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Introduction: During its operational lifetime, a wind turbine is subjected to a number
of degradation mechanisms. If left unattended, the degradation of components will
result in its suboptimal performance and eventual failure. Hence, tomitigate the risk of
failures, it is imperative that the wind turbine be regularly monitored, inspected, and
optimallymaintained.Offshorewind turbines are normally inspected andmaintained at
fixed intervals (generally 6-month intervals) and the program (list of tasks) is prepared
using experience or risk-reliability analysis, like Risk-based inspection (RBI) and
Reliability-centered maintenance (RCM). This time-based maintenance program can
be improved upon by incorporating results from condition monitoring involving data
collection using sensors and fault detection using data analytics. In order to properly
carryout condition assessment, it is important to assurequality&quantity of data and to
use correct procedures for interpretation of data for fault detection. This paper
discusses the work carried out to develop a machine learning based methodology
for detecting faults in a wind turbine generator bearing. Explanation of the working of
the machine learning model has also been discussed in detail.

Methods: Themethodology includes application ofmachine learningmodel using
SCADA data for predicting operating temperature of a healthy bearing; and then
comparing the predicted bearing temperature against the actual bearing
temperature.

Results: Consistent abnormal differences between predicted and actual
temperatures may be attributed to the degradation and presence of a fault in
the bearing.

Discussion: This fault detection can then be used for rescheduling the
maintenance tasks. The working of this methodology is discussed in detail
using a case study.
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1 Introduction

In order to meet the increasing demand for energy and yet reduce dependency on
conventional fossil fuels, there has been a spurt in growth of wind farms (IEA, 2021). These
wind farms are comprised of arrays of wind turbines (typically horizontal), installed either
onshore or offshore, to produce electricity from the wind. However, despite recent advances
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in the design, manufacturing, operation and maintenance of wind
turbines, their acceptance has been muted due to a number of
reasons, including difficulties and high costs associated with their
operation and maintenance.

When compared to the onshore wind turbines, the offshore
counterparts offer more reliable power generation due to higher
mean wind speeds and more steady wind supply. Unfortunately,
the operation and maintenance difficulties and costs are also higher
due to multiple reasons, including faster degradation of equipment by
harsh marine conditions, difficulties in accessing the site from distant
shores, rough weather conditions, scarcity of skilled personnel and
need for specialized vessels. Thus, the operation and maintenance
costs account for approximately a third of the Levelized Cost of
Energy (LCOE) (Wiggelinkhuizen et al., 2007; Stehly et al., 2020).

During their operational lifetime, various components of a wind
turbine are subjected to a number of environmental & operational
attacks resulting in their degradation. This degradation results in
deterioration in performance and at times failure. Failure of a
component takes place when the applied load is greater than the
maximum safe working load of the component. The applied load
andmaximum safe working load of the component vary with time. The
applied load can vary due to the changes in the operating conditions,
environmental conditions or accident; and the maximum safe working
load may change with time due to degradation caused to the
component by different types of degradation mechanisms. Hence, it
becomes difficult to predict when the failure will take place (Arabian-
Hoseynabadi, et al., 2010; Kahrobaee and Asgarpoor 2011; Shafiee and
Dinmohammadi 2014; Luengo and Kolios 2015; Zhang et al., 2016).

To help in predicting the time of failure, detailed failure analysis
involving the following stages needs to be carried out (Kandukuri
et al., 2016):

• Fault Detection—detection of abnormal changes in the
structure or behavior of a component that can help to
identify faulty condition

• Fault Diagnosis—analysis of the abnormal changes in the
structure or behavior to identify cause or mechanism of the
degradation that would cause the failure

• Fault Quantification—analysis of the behavior or performance
to quantify the degree of degradation and fault (partial or
complete)

• Fault Prognosis—analysis of the time-based changes to predict
the outcome of further degradation or prognosis of fault

Failure (or fault) analysis can be used to develop detailed failure
profiles (failure causes, failure mechanisms, etc.), which can
subsequently be used for developing an appropriate maintenance
schedule to prevent or manage the failure. In a maintenance
schedule, the maintenance activities can be either preventive or
corrective depending on whether the task is carried out before or
after failure. These maintenance activities involve detailed
inspection (visual, auditory, NDT), testing, service (lubrication,
cleaning, repair, etc.), repair and replacement tasks.

The preventive maintenance programs are often time-based, for
example, preventive maintenance activities of wind turbines are
normally planned at 6-month intervals (Nilsson and Bertling,
2007). Since these time-based inspection and maintenance
programs are expensive, there have been efforts to develop

methodologies for preparing more efficient and effective
maintenance programs. This involves development of maintenance
schedules based on formalized risk/reliability analysis (e.g., Risk Based
Inspection and Maintenance or Reliability Centered Maintenance).

In order to improve the technical asset integrity management of
wind farms there is an increasing move towards condition-based
maintenance as opposed to scheduled or reactive maintenance to
reduce downtime and lost production. This is achieved by a)
continuous monitoring using sensors; b) data analytics; and c)
developing condition-based maintenance plans.

To continuously monitor, all modern wind turbines come with a
Supervisory Control and Data Acquisition (SCADA) system. This
system is comprised of a multitude of sensors that constantly
monitor various parameters regarding environment, process,
operation, and condition of components (equipment or
structure). The data from the sensors is transmitted and stored
in SCADA supervisory computers. At the control office the data is
interpreted, and the information gained is then used to control the
process or operation. The same data can be used to develop
optimized condition-based maintenance schedules.

While the collection, transmission and storage of data has become
relatively easy in recent years, the challenge is to identify and extract
relevant information from the available data. Thus, sensible data
collection requires understanding the system, making decisions
related to collection and rationalization of data to make it suitable
for further analysis, and finally, to use the preprocessed data to extract
useful information, like, fault detection and identification, so that
necessary decisions can be taken. There are a number of approaches
by which the data analysis can be carried out, to include machine
learning, fuzzy logic, artificial neural networks, and deep learning.

