emissions (Farrell, 1957). Kaya and Yokobori (1993) defines
carbon emission efficiency as the ratio of CO2 emissions to

nominal GDP.There are many methods for measuring carbon
emission efficiency, mainly including constructing relevant
indices and Data Envelopment Analysis (DEA). Due to the
applicability of the DEA method to efficiency evaluation with
multiple inputs and outputs, and its independence from
subjective factors and input-output dimensions, using Data
Envelopment Analysis (DEA) (Barba-Gutiérrez et al., 2009;
Grösche, 2009; Lee and Kung, 2011) to measure carbon emission
efficiency is the mainstream method for carbon emission efficiency.

The goal of carbon emission efficiency is to boost regional
economic benefits while simultaneously reducing regional carbon
emissions. This is achieved through the effective and efficient
allocation of economic resources, capital, labor, and energy
within the region. It can fully reflect the progress of low-carbon
economic transformation and serves as a crucial evaluation tool for
regions that aim to integrate their development into the framework
of sustainable growth (Wang et al., 2022). In the social context of
enhancing environmental quality and mitigating climate change, the
improvement of carbon emission efficiency has emerged as a hot
topic recently due to its promise as an approach to reduce emissions
and improve environmental quality (Xie et al., 2021). Based on an
in-depth analysis of carbon emission efficiency, the paper includes
the interest-game relationship of regional carbon emission
reduction. Improving carbon emission efficiency has become a
critical task in promoting the coordinated development of
Beijing, Tianjin, and Hebei to facilitate high-quality economic
development and protect the environment. It is crucial to lay the
groundwork for a regional ecological security barrier. It is a crucial
driver for sustainable economic development in the Jing-Jin-Ji
Region, and it represents the most tangible way to enhance the
quality of life for the residents of these three areas.

In reality, the Jing-Jin-Ji Region is geographically adjacent to
each other and has water system connectivity. Air pollutants in
adjacent regions have spatial diffusion and accumulation, and water
pollution in adjacent regions has spatial diffusion. However, There
are differences in economic development level, industrial structure,
spatial layout, energy conservation and emission reduction
technologies in the Jing-Jin-Ji Region. And also, there are
differences in the degree of environmental pollution in adjacent
regions. Different regions have different interest demands.
Therefore, regional carbon emissions involve multiple
stakeholders, and different local governments have different
interest concerns. Strategies and actions taken based on different
interest concerns will have a direct impact on regional carbon
emissions (Korhonen and Siitari, 2009). Therefore, it is necessary
to research regional carbon emission reduction cooperation from a
more systematic and comprehensive perspective based on the multi-
stakeholder perspective. And then, the research conclusion of this
article will provide theoretical basis and policy reference for multi-
stakeholder cooperation in carbon reduction.

The spatial game theory regards individuals as an important part
of the spatial grid structure which holds that all game participants
are limited by the spatial distance. Participants can only play the
game with their nearest neighbors. The benefits of game participants
determines whether the individual strategy is maintained (strategy
survival) or converted to the strategy with higher returns (strategy
death). Around 1992, Nowak et al. published a classic paper on
spatial game (Nowak and May 1992; Nowak et al., 1994), which
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placed participants in a spatial grid structure and made them play
games with their neighbors. It is found that there is spatial
reciprocity in the process of the spatial game, and the
cooperators will cluster together, and the mutual benefit and
symbiosis of cooperators are conducive to resisting the
encroachment of surrounding resisters (Lieberman et al., 2005).
In reality, the interaction between participants often has a spatial
structure. Each individual is exposed to the present value of the
spatial location and has contact with neighboring individuals, which
leads to a game. This spatial game is also known as evolutionary
graph theory (Huang and Ling, 2020).

In the actual management process, the final decision scheme is
often made by a few people. A good scheme that can be generally
accepted by the participants should be conducive to the
development of each member. In practice, some leaders form
alliances with other members to defeat competitors, while other
members form coalitions to defend themselves (Xu et al., 2023). It is
important to understand how different DMUs face competitive
pressure, and how to choose partners wisely. Based on this, this
paper combines the spatial game with DEA efficiency evaluation,
studies the spatial game relationship according to the adjacent
relationship between the objects, and explores the carbon
emission efficiency of Beijing, Tianjin and Hebei and its spatial
game relationship, to offer suggestions for regional carbon emission
joint governance.

The possible innovations and contributions of this study are
as follows.

(1) Based on regional data from China, this paper combined the
DEA theory with the spatial game to investigate the game
relationship between objects of study based on their adjacent
relationships in Jing-Jin-Ji Region for the first time. This paper
fully considers the multiple interests involved in regional carbon
emission and their varying concerns in evaluating regional
carbon emission efficiency. Based on the evaluation of
carbon emission efficiency, This paper conducts a thorough
analysis of inter-regional competition and cooperation, taking
into account the spatial relationship between different regions.
This will enable the development of an ecological efficiency
optimization scheme that can be accepted by stakeholders
relevant to the regional competition and cooperation.

(2) Based on the regional data from China, theoretical research on
regional carbon reduction cooperation has been enriched. With
the implementation of the green and low-carbon development
strategy and the proposal of the “dual carbon” goal, China’s
overall industrial structure is gradually adjusted towards low-
carbon. However, there are differences in the level of low-carbon
among regions, and the low-carbon effects of industrial
structure vary among different provinces and cities. In the
case of significant differences in regional economic
development, technological level and industrial structure, in
order to achieve the “dual carbon” goal in a predetermined and
short period of time, regional joint prevention and control and
coordinated emission reduction have become important options
to curb regional air pollution. Previous studies have focused on
the direct energy correlation and close industrial correlation
between regions, as well as the resulting carbon emission
transfer between regions. However, the impact mechanism of

regional carbon reduction cooperation on carbon reduction
partners has not yet been elucidated. This article introduces
game theory into the analysis of carbon reduction cooperation
and studies the impact mechanism of regional carbon reduction
cooperation on carbon reduction partners. Based on regional
data from China, it enriches the theoretical research of regional
carbon reduction cooperation.

Theoretically, the paper combines the Jing-Jin-Ji Region
coordinated development background with the DEA (Data
Envelopment Analysis, DEA) theory. Game theory and
operational research theory are comprehensively utilized, and the
influence of interest game among stakeholders of carbon emission
on ecological efficiency is fully considered. Improving the evaluation
index system and conducting a deep analysis of the spatial game
relationship between the Jing-Jin-Ji Region are crucial in light of the
existing ecological efficiency evaluation. This analysis will help
clarify the competition and cooperation relationship of regional
carbon emissions, which will further enhance the theoretical
research on the evaluation of carbon emission efficiency of urban
agglomerations.

Practically, the current ecological collaborative governance
mechanism in the Jing-Jin-Ji Region lacks consideration of
various factors that affect carbon emission efficiency, such as the
spatial characteristics of environmental capacities across different
regions, economic development levels, and pollution control abilities
of polluters. By incorporating regional competition and cooperation
into the study of carbon emission efficiency and considering the
influence of spatial variables on carbon emission rights, we can
obtain more scientific and reliable data and technical support. This
approach can help us to accurately position ecological
environmental protection targets and formulate governance tasks
in different regions. Its ultimate aim would be to accelerate the
establishment of ecological protection and compensation
mechanisms tailored to the coordinated development needs of
the Jing-Jin-Ji Region. It is vital to ensure a balance between
achieving ecological benefits and managing environmental
governance costs across various regions.

2 Literature review

With the continuous advancement of urbanization and
industrialization, global warming and other environmental
problems caused by carbon emissions have attracted wide
attention from governments and scholars around the world.
“Low carbon” and “emission reduction” have become hot topics
in academic research, such as carbon emission estimation method
(Zhao et al., 2012), influencing factors (Wang et al., 2013; Xu et al.,
2014), intensity (Li and Zhou, 2012) and performance (Wang et al.,
2010). Since carbon emission efficiency directly determines the
overall carbon emissions level (Gao et al., 2021), Promoting
carbon emission efficiency is seen as an efficient way to abate
carbon emissions (Du et al., 2022). As an important part of
environmental performance evaluation, carbon emission
performance is the focus of relevant scholars. Current studies on
carbon emission performance can be divided into single factor and
total factor according to measurement methods. As for the single
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factor index, Mielnik et al. first used carbon emissions per unit of
energy consumption to construct a carbon index to evaluate the
carbon emission performance of developing countries (Mielnik and
Goldemberg, 1999). Yamaji defined the ratio of total CO2 emission
to GDP as CO2 productivity to study the carbon emission level in
Japan (Yamaji et al., 1993). Since then, other single-factor indicators
have gradually appeared, including CO2 emission intensity (Sun,
2005), per capita CO2 emission (Stretesky and Lynch, 2009), per
capita cumulative emissions of industrialization (Zhang et al., 2008),
energy intensity (Ang, 1999), etc. Most of the above studies used the
ratio of carbon emissions to economic or energy-related indicators
to construct single-factor indicators related to carbon emission
performance, which is easy to understand and operate in the
actual calculation process, but there are certain limitations.

In essence, carbon emission performance is the input-output
efficiency in the process of economic activities, which is the result of
the joint action of capital, labor and other economic inputs. It cannot
be directly generated solely depending on energy. Therefore, the “all-
factor” characteristics of indicators should be highlighted in the
calculation process, and the substitution effect of other input factors
in the process of economic production should be fully considered
(Zeng and Wang, 2023). Based on the idea of total factor and factor
substitution, energy consumption, capital investment and labor are
taken as input indicators in the process of economic production to
form the expected output of GDP and the unexpected output of
carbon emission, so as to make the measurement results of carbon
emission performance more accurate and reasonable (Wang et al.,
2015). In 1978, Charnes, Coopor and Rhodes proposed for the first
time the non-parametric method to evaluate production efficiency -
Data Envelopment Analysis (DEA). By keeping the input or input of
the decision making unit unchanged, this method determines the
relatively effective production front surface with the help of a
mathematical programming method, projects decision making
unit onto the production front surface of DEA, and measures the
relative effectiveness of decision making unit by comparing the
degree to which decision making unit deviates from the DEA front
surface (Charnes et al., 1978). Since this method does not need to
assume the production function between input and output factors in
advance and does not need to give the weight of input and output, it
can better deal with the problem of multi-indicator performance
evaluation and is suitable for constructing the relationship between
environmental resource input and output, so it is widely used in
carbon emission performance evaluation (Ren et al., 2022). Based on
this, Ramanathan used the DEA method to construct an input-
output index system including carbon dioxide emission, energy
consumption and economic activity variables, and compared and
analyzed the carbon emission performance of various countries
(Ramanathan, 2002). Subsequently, a large number of scholars
followed this idea, studied the carbon emission performance
index system of different industries in different countries, and
compared and analyzed the carbon emission performance level of
different countries (Wang et al., 2013). For example, Zhou et al. used
the DEA model and Malmquist index to measure the carbon
emission performance of 18 countries with the highest carbon
emissions in the world and investigate its influencing factors
(Zhou et al., 2010). Jin et al. (2023) from the perspective of
industry, such as using the DEA method is further analyzed the
efficiency of China’s industrial sector carbon emissions, the results

showed that light industry carbon emissions performance level is
generally higher than that of heavy industry. Liu et al. used the
RAM-DEAmodel to estimate the low carbon economic efficiency of
China’s industrial sector during 2001–2013, and found that the low
carbon economic efficiency of most industries was still at a low level,
but the efficiency was greatly improved during the study period (Liu
et al., 2010). Using 2005–2016 data, the carbon emission efficiency of
the construction sector in 30 provinces is estimated, and the spatial
distribution characteristics of the carbon emission efficiency of the
construction industry is explored (Du et al., 2022). Gao et al. (2021)
distinguished the differences between direct carbon emissions and
embodied carbon emissions, including intermediate production and
consumption, and constructed a noncompetitive input-output
model to measure the embodied carbon emissions from
28 industry sectors in China.

In terms of research methods, the traditional DEA model only
focuses on the expected output in the process of economic activities
while ignoring the non-expected output, which may lead to
deviations in the results (Du et al., 2014). Some scholars use
improved models when measuring carbon emission performance,
such as the directed distance function model (Yongrok et al., 2012),
the relaxation variable measure model (Shen et al., 2018), and the
super-efficiency SBM model (Zhou et al., 2022). In general, existing
studies have used a variety of DEA models to analyze carbon
emission performance at national, regional and industrial scales,
but ignored the spatial correlation of carbon emissions. Due to the
differences in economic development level, industrial structure,
spatial layout, energy saving and emission reduction technologies
of adjacent regions, the environmental pollution levels of adjacent
regions are different. Moreover, due to the geographical location of
adjacent regions and the connectivity of water systems, air pollutants
and water pollution in adjacent regions have spatial diffusion and
accumulation, and spatial diffusion of water pollution. Based on this,
scholars pay attention to the spatial correlation of carbon emissions
and begin to incorporate spatial characteristics into the study of
carbon emission efficiency. Based on the ideal point cross-efficiency
(IPCE) model and the social network analysis method, Shao and
Wang measured the transportation carbon emission efficiency
(TCEE) in China and explored the spatial correlation network
structure of China’s provincial TCEE and its influencing factors
(Shao and Wang, 2021). Lu et al. (2020) studied the relationship
between cultivated land-intensive use (CLIU) and carbon emission
efficiency (CEE), analyzed the spatial and temporal characteristics of
CLIU, cropland carbon emission (CLCE) and CEE, and discussed
the spatial correlation between CLIU and CEE in the Yellow River
Basin. Jiang et al. (2022) analyzed the nonlinear relationship
between environmental regulation and carbon emission
efficiency, providing a scientific reference for achieving carbon
neutrality at a lower cost. Guo et al. (2022) calculated the energy
consumption and carbon emission efficiency of 11 prefecture-level
cities in Shanxi Province from 2000 to 2020 by using the super
efficiency slack-based measure and data envelopment analysis
(SBM-DEA) model and Malmquist index. Ding et al. (2019)
proposed a new method combining the CE model and the
Malmquist productivity index (CE-MPI) to analyze the dynamic
changes of carbon emission efficiency in 30 provinces in China. Du
Q. et al. (2022) estimated the carbon emission efficiency of the
construction industry in 30 provinces, and used the spatial Markov
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transfer probability matrix to explore the spatial distribution
characteristics of the carbon emission efficiency of the
construction industry. Du et al., 2022a employed the stochastic
Frontier analysis approach combined with the Sheppard distance
function to calculate the total factor carbon emission efficiency of
each city and evaluated the impact of the pilot policy on carbon
emission efficiency and its spatial spillover effect using the spatial
difference-in-differences model. Dong et al. (2022) used the super-
efficiency slacks-based measure (SE-SBM)model for the first time to
measure CEE from 2000 to 2018 in 32 developed countries that have
proposed carbon neutrality targets and then established a newly
developed panel threshold model (PTIFEs) with interactive fixed
effects to comprehensively explore the non-linear impact of
renewable energy development (RED) on Central and Eastern
Europe. Yu and Zhang. (2021) determined the causal effect of
Low Carbon City Pilot (LCCP) policies on carbon emission
efficiency (CEE).