Machine learning techniques have been widely explored for
analyzing data from offshore wind turbines and these have been
found to be suitable for detecting anomalies and assisting in
decision-making (Stetco, et al., 2019). However, while machine
learning models may have high prediction accuracy, they often
lack interpretability. This is because models often act as black-boxes,
thereby making their results challenging to understand and
interpret, and users may not have knowledge of the underlying
decisions in the predicting process (Ekanayake et al., 2022).

Interpretable machine learning tools can be applied to gain
insight into the working of machine learning models. Thus, it is
easier to understand the factors that drive their predictions and
increase confidence in their predictions. This understanding may be
used to justify the use of the model and to further improve its
working (Adadi and Berrada, 2018). Interpretable machine learning
is currently at a stage where it is sufficiently developed and mature,
but there are still some challenges that need to be addressed
(Mahesh, 2020; Vilone and Longo, 2020).

In recent years, the research community has become more
interested in Shapley additive explanations (SHAP) method,
which proposes a model agnostic representation of feature
importance estimated by Shapley values in a computationally
efficient manner. Shapley values are a solution concept from
collaborative game theory. The SHAP method is an additive
feature attribution method that considers the features as “the
players”, combinations of different features as “the coalitions,”
and the prediction as “the total payout.” The average marginal
contribution for feature i over all possible coalitions is the Shapley

Frontiers in Energy Research frontiersin.org02

Bindingsbø et al. 10.3389/fenrg.2023.1284676

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284676


value ϕ_i, hence it explains each feature’s contribution to a
prediction (Lundberg and Lee, 2017; Lundberg et al., 2018).

Besides SHAP there are other methods for interpreting machine
learning results such as Individual Conditional Expectation (ICE) plots
(Goldstein et al., 2015) and Local interpretable model-agnostic
explanations (LIME) (Ribeiro et al., 2016). ICE plots visualize the
dependence of model predictions on a feature for each instance
separately. By varying the values of a feature for a particular
instance while keeping the values of all other features fixed, it shows
the relationship between the feature and the model’s predictions across
a range of values by repeating this process. Each line in the ICE plot
represents the predicted outcome for a different instance, allowing us to
see the individual effects of a feature on the model’s predictions. LIME
works by approximating the machine learning model locally around a
specific instance, using a simpler, interpretable model. It perturbs the
instance, creates a dataset, fits an interpretable model on the perturbed
instances, and generates explanations based on the model’s feature
weights. These explanations help us understand why a particular
prediction was made on a local level.

While ICE plots and LIME focus on local explanations for
individual predictions, SHAP provides both model-agnostic and
global explanations. SHAP values capture the contribution of each
feature to a prediction across the entire dataset, allowing for a more
comprehensive understanding of feature importance. Additionally,
SHAP is applicable to a wide range of models and is able to handle
feature interactions, thus providing a more nuanced understanding
of how features interact to influence predictions. Based on these
advantages, SHAP is selected as the best fitting interpretable
machine learning method.

After the SCADAdata has been analyzed using appropriatemodels,
the results from the model have to be used to decide maintenance
activities. These activities are triggered when some condition indicator
crosses a preset limit. This guides the maintenance activities to take
place based on the actual condition, as against faulty condition in
corrective maintenance and perceived condition in preventive
maintenance. Hence, condition-based maintenance strategy offers
advantages that are associated with (Koukoura et al., 2021):

• maintenance activities carried out only when required, e.g.,
reduced human errors in maintenance

• not conducting unnecessary scheduled replacement of parts
before their end of useful life, e.g., cost saving

• advanced planning of maintenance activities, e.g., better
planning

In spite of these advantages, use of a condition-based
maintenance approach is still restricted and needs further
research and development. This is because of the difficulties
associated with the:

• quality and quantity of collected data
• handling of imperfect (spurious, inconsistent, inaccurate,
uncertain, or irrational) data collected from faulty sensors

• interpretation of data to information regarding failure profile
• reasoning of information into knowledge about the existing
status of the equipment

• converting knowledge to decision regarding maintenance
scheduling

• handling of unreliable analysis that may trigger false alarm
(false positive) or failure to respond (false negative)

Hence, a solution that integrates the traditional (corrective and
preventive) maintenance methods with condition-based
maintenance methods may provide a solution that is robust,
effective, and efficient. In this integrated method:

• the failure analysis is carried out in the traditional manner, and
then the results of failure profile is used judiciously to develop
a maintenance strategy;

• the time for inspection and maintenance of a component is
adjusted based upon condition monitoring.

This paper discusses the work carried out to develop
methodology for identifying faults in a wind turbine generator
bearing using interpretable machine learning models and using
the results for rescheduling of its maintenance time. The
methodology includes preprocessing of data to remove outlier
data, use of machine learning models to predict bearing
temperature, identification of deviation between predicted and
actual temperatures, critical analysis of results, and
recommendations for rescheduling of maintenance tasks.

2 Proposed fault detection
methodology

2.1 Description of the process

In order to develop an effective and efficient asset management
program for a component, it is important to understand the process
in terms of the structure, environment, and operation.

A wind-turbine contains 20 to 25 bearings, all of which must be
considered in a system-level reliability calculation of life expectancy
[wind power engineering]. A typical roller bearing consists of four
components: a) inner ring, b) outer ring, c) cage, and d) rollers.
During an operation, these components are subjected to different
levels of dynamic and static loads, which can be in axial, radial or
combination direction under constant or alternating conditions.
These loads cause degradation of the material because of wear
(contact wear—peeling, scoring, smearing, etc.), fatigue (contact
fatigue—flaking, spalling, etc.), corrosion, electrical erosion, plastic
deformation, and fracture and cracking (ISO, 2017), thereby
resulting in the deterioration of the components and ultimately
failure (Sankar et al., 2012). As the degradation progresses, it also
results in changes in the behavior patterns of parameters like
temperature, vibration, noise, rotational speed, etc. By monitoring
these parameters using appropriate sensors, it may be possible to
diagnose the health of the bearings. Commonly used parameters for
identifying fault in a bearing include temperature, vibration, and
noise.