Generally, the classical DEA model evaluates the efficiency of
each decision making unit (DMU) by selecting the optimal weight
between the evaluated unit and the reference set. However, in a real
situation of conflict of interest, the decision-making unit needs to
take bidirectional or multi-directional consideration, and there is
direct or indirect competition between them (Liang et al., 2008). The
decision-making unit should not only consider its optimal decision-
making but also consider the influence of other decision-making
units on itself. To better describe the competitive situation, scholars
try to introduce the game theory into the DEA model and carry out
the game study of DEA. Banker (1980) established a two-person
zero-sum finite game by taking evaluated DMU and reference DMU
as players, and gave the game theory explanation of CCR-DEA. Hao
et al. (2000) combined the convex cone theory with the two-person
zero-sum game to construct a two-person zero-sum infinite game
model with closed convex cone constraints for a generalized analysis
of DEA theory. Nakabayashi and Tone. (2006) introduced a multi-
player game into the DEA model and expanded the application
research of the DEA game. With all DMUs as players, it considered
the cooperative game among decision-making units in accordance
with the principle of egoism and shared the established interests. Wu
et al. (2009) to make up for the shortcomings of traditional DEA
efficiency evaluation, took all decision making units as players,
reasonably improved the efficiency value of each decision-making
unit and expanded the application of the classic DEA cross-
efficiency model based on considering the game among the
decision-making units. Afterwards, many scholars applied cross
efficiency models to efficiency evaluation, Dong et al. measured
Chinese provincial carbon efficiency using the game cross-efficiency
data envelopment analysis (Dong et al., 2020). Dong et al. (2021)
applied the data envelopment analysis game cross-efficiency method
to calculate the ecological performance of 30 provinces and
municipalities in China and to analyze the changes and time-
and-space evolution characteristics of that performance. Wang
et al. (2021) employed cross-efficiency DEA and game cross-
efficiency DEA approaches to measure the energy efficiency of
the construction industry in 30 of China’s provinces.

Based on the existing literature, ecological efficiency
optimization research using the DEA method has attracted
significant attention from scholars both domestically and abroad.
This research has led to numerous theoretical and practical

advancements. However, the majority of studies are limited to
the processing and evaluation of related input-output indicators.
Some studies are only simple applications of existing theoretical
models, rarely considering the competition and cooperation
between different evaluation objects in the process of
environmental efficiency evaluation, and ignoring the spatial
game relationship of carbon emissions, which makes it difficult
to apply the research results to the practice of regional ecological
collaborative governance. Due to differing economic development
levels, industrial structures, spatial layouts, as well as energy-saving
and emission-reducing technologies in adjacent regions, the levels of
environmental pollution also vary. Additionally, because of the
geographic location and connectivity of water systems between
these areas, air and water pollutants can diffuse and accumulate,
including water pollution.

3 Theoretical methods

Assume that DMUi is the only decision making unit with
decision-making power and DMUj is its competitor, then its
structural relationship can be expressed as follows:

The goal of DMUi is to minimize the efficiency of DMUj by
selecting appropriate weights while maximizing its own efficiency.
Suppose there are n DMUs, each DMU has m inputs and s outputs,
and the input & output vectors of the DMUi are (Xi, Yi), where
Xi � (x1i, x2i,/, xmi)T, Yi � (y1i, y2i,/, ysi)T, the output
indicator weights are μ � (μ1, μ2,/, μs)T and the input indicator
weights are ω � (ω1,ω2,/,ωs)T. The meaning of the above
variables remains unchanged in subsequent analysis. The
efficiency values of Ei and Ej can be obtained separately from
the CCR model named with PI

C2R.

PI
C2R

Ei � max μTYi

s.tωTXs − μTYs ≥ 0, s � 1, 2,/, n
ωTXi � 1,
ω≥ 0, μ≥ 0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1)

Obtaining the efficiency value Ei and Ej, the following model
PI
GAME−CD1 can be applied to obtain the minimum efficiency value

Ej(i) of DMUj under the condition of maximum efficiency
of DMUi.

PI
GAME−CD1

Ej i( ) � min μTYj

s.tωTXs − μTYs ≥ 0, s � 1, 2,/, n
ωTYj � 1,
μTYi − Eiω

TXi ≥ 0,
ω≥ 0, μ≥ 0

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(2)

Then we define the degree of the decision-maker DMUi

attacks the decision-maker DMUj. If Ej is the optimal solution
of model PI

C2R and Ej(i) is the optimal solution of model
PI
GAME−CD1, hitj(i) � Ej − Ej(i) is defined as the degree of

decision-maker DMUi attacking on rival DMUj. The larger the
value of hitj(i), the more likely DMUj will be attack by DMUi. If
hitj(i) � 0, it means that DMUi cannot effectively attack DMUj,
but this does not mean that DMUj has an advantage over DMUi.
It may also mean that DMUj has the lowest efficiency value, and
even if the attack is carried out again, the efficiency cannot
be reduced.
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The average degree of all decision making units attack the
decision-maker DMUj is defined as the average degree of
DMUj, Thus, there is Hj � 1

n∑n
i�1hitj(i) � 1

n∑n
i�1(Ej − Ej(i)). It can

be found that the smaller the average degree of DMUj, the smaller
the average impact of other decision-making units on DMUj. At
this time, Compared to other decision-making units, DMUj has
more stable anti-interference performance.