2.2 Feature selection

As discussed in the previous section, temperature is a commonly
measured parameter to monitor the health of a bearing, because it is
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easy to continuously monitor and analyze in order to identify any
abnormal behavior.

Figure 1 shows the simplified flowchart of heat transfers taking
place in a bearing. A bearing is at a thermal equilibrium when it
reaches a steady temperature. At this temperature, there is a balance
between:

1. Heat generation due to bearing friction (rolling, sliding, etc.) and
seal friction—During an operation, the friction among the
components of a bearing results in generation of heat, the
amount of which is dependent upon a number of factors,
including the rotational speed, type of bearing, bearing
geometry, elastic deformation under load of the rolling
elements and raceways, type of lubricant and its application,
and sliding friction between the components. The friction also
results in its wear as a result of which there is an increase in
bearing surface imperfections (deformation, pitting, craters,
depressions, surface irregularities, spalling, cracking, etc.). The
formation of surface imperfections leads to an increase in friction
resulting in an increase in heat generation. Thus, an increase in
friction due to structural imperfections or deterioration in
lubrication increases the temperature of bearings.

2. Conductive heat transfer from or to the adjacent
parts—Temperature of a bearing depends upon the heat input
from or heat output to the adjacent parts. One piece of equipment
that can significantly affect the bearing temperature is the
generator itself. When the generator shaft rotates, heat is
generated due to electrical resistance in the windings, resulting
in heating of the generator. Since the temperature of the
generator is higher than the temperature of the bearing, there
is thus a heat transfer from generator to bearing. By measuring
the temperature of the generator in stator windings, it may be
possible to estimate the effect of the generator temperature on the
temperature of the bearing.

3. Convective heat dissipation to environment—Temperature of a
bearing in operation is generally above the environmental
temperature, hence the bearing continuously dissipates heat to

the environment. The rate of convective heat transfer is a
function of:
• Convective heat transfer coefficient—The convective heat
transfer coefficient depends upon a number of parameters,
including the air velocity over the solid surface and the specific
heat capacity of humid air. The specific heat capacity of humid
air is approximately proportional to the absolute humidity of
air. Thus, as the humidity increases the value of convective
heat transfer coefficient increases, resulting in an increase in
heat loss (Boukhriss et al., 2013). Thus, the temperature of a
bearing depends upon the speed of air circulation around it
and the relative humidity of air.

• Temperature difference between the bearing and the
environment—The rate of heat loss is proportional to the
difference in the temperatures of the solid (bearing) and the
environment. Thus, the temperature of the bearing depends
upon the ambient temperature.

Based on the understanding of the heat transfers, five variables
have been selected to predict the bearing temperature. These are:

1. Generator Shaft/Bearing Rotational Speed—This is the rotational
speed of the high-speed shaft connected to the generator. The
shaft is supported by the generator bearings, and thus rotation of
the shaft leads to rotation of the bearing resulting in generation of
heat in the bearings due to friction.

2. Generator Temperature—This measures the temperature of the
generator stator windings. When the generator shaft rotates, heat
is generated by electrical resistance in the windings. The windings
are located close to the generator bearings and heat is transferred
from the windings to the bearings.

3. Wind Speed—In a wind turbine, wind turns its rotor which in-
turn rotates the shaft of the generator. Thus, wind speed
determines the rotational speed of the generator shaft and
bearing. Additionally, since the nacelle is not airtight, the
wind speed impacts air movement inside the nacelle, which in
turn influences the convective heat transfer rate.

FIGURE 1
Flowchart showing the heat transfers taking place in bearings.
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4. Nacelle Air Humidity—This is the relative humidity of air inside
the nacelle.

5. Nacelle Temperature—This is the temperature measured in the
confined space housing the wind turbine drivetrain. The
generator is located at the back of the nacelle and is therefore
affected by the ambient temperature in the nacelle.

Figure 2 shows the flowchart of the methodology employed
for detecting fault in a bearing. Using the five parameters, it may
be possible to estimate temperature of a healthy bearing and if
the measured temperature is above the predicted value, then
there is a possibility that the higher temperature is the result of

increased friction due to degradations in the bearing or
lubrication.

2.3 Proposed model for predicting bearing
temperature

As discussed in the previous section, the first step is to predict
the bearing temperature using the five input variables. Figure 3
shows the flowchart of proposedmethodology for predicting bearing
temperature using machine learning algorithms.

2.3.1 Selection of regression algorithms
In this project a number of machine learning algorithms have

been considered for developing a predictive model. These included:

• Linear Models—Linear Regression (LR), Lasso, Ridge, and
Bayesian Ridge Regression

• Tree-based Models—Decision Trees, Random Forest (RF)
• Boosting Models—AdaBoost, XGBoost and LGBoost
• Support Vector Regression (SVR)

The short-listing of suitable algorithms have been carried out
based on two key criteria.

• Firstly, the algorithms that demonstrate high compatibility with
interpretable machine learning tools (example, SHAP) have been
prioritized. This consideration is crucial as it ensures that the
developed models are not just black boxes, rather their decision-
making processes can be understood and explained. This aspect is
particularly important for applications where transparency and
trust in the model’s predictions are paramount.

• Secondly, one representative algorithm from each of the
aforementioned categories—linear models, tree-based
models, boosting models, and support vector machines
have been deliberately selected. This enables comparison
regarding their behavior and strengths.

These selection criteria help to identify the most effective
algorithm that not only delivers high accuracy but also aligns

FIGURE 2
Flowchart showing the proposed fault detection methodology.

FIGURE 3
Flowchart for developing the proposed interpretable machine
learning model.
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with the interpretability and applicability requirements of our
project. Thus, out of the above mentioned algorithms, four
algorithms—Linear Regression (LR), Random Forest (RF),
Support Vector Regression (SVR) and XGBoost—have been
shortlisted for further testing.