For decision making unitDMUj, Aj � Ej −Hj is defined as the
anti-attack capability of DMUj. The anti-attack capability of
decision making unit DMUj indicates the maximum attack that
DMUj can withstand after taking the average attack of all decision-
making units. For DMUi, if there is hitk(i) � maxj ∈ 1,2,/,n{ } hitj(i),
DMUk is called DMUi’s strongest attacker. For DMUi, there is
always a DMUk that attack it most.

Under unilateral decision making conditions, there is also a
problem of partner selection in decision-making units. Assume that
the set of all decision making units is S � DMU1, DMU2,{
/, DMUn}, where DMUi and DMUj are the decision maker
and competitor in S respectively. In order to alleviate the adverse
effects of decision making unit DMUi, DMUj is prepared to form
an alliance with other decision making units in S to improve the
group efficiency and overall anti-attack ability. An alliance based on
efficiency mainly means that competitor DMUj seeks partners in S
to improve the scale and efficiency of the alliance and better resist
external pressure.

Let I � 1, 2,/, n{ } be the set of all decision unit subscripts. To
further analyze the cooperative and competitive relationship of
decision-making units, we construct the model PI

GAME−CD2
as follows:

PI
GAME−CD2

Ej�k � maxk∈I\ j,i{ }max ω,μ μ
T Yj + Yk( )

s.tωTXs − μTYs ≥ 0, s ∈ I\ j, k{ }
ωT Xj +Xk( ) − μT Yj + Yk( )≥ 0,
ωT Xj +Xk( ) � 1,
ω≥ 0, μ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(3)

It is assumed that Ej�k is the optimal solution of model
PI
GAME−CD2, then DMU�k is the optimal efficiency partner of

DMUj under the attack of DMUi. It can be seen that when
DMUj and DMU�k cooperate, the efficiency of the alliance is the
highest. Decision-making units can also improve their overall
capacity of anti-attack by building alliances. An alliance based on
anti-attack means that competitor DMUj seeks partners in S to
improve the scale and anti-attack ability of the alliance, so as to resist
external pressure. Then we construct the model PIGAME−CD3
as follows:

PI
GAME−CD3

Hj�k � maxk∈I\ j,i{ }min ω,μ μ
T Yj + Yk( )

s.tωTXs − μTYs ≥ 0, s ∈ I\ j, k{ }
ωT Xj +Xk( ) − μT Yj + Yk( )≥ 0,

ωT Xj +Xk( ) � 1,
μTYi − Eiω

TXi ≥ 0,
ω≥ 0, μ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

Set Hj�k as the optimal solution of model PI
GAME−CD3, then DMU�k

is called the optimal anti-pressure partner of DMUj. It can be seen
that after cooperation between DMUj and DMU�k, the compressive
strength of the alliance is the strongest.

4 Empirical analysis

4.1 Carbon emission efficiency evaluation

Combined with the availability of data and the need for research,
this paper selects carbon emission data, GDP data, capital stock data,
and labor data of the Jing-Jin-Ji Region from 2013 to 2017 to study
the evaluation of carbon emission efficiency of the Jing-Jin-Ji Region
and its spatial game relationship. The data are mainly from Beijing
Statistical Yearbook, Hebei Statistical Yearbook, Tianjin Statistical
Yearbook and Express Professional Superior (EPS) database. The
interpolation method was used to complete the missing data.
Referring to the existing research results (Wei et al., 2010; Wang
et al., 2023), it is assumed that there are only two input factors in the
production process. Output variables include expected output and
unexpected output.

Selecting the number of employees at the end of the year as the
labor agency variable. Using fixed capital stock as a proxy variable
for capital stock. Capital stock data was calculated using the
‘perpetual inventory method’ (Zhang et al., 2004). Output mainly
included expected output and unexpected output. Select GDP as the
proxy variable for expected output and use actual GDP data from
each region for measurement. Co2 emission was chosen as the proxy
variable for undesirable output. Substitute the above input-output
variables into model PI

C2R to obtain the corresponding
efficiency value.

According to the above indicators, the carbon emission
efficiency values of the Jing-Jin-Ji Region are solved by using the
aforementioned model, as shown in Table 1. Table 1 shows that
Xicheng District and Hedong District have high carbon emission
efficiency from 2013 to 2017, with a carbon emission efficiency value
of 1. Heping District, Jinghai County and Langfang City also have
high carbon emission efficiency. During the sample period, the
above three areas have the highest carbon emission efficiency for
4 years. From the perspective of the average efficiency of different
regions during the sample period, Hedong District, Xicheng District,
Langfang City, Cangzhou City, Heping District and Qinhuangdao
City have the highest carbon emission efficiency, while Mentougou
District, Fengtai District, Changping District, Fangshan District,
Shijingshan District, Pinggu District and Yanqing County have the
lowest carbon emission efficiency, with the average carbon emission
efficiency of less than 0.5 during the sample period.Figure 1.

From the perspective of different regions, in terms of Beijing
(Figure 2), Xicheng District’s carbon emission efficiency was always
at the forefront of production during the sample period, Daxing
District’s carbon emission efficiency was at the forefront of
production in 2014 and 2015, and the carbon emission efficiency
of other districts was mostly lower than 0.6 during the sample
period. For Tianjin (Figure 3), the carbon emission efficiency of
Hedong District was always at the forefront of production during the
sample period, and the carbon emission efficiency of Heping District
and Jinghai County was also at the forefront of production for
4 years during the sample period, but the carbon emission efficiency
of Hongqiao District, Dongli District and Xiqing District within the
region was mostly lower than 0.6 during the sample period. As far as
Hebei is concerned (Figure 4), the carbon emission efficiency of
most regions in the sample period is relatively high, mostly higher
than 0.6. By comparing the average carbon emission efficiency of the
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TABLE 1 Carbon emission efficiency of the Jing-Jin-Ji Region.

Region 2013 2014 2015 2016 2017 Average efficiency

Dongcheng 0.7297 0.7898 0.7849 0.8203 0.7942 0.7838

Xicheng 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Chaoyang 0.4547 0.6747 0.6670 0.7557 0.6968 0.6498

Fengtai 0.2138 0.3362 0.3401 0.3728 0.4180 0.3362

Shijingshan 0.3222 0.4444 0.4513 0.5024 0.5013 0.4443

Haidian 0.5622 0.6927 0.6910 0.7721 0.7146 0.6865

Mentougou 0.0748 0.1232 0.1273 0.3518 0.4719 0.2298

Fangshan 0.2368 0.3514 0.3334 0.5609 0.7205 0.4406

Tongzhou 0.4014 0.4873 0.5081 0.7900 0.5317 0.5437

Shunyi 0.4123 0.8022 0.8132 0.7464 0.7721 0.7092

Changping 0.2436 0.3329 0.2880 0.4568 0.5357 0.3714

Daxing 0.7220 1.0000 1.0000 0.5111 0.2655 0.6997

Huairou 0.3014 0.4869 0.5799 0.7014 0.6147 0.5369

Pinggu 0.3102 0.4009 0.4508 0.4868 0.6671 0.4632

Miyun 0.3090 0.4636 0.6531 0.6826 0.6604 0.5537

Yanqing 0.3760 0.5262 0.5626 0.5128 0.4040 0.4763

Heping 0.7304 1.0000 1.0000 1.0000 1.0000 0.9461

Hedong 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Hexi 0.6782 0.7962 0.7583 0.7700 0.8044 0.7614