2.3.2 Data preprocessing
Data preprocessing is an important step of any machine learning

model. This is because raw data is typically created, processed, and
stored by a mix of humans and business processes, often resulting in
imperfections like vague, inconsistent, irrational, duplicate or
missing values. These imperfections need to be corrected for the
algorithms to work properly. Hence, an important step in
preprocessing is to identify and handle (often remove) outliers.
The outliers are removed only from the training and evaluation data
so that the models can be trained and evaluated on healthy turbine
operation data. This improves the models’ capability to detect
anomalies in the test data.

2.3.3 Exploratory data analysis (EDA)
Exploratory data analysis is used to analyze and investigate the

data set and summarize the main characteristics by employing data
visualization methods. Common methods include the use of
Pearson, Kendall, or Spearman correlation metrics. These metrics
depict the correlation between all the possible pairs of values and is a
powerful tool to identify and visualize patterns in data.

2.3.4 Data splitting—training, validation and testing
data

In supervised machine learning tasks, best practice is to split
data into three independent data sets: training set, validation set and
test set.

2.3.5 Model training
Model training is the process of teaching a machine learning

model to make predictions or perform a specific task by exposing it
to a labeled data set. The goal of model training is to enable the
model to learn patterns, relationships, and rules from the training
data so that it can generalize its knowledge to make accurate
predictions on unseen or future data.

2.3.6 Model evaluation
In order to select the best performing algorithm out of the four,

some criteria for evaluation need to be applied. These criteria should
be able to judge a model’s performance regarding a) accuracy of
prediction, b) compatibility with interpretable machine learning
tools, c) time usage for carrying out the calculations, and d)
simplicity. The selection of the best model is based on an overall
assessment of all the criteria.

To evaluate the accuracy of prediction, Mean Absolute Error
(MAE), Mean Absolute Percentage Error (MAPE), Root Mean
Squared Error (RMSE), and Coefficient of Determination (R2)
have been used.

2.3.7 Hyperparameter tuning
Many machine learning algorithms require hyperparameters

that need to be defined before running them. First-level model
parameters are decided during training, but the second-level tuning

parameters need to be tuned to optimize the performance. Typically,
this is done by performing cross-validation or evaluating predictions
on a separate test set (Probst et al., 2019).

In this analysis, hyperparameter tuning is performed using grid
search (Bergstra and Bengio 2012) and hyperparameter values
suggested by Probst, Boulesteix et al. (2019). This method runs
through all possible combinations of the parameters within their
search ranges forming a grid. It is performed using the scikit-learn
library for python programming language. The grid search finally
ranks all the combinations by their mean RMSE score across the
same cross-validation folds used for model evaluation. Results from
the grid search are used to select the optimal values for the
hyperparameters.

Besides grid search there are additional hyperparameter tuning
methods such as random search and Bayesian optimization. Grid search
is selected due to its transparency and reproducibility, as well as its
robustness against local optima. By evaluating all possible combinations,
it reduces the risk of getting stuck in suboptimal regions of the
hyperparameter space, and hence it increases the likelihood of
finding the best set of hyperparameters for a given problem.

2.4 Model interpretation using SHAP

Once the model has been tuned using optimal hyperparameters,
it is ready to be interpreted. SHAP has been used to interpret outputs
of the best performing machine learning model and quantifying
impact of each features to predictions. A negative SHAP value
indicates a negative impact that decreases the value of the model
output, whereas a positive SHAP value indicates a positive impact
that increases the value of the model output. Although a SHAP
analysis does not explicitly imply causalities, it helps in interpreting
how each feature contributes to the model output and helps to
identify importance of a feature in a model prediction.

3 Illustrative case study

3.1 SCADA data

To demonstrate the feasibility of the proposed methodology,
SCADA data made available by the energy company EDP (2017)
from four horizontal axis wind turbines located off the western coast
of Africa has been used. The data has been recorded over a period of
2 years (2016 and 2017) at a 10-min averaging interval. The datasets
contain values of 76 parameters. Besides this, associated datasets about
meteorological conditions have also been provided for the same time
instances. Failure logs containing timestamp, damaged component and
associated remarks are also available. For this work, Turbine Number 7
(“T07”) has been selected because its failure log has recorded generator
bearing failure. For Turbine Number 7, the total number of instances are
52,445 and 52,294 for 2016 and 2017, respectively. Table 1 shows the
selected features and target used for developing the model.

The generator uses two bearings, one on the drive-end and one
on the driven end. The failure log records damage of generator
bearings on 20 August 2017, at 08:08:00, and damage of generator
shortly afterwards on 21 August 2017, at 16:47:00 (Table 2). The
downtime caused by the generator failures is highlighted in green in
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Figure 4 and lasts from 20 August 2017, at 08:10:00 until 28 August
2017, at 21:50:00. The model shall attempt to predict these failures.

3.2 Data preprocessing

3.2.1 Identification of data outliers
Quite often SCADA data contains outliers that arise due to

imperfections in the SCADA system and do not reflect the actual
condition of process, environment, or component. For the
development of a predictive model, it is important to remove
these outliers because their presence can lead to biases in the model.

One common reason for outliers in the data is the inputs from
faulty sensors. Since health prognosis of a bearing relies heavily on
the data collected by the sensors, the reliability of analysis thus
depends upon the reliability of the collected data. Hence, the

reliability of results from the proposed methodology also depends
upon the quality of data used for the analysis.

Figure 5 shows plots of the temperature data versus selected periods
of the two bearings. Sudden spike in the recoded temperatures can only
be due to errors in the data collection, possibly arising due to the faulty
sensor. This is justified by the record showing that the sensor was
replaced on 30 April 2016 12:40 after recording High temperature in
generator bearing 1. Outliers like those shown in the figure need to be
handled during the data preprocessing.