Nankai 0.6377 0.6616 0.6583 0.6877 0.6431 0.6577

Hebei 0.4736 0.7475 0.7464 0.8824 0.7649 0.7230

Hongqiao 0.3308 0.6505 0.6069 0.7878 0.5386 0.5829

Dongli 0.4656 0.5702 0.5371 0.6593 0.6512 0.5767

Xiqing 0.3709 0.5116 0.4863 0.6113 0.8518 0.5664

Jinnan 0.4360 0.7407 0.7093 0.9564 0.6724 0.7029

Beichen 0.5077 0.6716 0.6920 0.8816 0.8052 0.7116

Wuqing 0.5334 0.5617 0.5522 0.6784 0.9154 0.6482

Baodi 0.6961 0.8437 0.9164 1.0000 0.7782 0.8469

Ninghe 0.6510 0.9251 0.8783 0.8945 0.6599 0.8018

Jinghai 1.0000 1.0000 1.0000 1.0000 0.6910 0.9382

ixian 0.8589 0.8538 0.9102 0.9948 0.6241 0.8483

Shijiazhuang 1.0000 0.6437 0.7307 0.8299 0.8225 0.8054

Tangshan 0.7729 0.7555 0.9189 1.0000 1.0000 0.8895

Qinhuangdao 0.8822 0.8101 1.0000 1.0000 1.0000 0.9385

Handan 0.7730 0.7052 0.8114 0.8269 0.8063 0.7845

Xingtai 0.9376 0.8279 0.9433 0.9554 0.9857 0.9300

Baoding 0.8387 0.7049 0.9203 0.8835 0.9516 0.8598

Zhangjiakou 0.7718 0.7079 0.7858 0.8156 0.7908 0.7744

(Continued on following page)
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three regions during the sample period, it can be seen that the carbon
emission efficiency of Hebei is relatively high while that of Tianjin,
especially Beijing, is relatively low. According to the existing
research (Feng and Li, 2017), the above phenomenon can be
attributed to the fact that the shadow price of carbon dioxide
emission is relatively high in economically developed regions,
especially Beijing, and the cost of emission reduction is relatively
high, which makes the economic cost of reducing carbon dioxide
emission relatively high, resulting in the low emission reduction
efficiency index. However, the shadow price of carbon emission

reduction in the economically underdeveloped Hebei region is
relatively low. That is, the cost of reducing carbon emissions is
not high, so the carbon emission efficiency is higher.

4.2 Spatial game analysis

During the sample period, Xicheng District, Jixian County,
Hedong District, Dongcheng District and Heping District ranked
in the top five in terms of average degree of being attack, indicating
that the above decision making units were most affected by other
decision making units on average, and the carbon emission
efficiency was greatly interfered by other regions. In the sample
period, Dongli District, Fangshan District, Fengtai District,
Changping District and Mentougou District were the least attack
on average. This indicates that other decision making units have less
influence on the above decision making units on average, so the
above decision making units are more stable than other decision
making units. By year, the average degree of attack during the
sample period was the least in Mentougou District, Fengtai District
and Daxing District of Beijing, and Wuqing District and Xiqing
District of Tianjin. The average degree of attack during the sample
period was higher in the Xicheng District of Beijing and Ji County
and Hedong District of Tianjin. Referring to the existing literature
(Peng, 2008; Wu and Zhu, 2010), it can be seen that this is mainly

TABLE 1 (Continued) Carbon emission efficiency of the Jing-Jin-Ji Region.

Region 2013 2014 2015 2016 2017 Average efficiency

Chengde 0.5916 0.5933 0.6278 0.7078 0.7072 0.6455

Cangzhou 0.9973 0.9403 0.9985 1.0000 1.0000 0.9872

Langfang 1.0000 1.0000 1.0000 1.0000 0.9481 0.9896

Hengshui 0.9655 0.8119 0.9521 0.9583 0.9839 0.9343

FIGURE 1
The structure of the alliance, competitors, and neutral DMU.

FIGURE 2
Carbon emission efficiency of Beijing.
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due to the relatively high degree of economic connection between
regions within the economically developed areas, while the
economic connection between regions within the economically
underdeveloped areas is weak. This results in more economically
developed areas being attacked harder on average and less
economically developed areas being attacked harder on average.

The anti-attack capability of decision-making unit indicates the
maximum degree of impact that decision making unit can withstand
after the average impact of all decision-making units. For a decision-
making unit, there is always a decision-making unit that has the
greatest impact on him. Based on the sample data, this paper
calculates the average degree of being attacked, anti-attack ability
and the data of the strongest attacker of each decision-making unit,
as shown in Table 2. As shown in Table 2, in terms of the anti-attack
capability of each decision-making unit, Langfang, Cangzhou,

Tangshan, Hengshui and Xingtai have the strongest anti-attack
capability, while Pinggu District, Shijingshan District, Changping
District, Fengtai District and Mentougou District have the weakest
anti-attack capability. By year, the areas with the strongest anti-
attack capability during the sample period mainly include Langfang
City and Cangzhou City, etc., while the areas with weak anti-attack
capability mainly include Mentougou District, Changping District,
Fengtai District and Shijingshan District. Existing research literature
(Wang et al., 2019) shows that when the economic development
level of local government and the external government is relatively
low in the region, the effect of carbon emission reduction of local
government is not significant whether it is independent emission
reduction or cooperative emission reduction. From the GDP figures
of different regions, compared with Langfang and Cangzhou,
Mentougou District, Changping District, Fengtai District and

FIGURE 3
Carbon emission efficiency of Tianjin.

FIGURE 4
Carbon emission efficiency of Hebei.

Frontiers in Energy Research frontiersin.org09

Chen et al. 10.3389/fenrg.2023.1284436

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284436


TABLE 2 Average degree of being attacked, anti-attack ability and the strongest attacker of each decision making unit.