In this model outliers have been identified by the use of box
plots, shown in Figure 6. In a box plot, the lower limit of the whisker
marks the minimum value, excluding outliers, whereas the upper
limit of the whisker marks the maximum value, excluding outliers.
The lower limit of the box is the first quartile (Q1 or the 25th
percentile), whereas the upper point of the box is the third quartile
(Q3 or the 75th percentile). All values within the box between

FIGURE 4
Bearings temperature during the bearing and generator failures in (A) 2017 and (B) August 2017.
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Q1 and Q3, also called the interquartile range (IQR), are calculated
using Eq. 1. The horizontal red line in the box is the median value.
An outlier in this case is defined as a value outside 1.5 times the IQR
above Q3 or below Q1.

IQR � Q3 − Q1 (1)
where: IQR = Interquartile range Q1 = the first quartile, or the 25th
percentile Q3 = the third quartile, or the 75th percentile

3.2.2 Data cleaning
Depending upon the characteristics of specific variables, rules

for identification and handling of outliers have also been adopted.

For example, a threshold of 100°C has been set for the generator
bearing temperature and all values higher than this have been
removed. Similarly, relative humidity values are missing in the
period 3 January 2017 to 6 May 2017, and this gap has been
filled with values from the previous year.

Further cleaning has been performed using DBSCAN (Ester
et al., 1996). DBSCAN is a density-based clustering algorithm that
works on the assumption that clusters are dense regions in space
separated by regions of lower density. “Densely clustered” data
points are gathered into a single cluster.

The results before and after cleaning are shown in Figure 7.
Figure 7A shows the presence of a significant number of outliers
which indicate that either the turbine is not operating despite
the blowing wind, or the sensors are not working properly.
Additionally, there are many instances of the turbine not
operating at its maximum potential. Figure 7B shows the plot
after the removal of the most significant outliers and the
remaining data points sufficiently fit the theoretical power
curve.

3.3 Exploratory data analysis (EDA)

Figure 8 shows the Pearson correlation matrix of the input
features and target. Some signals are highly correlated, for
example a) wind speed and generator rotational speed, b)
wind speed and generator phase temperature, and c) generator
phase temperature and bearing temperature. The matrix shows
that the selected features are significantly relevant to the target
variable.

To further understand the correlation between the features and
target, pairwise relationships between them in the training set have
been plotted (Figure 9). The marginal histograms have been
prepared by dividing signal values into 25 bins.

FIGURE 5
Effect of faulty sensors on recorded temperature of bearings.

FIGURE 6
Box plot of SCADA signals.

Frontiers in Energy Research frontiersin.org08

Bindingsbø et al. 10.3389/fenrg.2023.1284676

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284676


3.3.1 Effect of generator shaft/bearing rotational
speed on bearing temperature

The time averaged wear rate of a bearing can be given as (Gupta,
2013):

W T( ) � 1
T

K

H
∫

T

o
Q t( )u t( )dt (2)

where :W = Time-averaged wear rate over the time interval (T) K =
Wear coefficient H = Hardness of the material being subjected to
wear Q = The time-dependent load at a given interaction u = Sliding
velocity as a function of time

The equation shows the dependence of wear on the parameters
Q and u, which in turn are dependent upon the rotational speed.

Thus, the wear rate increases with an increase in the rotational
speed. Corresponding to the increase in wear, the heat generated due
to friction also increases with the increase in the rotational speed.
This increase in heat generation manifests itself as an increase in the
temperature.

Figure 9 shows the bearing temperature (Gen_Bear_Temp) is a
function of the rotational speed of generator shaft/bearing
(Gen_RPM).

3.3.2 Effect of generator temperature on bearing
temperature

In a generator, heat is produced in the windings of the stators
due to the passage of electricity through the electric wiring (Joule
Heating). This heat is dissipated to the surrounding through
conduction and convection. A part of dissipated heat also
increases the temperature of the generator bearings.

Figure 9 shows the approximately linear relationship between
the generator temperature (Gen_Phase_Temp) and the bearing
temperature (Gen_Bear_Temp).

3.3.3 Effect of wind speed on bearing temperature
Wind speed has two opposing effects on the bearing

temperature. On the one hand, an increase in wind speed
increases the rotational speed of bearing resulting in increase in
temperature due to friction. On the other hand, wind speed also
increases air circulation within the nacelle, thereby increasing the
convective heat transfer coefficient and subsequently heat loss from
the bearing.

Figure 9 shows that there is a net increase in bearing temperature
(Gen_Bear_Temp) with an increase in wind speed (Wind_Speed).

3.3.4 Effect of nacelle air humidity on bearing
temperature

Since the specific heat capacity of humid air increases with an
increase in the relative humidity of air, expectedly an increase in

FIGURE 7
Plot of power generated versus wind speed using data of training period (A) Using raw. (B) Using data after cleaning outliers.

FIGURE 8
Pearson correlation matrix of the input features.
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relative humidity increases the convective heat transfer coefficient
and subsequently increases heat loss from the bearing.

Figure 9 shows a weak correlation between the relative humidity
of air (Humidity) and the bearing temperature (Gen_Bear_Temp).

3.3.5 Effect of nacelle temperature on bearing
temperature

The ambient temperature in the nacelle follows an annual cycle,
whereby the temperature is lower during winters and higher during
summers. Since the convective heat transfer is proportional to the
temperature difference between a bearing’s surface temperature and
the ambient temperature, this variation in the ambient temperature

has an effect on the heat dissipation from bearing to the
environment.

Figure 9 shows an increase in the bearing temperature (Gen_
Bear_Temp) with an increase in ambient temperature inside nacelle
(Nac_Temp).

3.4 Data splitting—training, validation and
test data

The data from 2016, after the removal of outliers, has been used
for training the model in two steps. In the first step, the clean

FIGURE 9
Pairwise relationships between input features.
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2016 data is split into two parts—training data and validation data.
The data from the first 8 months is used to train the algorithms,
while the data from the last 4 months is used to evaluate (validate)
the algorithms. Four month-long validation data can be considered
sufficient to cover different parts of the time series such as trends and
seasonality patterns. The validation data has been divided into four
folds, each lasting for nearly a month. The initial part of the
validation set is correlated with the last part of the training set.
In order to increase independence between training and validation, a
gap of 24 h is removed from the end of the training set close to the
validation set.