2013 2014 2015 2016 2017

Region AD AC sort Top
attacker

AD AC sort Top
attacker

AD AC sort Top
attacker

AD AC sort Top
attacker

AD AC sort Top
attacker

Dongcheng 0.404 0.325 26 Jixian 0.337 0.452 23 Jixian 0.329 0.456 27 Jixian 0.276 0.544 26 Jixian 0.233 0.561 23 Cangzhou

Xicheng 0.549 0.451 16 Jixian 0.432 0.568 10 Jixian 0.423 0.577 17 Jixian 0.336 0.664 13 Jixian 0.316 0.684 10 Cangzhou

Chaoyang 0.213 0.242 37 Jixian 0.236 0.439 26 Jixian 0.231 0.436 28 Jixian 0.211 0.545 25 Jixian 0.127 0.570 22 Cangzhou

Fengtai 0.077 0.136 41 Jixian 0.107 0.229 40 Jixian 0.101 0.239 40 Jixian 0.086 0.287 40 Jixian 0.093 0.326 40 Cangzhou

Shijingshan 0.137 0.185 39 Jixian 0.149 0.295 37 Jixian 0.144 0.308 38 Jixian 0.124 0.378 36 Jixian 0.106 0.395 38 Cangzhou

Haidian 0.294 0.269 32 Jixian 0.275 0.418 29 Jixian 0.268 0.423 31 Jixian 0.246 0.526 29 Jixian 0.185 0.530 28 Cangzhou

Mentougou 0.014 0.061 42 Xicheng 0.030 0.093 42 Xicheng 0.025 0.102 42 Xicheng 0.133 0.219 42 Xicheng 0.154 0.318 41 Xicheng

Fangshan 0.045 0.192 38 Xicheng 0.087 0.264 39 Xicheng 0.066 0.268 39 Xicheng 0.173 0.388 35 Xicheng 0.168 0.553 24 Xicheng

Tongzhou 0.078 0.324 27 Shijiazhuang 0.178 0.310 36 Xicheng 0.150 0.358 36 Xicheng 0.188 0.602 20 Xicheng 0.091 0.441 37 Xicheng

Shunyi 0.102 0.310 29 Jixian 0.262 0.541 13 Jixian 0.220 0.594 14 Jixian 0.185 0.562 24 Jixian 0.130 0.642 14 Cangzhou

Changping 0.064 0.180 40 Shijiazhuang 0.108 0.225 41 Jixian 0.079 0.209 41 Xicheng 0.098 0.358 38 Xicheng 0.092 0.444 34 Cangzhou

Daxing 0.153 0.569 10 Xicheng 0.193 0.807 1 Xicheng 0.137 0.863 1 Xicheng 0.239 0.273 41 Jixian 0.050 0.215 42 Cangzhou

Huairou 0.049 0.253 36 Shijiazhuang 0.140 0.347 33 Xicheng 0.164 0.416 32 Jixian 0.182 0.520 30 Jixian 0.107 0.508 31 Cangzhou

Pinggu 0.054 0.256 35 Shijiazhuang 0.126 0.275 38 Xicheng 0.128 0.323 37 Xicheng 0.134 0.353 39 Xicheng 0.225 0.442 35 Cangzhou

Miyun 0.051 0.258 34 Shijiazhuang 0.133 0.331 35 Xicheng 0.195 0.458 25 Jixian 0.192 0.490 32 Xicheng 0.144 0.516 29 Cangzhou

Yanqing 0.065 0.311 28 Shijiazhuang 0.185 0.342 34 Xicheng 0.167 0.396 33 Xicheng 0.141 0.372 37 Xicheng 0.074 0.330 39 Xicheng

Heping 0.323 0.407 19 Jixian 0.324 0.676 4 Jixian 0.311 0.689 10 Jixian 0.231 0.769 5 Jixian 0.161 0.839 3 Cangzhou

Hedong 0.179 0.821 2 Shijiazhuang 0.358 0.642 6 Xicheng 0.273 0.727 5 Xicheng 0.296 0.704 10 Xicheng 0.518 0.482 33 Cangzhou

Hexi 0.311 0.367 22 Jixian 0.266 0.530 14 Jixian 0.249 0.509 20 Jixian 0.198 0.573 22 Jixian 0.139 0.665 13 Cangzhou

Nankai 0.303 0.334 24 Jixian 0.250 0.411 30 Jixian 0.232 0.427 30 Jixian 0.189 0.499 31 Jixian 0.153 0.490 32 Cangzhou

Hebei 0.178 0.296 31 Jixian 0.247 0.501 20 Jixian 0.237 0.509 21 Jixian 0.253 0.630 18 Jixian 0.138 0.627 16 Cangzhou

Hongqiao 0.067 0.263 33 Jixian 0.241 0.410 31 Hedong 0.222 0.385 35 Xicheng 0.299 0.489 33 Xicheng 0.097 0.442 36 Cangzhou

Dongli 0.104 0.361 23 Xicheng 0.139 0.431 27 Xicheng 0.108 0.429 29 Xicheng 0.132 0.528 28 Xicheng 0.116 0.535 27 Xicheng

Xiqing 0.074 0.297 30 Xicheng 0.128 0.383 32 Xicheng 0.098 0.388 34 Xicheng 0.141 0.471 34 Xicheng 0.214 0.637 15 Xicheng

Jinnan 0.107 0.329 25 Xicheng 0.250 0.491 21 Xicheng 0.208 0.502 24 Xicheng 0.302 0.655 15 Xicheng 0.134 0.538 26 Xicheng

(Continued on following page)
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TABLE 2 (Continued) Average degree of being attacked, anti-attack ability and the strongest attacker of each decision making unit.

2013 2014 2015 2016 2017

Region AD AC sort Top
attacker

AD AC sort Top
attacker

AD AC sort Top
attacker

AD AC sort Top
attacker

AD AC sort Top
attacker

Beichen 0.122 0.385 21 Xicheng 0.157 0.515 17 Xicheng 0.185 0.507 23 Xicheng 0.275 0.607 19 Xicheng 0.187 0.618 18 Xicheng

Wuqing 0.125 0.408 18 Xicheng 0.119 0.443 25 Xicheng 0.095 0.457 26 Xicheng 0.144 0.534 27 Xicheng 0.176 0.740 9 Xicheng

Baodi 0.238 0.459 15 Xicheng 0.262 0.582 9 Xicheng 0.326 0.590 15 Xicheng 0.275 0.725 9 Xicheng 0.162 0.616 19 Xicheng

Ninghe 0.245 0.406 20 Xicheng 0.374 0.552 12 Xicheng 0.355 0.523 19 Xicheng 0.248 0.647 16 Xicheng 0.112 0.548 25 Xicheng

Jinghai 0.363 0.637 7 Xicheng 0.258 0.742 3 Xicheng 0.281 0.719 6 Xicheng 0.204 0.796 4 Xicheng 0.119 0.572 21 Xicheng

Jixian 0.375 0.484 14 Xicheng 0.343 0.511 18 Xicheng 0.385 0.526 18 Xicheng 0.430 0.565 23 Xicheng 0.116 0.508 30 Xicheng

Shijia zhuang 0.101 0.900 1 Hedong 0.223 0.421 28 Xicheng 0.154 0.577 16 Xicheng 0.148 0.682 11 Xicheng 0.139 0.683 11 Xicheng

Tangshan 0.210 0.563 12 Xicheng 0.195 0.561 11 Xicheng 0.175 0.744 4 Xicheng 0.172 0.828 1 Xicheng 0.159 0.841 2 Xicheng

Region AD AC sort Top attacker AD AC sort Top attacker AD AC sort Top attacker AD AC sort Top attacker AD AC sort Top attacker

Qinhuang
dao

0.270 0.613 8 Xicheng 0.289 0.521 16 Xicheng 0.297 0.703 7 Xicheng 0.246 0.755 6 Xicheng 0.213 0.787 4 Xicheng

Handan 0.209 0.565 11 Xicheng 0.177 0.529 15 Xicheng 0.176 0.635 12 Xicheng 0.164 0.663 14 Xicheng 0.131 0.676 12 Xicheng

Xingtai 0.262 0.676 6 Xicheng 0.233 0.595 8 Xicheng 0.242 0.701 8 Xicheng 0.207 0.748 7 Xicheng 0.209 0.777 6 Xicheng

Baoding 0.227 0.612 9 Xicheng 0.195 0.510 19 Xicheng 0.249 0.671 1 Xicheng 0.212 0.672 1 Xicheng 0.201 0.751 1 Xicheng

Zhangjia kou 0.223 0.549 13 Xicheng 0.221 0.487 22 Xicheng 0.188 0.598 1 Xicheng 0.174 0.641 1 Xicheng 0.170 0.621 1 Xicheng

Chengde 0.162 0.430 17 Xicheng 0.144 0.450 24 Xicheng 0.120 0.508 1 Xicheng 0.127 0.581 1 Xicheng 0.119 0.588 1 Xicheng

Cangzho-u 0.303 0.694 5 Xicheng 0.265 0.675 5 Xicheng 0.249 0.749 1 Xicheng 0.177 0.823 1 Xicheng 0.125 0.875 1 Xicheng

Langfang 0.277 0.723 3 Xicheng 0.231 0.769 2 Xicheng 0.224 0.776 1 Xicheng 0.199 0.801 1 Xicheng 0.166 0.782 1 Xicheng

Hengshui 0.270 0.696 4 Xicheng 0.198 0.614 7 Xicheng 0.256 0.696 1 Xicheng 0.213 0.745 1 Xicheng 0.211 0.773 1 Xicheng

Dongcheng 0.404 0.325 26 Jixian 0.337 0.452 23 Jixian 0.329 0.456 27 Jixian 0.276 0.544 26 Jixian 0.233 0.561 23 Cangzhou

Xicheng 0.549 0.451 16 Jixian 0.432 0.568 10 Jixian 0.423 0.577 17 Jixian 0.336 0.664 13 Jixian 0.316 0.684 10 Cangzhou

Chaoyang 0.213 0.242 37 Jixian 0.236 0.439 26 Jixian 0.231 0.436 28 Jixian 0.211 0.545 25 Jixian 0.127 0.570 22 Cangzhou

Fengtai 0.077 0.136 41 Jixian 0.107 0.229 40 Jixian 0.101 0.239 40 Jixian 0.086 0.287 40 Jixian 0.093 0.326 40 Cangzhou

Shijingshan 0.137 0.185 39 Jixian 0.149 0.295 37 Jixian 0.144 0.308 38 Jixian 0.124 0.378 36 Jixian 0.106 0.395 38 Cangzhou

Haidian 0.294 0.269 32 Jixian 0.275 0.418 29 Jixian 0.268 0.423 31 Jixian 0.246 0.526 29 Jixian 0.185 0.530 28 Cangzhou
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Shijingshan District are relatively backward in economic
development, and their local governments’ carbon emission
reduction effect is not significant, which to some extent can
explain their weak anti-attack ability.

According to theoretical analysis, for certain decision-making
unit, there is always a decision-making unit that has the greatest
impact on it. We call the decision-making unit the strongest
attacker. After determining the strongest attacker of decision unit
based on the data in Table 2, this paper analyzes the optimal partner
of decision unit under the attack of the strongest attacker and its
corresponding carbon emission efficiency (show in Table 3).

Specifically, in Beijing area, the strongest attackers mainly
include Jixian and Xicheng district, while the best partners
mainly include Shijiazhuang and Cangzhou and other cities in
Hebei Province. In terms of Tianjin, Xicheng District is the most
aggressive city, followed by Jixian County. Its optimal partners
mainly include Shijiazhuang, Cangzhou and other cities, among
which Dongcheng District is the best partner of Hongqiao District.
As far as Hebei is concerned, Xicheng District is the strongest
attacker, and Shijiazhuang is the best partner, among which
Dongcheng District is the best partner. Based on the empirical
analysis results, it can be seen that Xicheng District is the strongest
offender of regional carbon emission efficiency, while Shijiazhuang
is the best regional partner. According to existing studies (Wu and
Zhao, 2014), the existing energy consumption and industrial
structure in the Jing-Jin-Ji Region led to large carbon dioxide
emissions in the region. The difference in the industrial structure
of Beijing, Tianjin and Hebei also causes the gap in the scale and
intensity of carbon emissions. Beijing is mainly dominated by the
development of the service industry, and its carbon emission scale
and intensity have decreased significantly, while Tianjin and Hebei
are mainly dominated by industrial development, and have not yet
reached the carbon peak (Wang, 2017). Based on the empirical
analysis results and existing literature, it can be seen that the
development of the service industry plays a pivotal role in
improving carbon emission efficiency, and the change of its
emission efficiency has the greatest impact on regional carbon
emission efficiency. Regions with different industrial structures
can become the best partners, and regions with higher carbon
emission efficiency and regions with lower carbon emission
efficiency have greater cooperation potential.

5 Conclusion and suggestions

5.1 Conclusion

Urban agglomerations are an important source of carbon
emissions in our country. Controlling the carbon emissions of
urban agglomerations means controlling the main body of
carbon emissions. The peak of carbon emissions and achieving
carbon neutrality of urban agglomerations are important supports
for China’s green and low-carbon development. The Beijing-
Tianjin-Hebei City cluster is an essential component of China’s
three world-class city clusters. It is also a vital core area for the
northern economy, and a crucial region for achieving China’s
strategic goal of carbon peaking and carbon neutrality.
Conducting a detailed analysis of the carbon emission efficiencyTA
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TABLE 3 The optimal partners for each decision-making unit under different attack scenarios.