In the second step, the best performing model has been trained
on all data in 2016 in order to capture any seasonal variations.

Thus, the complete dataset has been split into training data
(33%), validation data (17%) and test data (50%). The dataset
contains over 100,000 timestamps, and hence using only 33% (in
the first step) and 50% (in the second step) of the data for training is
sufficient. Holding out 17% of the data for validation is in the
recommended range (Belyadi and Haghighat 2021).

3.5 Model training

The four shortlisted Ralgorithms—Linear Regression (LR),
Random Forest (RF), Support Vector Regression (SVR) and
XGBoost—are trained using the training data set. For the
algorithms to be evaluated on equal terms, all algorithm
parameters are set to their default values during initial training.

3.6 Model evaluation

In the first step, performance of the four algorithms—Linear
Regression (LR), Random Forest (RF), Support Vector Regression
(SVR) and XGBoost—have been evaluated. Table 3 presents the
RMSE scores for the four algorithm from the cross validation. The
table shows that Support Vector Regression (SVR) has the best
RMSE mean score whereas Linear Regression (LR) has the worst.
The existence of almost equal RMSE values across different folds
signifies that the data is evenly distributed over the time period.

Table 4 presents the results of the evaluation of the four models
on the whole 1-year test set (2017). There is a noticeable difference in
the RMSE scores when the models predict a whole year compared to
only the folds in the cross validation. This is due to the test set
containing faulty turbine operational data whereas the cross
validation set consists of only healthy turbine operational data
similar to the training set used to learn the model. The
evaluation results suggest that:

• Linear Regression (LR)—This has a decent score and shortest
fit and prediction time.

• Random Forest (RF)—This has a good score but somewhat
long fit time.

• Support Vector Regression (SVR)—This goes from top
performing algorithm on the validation data to worst
performing on the test data in almost all parameters,
highest RMSE and longest fit and predict time.

• XGBoost–This scores on top while having an acceptable fit
and predict time.

TABLE 1 Selected features and target for developing the model.

Variable Description Units

Timestamp 10-min resolution

Features

Gen_RPM Generator shaft/bearing rotational speed rpm

Gen_Phase_Temp SCADA dataset gives the average temperature inside generator in stator windings Phase 1, 2 and 3. Since the temperatures are nearly the
same, Gen_Phase_Temp is an average temperature of the three temperatures

°C

Wind_Speed Ambient wind speed m/s

Humidity Relative nacelle air humidity %

Nac_Temp Nacelle temperature °C

Target

Gen_Bear_Temp Temperature in generator bearing 1 (Driven End) °C

TABLE 2 Failure log for Turbine Number 7 (“T07”).

Timestamp Component Remarks

20 August 2017, 08:08:00 Generator bearing Generator bearings damaged

21 August 2017, 16:47:00 Generator Generator damaged

TABLE 3 Cross validation RMSE scores.

Model Fold 0 Fold 1 Fold 2 Fold 3 Mean

LR 1.61 1.74 1.62 1.57 1.64

RF 1.53 1.68 1.57 1.58 1.59

SVR 1.48 1.55 1.46 1.31 1.45

XGBoost 1.48 1.74 1.48 1.51 1.55
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To visualize the performance of the algorithms, plots of the
predicted temperatures versus observed temperatures are shown in
Figure 10.

• Linear Regression (LR)—This tends to predict rather low
values

• Random Forest (RF)—Along with XGBoost this appears to
give the best fit

• Support Vector Regression (SVR)—This predicts high values
for some low bearing temperatures and low values for some
high bearing temperatures.

• XGBoost–This appears to be the most accurate model, even
though at times it predicts high values for some low bearing
temperatures

While the SVR shows good performance in scoring metrics, it is
important to note that the algorithm demands significantly more
time for model fitting and prediction compared to XGBoost. This
increased computational time, especially while dealing with large
datasets or in real-time analysis, often makes SVR unsuitable. In
contrast, XGBoost with its efficient handling of large data and faster
execution emerges as a more practical choice.

Upon detailed evaluation, XGBoost has been identified as the most
suitable algorithmbecause it strikes an optimal balance between accuracy
and computational efficiency. Furthermore, this algorithm can be fine-
tuned using hyperparameter tuning techniques, thereby, enhancing its
performance. This process involved systematically adjusting the
algorithm’s parameters to find the combination that yields the best
results in terms of prediction accuracy and processing speed. The fine-
tuned XGBoost model demonstrates a marked improvement in
performance, confirming its suitability for the required predictive
modeling tasks.

3.7 Hyperparameter tuning

As described in the previous section, the XGBoost model has
been selected as the most suitable model for further analysis. An

important part of machine learning optimization is the tweaking and
tuning of hyperparameters. Hyperparameter tuning is performed in
the XGBoost model to enhance the model’s accuracy before trying it
on the test data set. The selected hyperparameters and their
suggested ranges (Probst et al., 2019) for tuning are presented in
Table 5. In addition to the parameters in Table 5, the parameters
colsample_bytree and colsample_bylevel have been set to 0.6. In order
to determine the optimal combination of hyperparameters grid
search with cross validation strategy has been performed.

Results from the grid search are displayed in Figure 11. The figure
shows that as compared to max_depth, learning_rate and n_estimators
have more effect on performance of the algorithm in terms of RMSE,
MAE andR2. The optimal values of these parameters are given inTable 5.

Table 6 shows the performance of XGBoost algorithm after
hyperparameter tuning using the optimized parameter values given
in Table 5. As shown, there is an improvement in the performance of
the algorithm after hyperparameter tuning.

3.8 Prediction of generator bearing
temperature

The optimized XGBoost algorithm-based model (Figure 3) has
been used to predict bearing temperature using the TestingData (2017).