Region name Top attackerer Optimal partner Optimal efficiency of the region

Dongcheng Jixian Cangzhou 0.6086

Xicheng Jixian Baoding 0.5163

Chaoyang Jixian Tangshan 0.4228

Fengtai Jixian Cangzhou 0.6036

Shijingshan Jixian Cangzhou 0.8289

Haidian Jixian Tangshan 0.3859

Mentougou Xicheng Shijiazhuang 0.3655

Fangshan Xicheng Shijiazhuang 0.8891

Tongzhou Xicheng Shijiazhuang 0.3767

Shunyi Jixian Cangzhou 0.7409

Changping Xicheng Shijiazhuang 0.3715

Daxing Xicheng Shijiazhuang 0.3925

Huairou Jixian Cangzhou 0.9266

Pinggu Xicheng Shijiazhuang 0.396

Miyun Xicheng Shijiazhuang 0.3943

Yanqing Xicheng Dongcheng 0.4599

Heping Jixian Cangzhou 0.8719

Hedong Xicheng Dongcheng 0.4538

Hexi Jixian Cangzhou 0.8208

Nabkai Jixian Cangzhou 0.7956

Hebei Jixian Cangzhou 0.9035

Hongqiao Xicheng Dongcheng 0.4567

Dongli Xicheng Shijiazhuang 0.3631

Xiqing Xicheng Shijiazhuang 0.3611

Jinnan Xicheng Shijiazhuang 0.3629

Beichen Xicheng Shijiazhuang 0.3625

Wuqing Xicheng Shijiazhuang 0.3617

Baodi Xicheng Shijiazhuang 0.3683

Ninghe Xicheng Shijiazhuang 0.3713

Jinghai Xicheng Shijiazhuang 0.371

Jixian Xicheng Shijiazhuang 0.3657

Shijiazhuang Xicheng Dongcheng 0.4153

Tangshan Xicheng Shijiazhuang 0.2513

Qinhuangdao Xicheng Shijiazhuang 0.3514

Handan Xicheng Shijiazhuang 0.2747

Xingtai Xicheng Shijiazhuang 0.3213

Baoding Xicheng Shijiazhuang 0.3048

Zhangjiakou Xicheng Shijiazhuang 0.3232

(Continued on following page)
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in the Jing-Jin-Ji Region and taking into account the interdependent
relationships among stakeholders concerning regional carbon
emissions is crucial to achieving China’s objectives of carbon
peaking and carbon neutrality.

This paper combines game theory and DEA theory. Firstly, the
base model is used to evaluate the carbon emission efficiency of the
Jing-Jin-Ji Region. Additionally, the paper proposes a new
mechanism to coordinate the carbon trading market using a
game theory approach. Then, according to the spatial game
theory, the average degree of being attacked, anti-attack ability,
the strongest attacker and its optimal partner of the carbon emission
efficiency of different decision-making units are analyzed. The study
concluded that: 1) Xicheng District and Hedong District have a high
carbon emission efficiency value of 1. Heping District, Jinghai
County, and Langfang also exhibit high carbon emission
efficiency. From the viewpoint of average efficiency among
different regions during the sample period, the highest carbon
emission efficiency was observed in Hedong District, Xicheng
District, Langfang City, Cangzhou City, Heping District, and
Qinhuangdao City. In contrast, Mentougou District, Fengtai
District, Changping District, Fangshan District, Shijingshan
District, Pinggu District, and Yanqing County presented the
lowest carbon emission efficiency. 2) During the sample period,
Xicheng District, Jixian County, Hedong District, Dongcheng
District, and Heping District ranked as the top five areas with
the highest average degree of being attacked. In contrast, Dongli
District, Fangshan District, Fengtai District, Changping District, and
Mentougou District had the lowest average degree of being attacked.
This suggests that economically developed areas have a higher
likelihood of being attacked, while economically underdeveloped
areas have a smaller likelihood of being attacked. Based on their anti-
attack capability, it seems that Langfang, Cangzhou, Tangshan,
Hengshui, and Xingtai have the strongest ability to resist
potential adverse impacts on their decision-making processes.
Meanwhile, Pinggu, Shijingshan, Changping, Fengtai, and
Mentougou have the weakest anti-attack capability during the
sample period. This indicates that the influence of local
governments on carbon emission reduction may not be
significant in regions with low economic development, whether
acting independently or in cooperation. During the same period,
Xicheng District showed the lowest efficiency in terms of regional
carbon emissions, while Shijiazhuang was the most efficient in terms
of carbon emissions reduction. This suggests that regions with
different industrial structures may be the best partners, and
regions with higher or lower levels of carbon emission efficiency
may have greater potential for cooperation.

5.2 Suggestions

Based on existing research conclusions, the following
suggestions are proposed.

(1) Improving top-level system design and promoting regional
collaborative carbon control. The research conclusion shows
that regions with different industrial structures can become
optimal partners for cooperation. Regions with high carbon
emission efficiency and those with low carbon emission
efficiency have greater cooperation potential. Based on this,
the three regions of Beijing, Tianjin, and Hebei should
strengthen collaborative efforts to reduce pollution and
control carbon emissions from the source. Taking into
account the industrial and energy foundations and
differences of the three regions, the top-level design of the
economic and social development and energy development of
the Jing-Jin-Ji Region should be optimized and improved, and
the national “dual-carbon” goals and regional carbon emission
situation should be carefully considered. The relationship
between the overall carbon peak in the Jing-Jin-Ji Region and
the orderly carbon peak in each city should be handled, and the
carbon emission reduction roadmap for key areas in the Jing-
Jin-Ji Region should be formulated, taking into account the
differences in regional development patterns.

(2) Expanding green ecological space and achieving regional
collaborative carbon reduction. The research conclusion
shows that the average degree of being attacked is higher in
economically developed areas, while the average degree of being
attacked is lower in economically underdeveloped areas. Based
on this, efforts should be made to improve and optimize the
green ecological space pattern in the Jing-Jin-Ji Region,
strengthen the construction of green ecological barriers,
enhance the carbon sequestration function of carbon sinks
such as forests, grasslands, wetlands, cultivated land, and
oceans, especially in economically developed areas. The
principle of adapting measures to local conditions, ecological
priority, and people-oriented urban construction should be
adhered to, actively constructing a new era of green
development system that conforms to the concept of
“ecological priority and green development” in China’s
economy. A comprehensive evaluation and analysis of the
effectiveness and shortcomings of regional green
development should be conducted to explore the road to
high-quality development under the guidance of the concept
of ecological priority and green development.

TABLE 3 (Continued) The optimal partners for each decision-making unit under different attack scenarios.

Region name Top attackerer Optimal partner Optimal efficiency of the region

Chengde Xicheng Shijiazhuang 0.3294

Cangzhou Xicheng Shijiazhuang 0.2905

Langfang Xicheng Shijiazhuang 0.3161

Hengshui Xicheng Shijiazhuang 0.3544
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(3) Innovating green and low-carbon technology and promoting
collaborative carbon reduction in the region. The research
conclusion indicates that in regions with lower levels of
economic development, whether independent or cooperative
carbon reduction is used, the local government’s carbon
reduction effect is not significant. Based on this, it is necessary
to collaboratively build an energy technology innovation system
that can adapt to the “dual-carbon” goals of the Jing-Jin-Ji Region,
fully leveraging the resource endowment advantages of Hebei
Province and the research institutes clustering advantages of
Beijing and Tianjin, promoting the development of clean energy
together, conducting collaborative research in key areas such as
decarbonization, zero-carbon, negative-carbon, and carbon capture
technologies, accelerating technological innovation, forming a
three-dimensional comprehensive economic and industrial
system, while reducing carbon emissions, building a new
highland for the coordinated development of low-carbon
technologies in the Jing-Jin-Ji Region, and providing new
momentum for economic development.
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