Figure 12 shows the plots of the actual and predicted values for
the period 1 January to 15 January 2017, the curves of which are for:

• actual temperature
• predicted temperature
• predicted plus/minus 2 standard deviation temperature

The figure shows that the actual temperature remains within the
(predicted ±2 standard deviation or approximately 3.5°C)
temperature range.

3.9 Sources of error

Inaccuracies in the output results may arise due to:

• The high correlations between feature and target variables may
impact how the machine learning model learns. This risk is
partly mitigated by using hyperparameters colsample_bytree
and colsample_bylevel.

• Faulty sensors
• Wrong calibration or drift in calibration of sensors

TABLE 4 Performance of models with default parameters.

Model MAE MAPE MSE RMSE R2 Fit time [s] Predict time [s]

LR 1.569 0.039 4.436 2.106 0.980 0.011 0.005

RF 1.479 0.035 3.888 1.972 0.982 18.104 0.889

SVR 1.521 0.037 4.887 2.211 0.978 90.701 188.590

XGBoost 1.436 0.034 3.824 1.955 0.983 1.266 0.019

TABLE 5 Hyperparameter search range.

Hyperparameter Search range Optimal value

n_estimators [200, 400, 600, 800, 1,000] 1,000

max_depth [3, 4, 5, 6, 7, 8, 9] 4

learning_rate [0.1, 0.05, 0.01] 0.05

Frontiers in Energy Research frontiersin.org12

Bindingsbø et al. 10.3389/fenrg.2023.1284676

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284676


In the case study there may be additional sources of errors,
including:

• Replacing the missing humidity data with the values from the
previous year.

3.10 Fault detection and recommendation
for rescheduling maintenance plan

Figure 13 shows the plots of the actual and predicted values for
the period from 7 June to 23 June 2017. During this period there are

FIGURE 10
Predicted and observed temperatures for all models.

FIGURE 11
Model impact changing (A) learning_rate, (B) max_depth and (C) n_estimators.
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times when the actual bearing temperature exceeds the predicted
value by more than two standard deviations (approximately 3.5°C)
over significantly long periods, and this is highlighted in green. For
example, on 7 June 2017, the actual value reaches 95°C whereas the
model prediction is 76°C, a difference of 19°C.

After 7 June 2017, there is a tendency for the actual bearing
temperature to be higher than the predicted bearing temperature. At
times it often crosses the two standard deviation limit. This indicates
two possibilities:

• Malfunctioning of the bearing sensor.
• Possibility that the bearing is getting hotter than expected
perhaps due to increased friction. The increased friction could
be either because of increased wear or improper lubrication.

Both of these possibilities warrant special inspection and
monitoring activity.

Based on the detection of faulty bearing, recommendation may
be made for scheduling maintenance activities at the earliest
opportunity. This recommendation is justified by the fact that
the bearing breaks down 2 months later on 20 August 2017.

4 Model interpretation using SHAP

The XGBoost algorithm-based model used for the case study
gives reasonably good predictions for the temperature of a generator
bearing. The model needs to be further evaluated to interpret it is
working. Since XGBoost is a tree-based model, the Tree SHAP
algorithm proposed by Lundberg et al. (2018) for tree ensembles can
be used to calculate the SHAP values that could be used for the
interpretation of the working.

4.1 Global explanations

Figure 14A shows the mean absolute SHAP values for the used
features. The figure shows that:

• The generator phase temperature has by far the highest impact
on the model predictions. This is reasonable due to the
adjacent location of the bearing and generator.

• Nacelle temperature and wind speed have moderate average
impact on the model predictions, which should be expected
since the convective heat loss from bearing is directly
proportional to the difference in temperature between the

TABLE 6 Optimized XGBoost performance on test data and validation data.

Test data performance

Model MAE MAPE MSE RMSE R2

XGBoost 1.436 0.034 3.824 1.955 0.983

Optimized XGBoost 1.389 0.033 3.354 1.832 0.985

Change [%] 3.272 2.941 12.291 6.292 0.203

Validation Data Performance [RMSE]

Model Fold 0 Fold 1 Fold 2 Fold 3 Mean

XGBoost 1.48 1.74 1.48 1.51 1.55

Optimized XGBoost 1.41 1.65 1.44 1.40 1.48

Change [%] 4.73 5.17 2.70 7.29 4.52

FIGURE 12
Actual and predicted temperatures of generator bearing for the period January 1 to 15 January 2017.
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bearing and the nacelle temperature. Wind speed affects not
only the rotational speed but also the convective heat loss.

• Generator or bearing rotational speed and relative humidity
have low impact.

Figure 14B shows the changes in the SHAP value for changes in the
feature value. For all features except the humidity, a higher feature value
has a positive impact on the model prediction, and a low feature value
has a negative impact on the model output. As is to be expected, the
humidity has the opposite impact for its feature values, because increase
in humidity increases the specific heat capacity of air resulting in higher
convective heat loss from the bearing and a decrease in temperature.

SHAP treats each feature as a “player,” hence there are
interaction effects between features. The SHAP main effect plots
in Figure 15 remove all interaction effects between features and thus
display the raw impact of each feature.

• Generator Shaft/Bearing Rotational Speed—Generator
rotational speed has a low impact with a small positive
spike near its max rotation speed.

• Generator Temperature—The generator phase temperature
has a dominant and nearly linear impact on the model output.

• Wind Speed—At the cut-in wind speed of 4 m/s, there is a
marked increase in the impact of wind speed. It increases up until
the rated wind speed of 12 m/s and from there on stays constant.

• Nacelle Air Humidity—The impact of humidity is rather weak
and decreases slowly across its range.

• Nacelle Temperature—Nacelle temperature has an increased
positive impact in the temperature range 20°C–45°C.

4.2 Local explanations

SHAP waterfall plots are used for explaining individual
predictions. Starting from the expected value of the model output

(the average prediction of the model on the training data) at the
bottom of the waterfall plot, each row shows the contribution of each
feature to the model output for a prediction. A positive (red)
contribution moves the initial output value higher whereas a
negative (blue) contribution moves the initial output value lower.

4.2.1 Explanation of prediction for 7 January 2017
Figure 12 shows the plots of the actual and predicted values for

the period of 1 January to 15 January 2017. During this period all
predicted values are within two standard deviations of the actual
value, indicating a possibility that the bearing is operating normally.
From this period, an instance (7 January 2017, 17:40:00) has been
randomly selected for local explanation.

According to Figure 15, the temperature of bearing is influenced
most by the generator temperature because of its high temperature
and proximity to the bearing. This is followed by the nacelle
temperature and wind speed. The generator rotational speed and
humidity have relatively minor effect.

On 7 January 2017, at 17:40:00 the actual generator bearing
temperature is 53°C. The SHAP waterfall plot in Figure 16 explains
how the XGBoost model arrived at a prediction of 54°C.

• Generator Shaft/Bearing Rotational Speed—Rotational speed
has minor effect on the predicted temperature value, hence the
net heating effect on the predicted bearing temperature
(+0.52°C) is relatively small.

• Generator Temperature—The high generator phase
temperature (89.3°C) has by far the most significant
positive influence (+8.52°C) on the bearing temperature.

• Wind Speed—Wind speed makes relatively small positive
effect (+2.02°C) on the predicted value. Wind speed has
two opposing effects—increase in temperature due to
increased friction and decrease in temperature due to
increased convective heat loss. In this case the rotational
speed has small effect (+0.52°C) and hence a greater

FIGURE 13
Actual and predicted temperatures of generator bearing for the period 7 June to 23 June 2017.

Frontiers in Energy Research frontiersin.org15

Bindingsbø et al. 10.3389/fenrg.2023.1284676

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1284676


positive effect may be due to the interaction between the wind
speed, the generator temperature and the bearing temperature.

• Nacelle AirHumidity—The high relative humidity (78%) also does
not significantly (−0.52°C) affect the predicted temperature value,
because relative humidity itself does not have any significant role.

• Nacelle Temperature—The nacelle temperature (30°C) is close
to the average annual temperature, ranging between 15°C and

50°C, and hence does not play a significant role (−0.01°C) in
the fall of temperature on predicted value.

4.2.2 Explanation of prediction for 7 June 2017
Figure 13 shows the plots of the actual and predicted values

for the period 7 June to 23 June 2017. On 7 June 2017 (Summer),
the environmental and operating temperatures are quite different

FIGURE 14
(A) Mean absolute SHAP value per feature. (B) Matrix plot of SHAP values for different features.

FIGURE 15
SHAP main effects plot for (A) generator rpm, (B) generator phase temperature, (C) nacelle temperature, (D) wind speed and (E) humidity.
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from those of 7 January 2017 (Winter). Based on the SHAP
waterfall plot (Figure 17), an attempt is made to explain the
working of the model.

• Generator Shaft/Bearing Rotational Speed—As in the previous
case (7 January 2017), the rotational speed has a minor effect
on the predicted temperature value, and hence the net heating
effect on the predicted bearing temperature (+1.48°C) is
relatively small. The small increase could be due to the
small positive spike that appears near its max rotation
speed (Figure 14A).

• Generator Temperature—The generator temperature is very
high (137.3°C) and this significantly (+20.95°C) raises the
temperature of the bearing.

• Wind Speed—Compared to the previous case, wind speed
gives relatively higher positive effect (+4.43°C) on the

predicted value. This may be because of higher interaction
between the wind speed, the generator temperature, and the
bearing temperature.

• Nacelle Air Humidity—As in the previous case, nacelle relative
humidity has negligible (−0.12°C) effect on the predicted
temperature value.

• Nacelle Temperature—Compared to the previous case, the
nacelle temperature (39°C) is 9°C higher than the previous
case, and hence there is significantly (+5.86°C) higher effect on
the predicted temperature.

The analysis provides a reasonable explanation for the predicted
bearing temperature. A high generator temperature (137°C)
increases the predicted bearing temperature significantly
(+20.95°C) and the remaining features also contribute to bringing
the predicted bearing temperature to 76.2°C.

FIGURE 16
Local explanation on 7 January 2017, 17:40:00 by waterfall plot.

FIGURE 17
Local explanation on 7 June 2017, 23:10:00 by waterfall plot.
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5 Conclusion

This paper presents a simple and robust methodology for
making a machine learning based model for detecting faults in
wind turbine generator bearing. In this model, the predicted
bearing temperature is compared against the actual bearing
temperature and a significant difference between the two
indicates a possibility of fault(s) in the bearing or its
lubrication. Either of these may result in failure. As a case
study, the idea has been demonstrated on a generator bearing,
using real-life SCADA data. The results show that it is possible to
detect potential failure well in advance. This knowledge can be
used for planning maintenance.

Four different machine learning algorithms, Linear Regression
(LR), Random Forest (RF), Support Vector Regression (SVR) and
XGBoost, have been evaluated and XGBoost has been found to be
the most suitable algorithm for the task.

The paper also examines the role of five features, generator shaft/
bearing rotational speed, generator temperature, wind speed, nacelle
air humidity, and nacelle temperature, on the predicted bearing
temperature. Out of these, the generator temperature has been found
to play the major role, followed by the wind speed and nacelle
temperature. Bearing rotational speed and relative humidity of
nacelle air play minor roles.

To take the research work further, the following tasks have been
identified:

(a) analysis of data from different wind turbines,
(b) testing of other machine learning/artificial intelligence

algorithms, like artificial neural networks,
(c) consideration of the impact of more features,
(d) use of other interpretable machine learning tools such as

Individual Conditional Expectation (ICE) plots (Goldstein
et al., 2015) and LIME (Local interpretable model-agnostic
explanations (LIME) (Ribeiro et al., 2016),

(e) expanding the scope from component to system level.
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