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Electricity theft (ET), which endangers public safety, creates a problem with the
regular operation of grid infrastructure and increases revenue losses. Numerous
machine learning, deep learning, and mathematical-based algorithms are
available to find ET. Still, these models do not produce the best results due to
problems like the dimensionality curse, class imbalance, improper hyper-
parameter tuning of machine learning and deep learning models, etc. We
present a hybrid deep learning model for effectively detecting electricity
thieves in smart grids while considering the abovementioned concerns. Pre-
processing techniques are first employed to clean up the data from the smart
meters. Then, the feature extraction technique, like AlexNet, addresses the curse
of dimensionality. The effectiveness of the proposedmethod is evaluated through
simulations using a real dataset of Chinese intelligent meters. To conduct a
comparative analysis, various benchmark models are implemented as well. Our
proposedmodel achieves accuracy, precision, recall, and F1, up to 86%, 89%, 86%,
and 84%, respectively.
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1 Introduction

Due to population growth, the electrical system has grown larger, which increases power
consumption (Raza et al., 2023a). ET is believed to be a significant source of revenue losses
because of meter manipulation, meter bypassing, billing issues, and other strategies (Rehan
et al., 2023a). According to estimates, manual ET costs the USA $6 billion annually, the UK
up to $232 million, and electric utilities globally lose $25 billion annually due to ET
(Aldegheishem et al., 2021). On the other hand, India loses 4.8 billion rupees annually,
Pakistan loses 0.89 billion rupees annually, and Brazil loses $4 billion due to ET (Lepolesa
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TABLE 1 Previous approach for ET detection using different algorithms.

References Problem Dataset
used

Technique used Performance
metrics

Limitations/Future work

Feng et al. (2020) Electricity theft in
power grids

Ireland Convolutional Neural Network (CNN) Precision, area under
curve, recall and

F1 score

Privacy

Chicco (2012) Electricity theft Datasets of
different areas
randomly

Time Division Multiplexing (TDM) Neglected The proposed model ignored the
focus on performance metrics

Gu et al. (2022) Electricity theft
detection, Curse of
dimension, and
Overfitting issues

Ireland Synthetic Minority Over-sampling
Technique (SMOTE) and Principal

Component Analysis (PCA)

Time complexity and
recall

Overfitting issue of SMOTE,
Privacy leakage due to the high

sampling rate

Pamir et al. (2022) Electricity theft in
smart grids

State Grid
Cooperation of

China

Tomek Links, AlexNet, and peephole accuracy, precision,
recall, F1-score,
and AUC

Considered using low sampling
data only

Khan et al. (2020) Electricity theft
detection in the
commercial area of
Brazil

Brazilian Binary Black Hole Algorithm (BBHA) Mean Accuracy The dataset is biased on one class;
no suitable metrics are used

Ahmed et al.
(2023)

Electricity theft State Grid
Cooperation of

China

Deep Artificial Neural Network (DANN) Recall, F1 score
and AUC.

Experimentation with other
supervised learning algorithms

Singh et al. (2018) Electricity theft Ireland Gradient Boosting Machine Algorithm
(GBMA), Clustering and

Accuracy, F1- score
AUC, and precision

The proposed model does not
handle the imbalanced nature of

the data
Evolutionary Genetic Algorithm (CEGA)

Duarte Soares et al.
(2022)

Electricity theft Real-time dataset Load monitoring and Advanced
Metering Infrastructure (AMI) networks

ROC-AUC Security feature results in a slightly
low detection rate

Accuracy

Hasan et al. (2019) Electricity theft
detection

Malaysia Simplified Memory Bounded (SMB) Accuracy Metrics selection is not
appropriate

Aslam et al. (2020) Electricity theft
detection

State Grid
Cooperation of

China

Feature Engineered- CatBoost Algorithm
(FECA)

Accuracy, recall, and
precision

Improving the system robustness
neglected

Synthetic Minority Oversampling
Technique (SMOTE) Algorithm

Ali et al. (2023a) Energy theft system - Multilayer Perception (MLP), Recurrent
Neural Network (RNN), Long Short-

Term Memory (LSTM), Gated Recurrent
Unit (GRU)

- The proposed technique has better
accuracy and can be implemented
in both industrial and commercial

sectors

Badr et al. (2023) Electricity theft
detection

Endesa Extreme Gradient Boosting (XG-Boost) TPR, Recall, FPR The proposed model consumes
time on large datasets

Precision, AUC

Zheng et al. (2018) Electricity theft Irish XGBoost FPR, Recall, AUC Not enough training data, limited
results, and imbalanced data

Precision

Pereira and Saraiva
(2021)

Electricity theft
detection

Brazilian Artificial Neural Network—Multilayer
Perception (ANN-MLP)

PSO, SGHS, BP The proposed model does not
handle the imbalanced nature of

data

Ahir and
Chakraborty

(2022)

Electricity theft
detection

Brazilian ANN-MLP Accuracy, Precision,
Recall

The results of the proposed model
are not accurate

Electricity theft
detection

SEAI SMA DR, FPR The proposed model neglected the
accuracy

Ayub et al. (2022) Electricity theft
detection

State Grid
Cooperation of

China

CNN-LSTM MCC, F1-score The proposed model is consuming
high time on datasets

(Continued on following page)
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et al., 2022). Numerous researchers have highlighted ET difficulties and
potential solutions. Gradient boosting was employed in a study (Punmiya
and Choe, 2021) to find ET. A specific theft window is also established
during peak hours to identify questionable power consumer activity.
However, a reliable and accurate method for ET detection is still needed
(Raza et al., 2022a; Raza et al., 2022b; Rehan et al., 2023b). Hardware
elements, including sensors, smart meters, distribution transformers, and
other equipment, are used by state-based systems to find ET (Raza et al.,
2022c). This work (Razavi et al., 2019) employed a state-based
methodology to pinpoint ET in physically inspired smart grids. A
special kind of transformer was coupled with smart meters to study
client electricity consumption trends. The simulation results demonstrate
that the suggested strategy outperforms the base models. The power
company and electricity thieves play a game in game theory-based
solutions. This technique’s drawbacks include higher costs, greater
complexity, and a need for hardware components for proper
implementation (Nabil et al., 2019). Additionally, smart homes
employ a game theory-based technique to lower peak energy expenses
(Nabil et al., 2019). Many other methods exist to minimize energy losses
and establish coordination amongst smart appliances (Raza et al., 2022d;
Raza et al., 2022e; Raza et al., 2023b).

Some of the investigations done on ET detection are listed in Table 1
below. Table 1 presents the problem, themethods used to offer a solution,
the advantages suggested by earlier research and potential future research,
and the limitations of that particular study. The smartmeter data has been
used to build a digital solution for the acknowledged ET problem,
producing better results. The finite mixture model, the gradient
boosting machine approach, clustering, and evolutionary genetic
algorithms were all used to address the ET problem in Table 1.
Future power providers should adhere to the suggested methodology
for minimizing power losses. A model for ET that uses long and short-
termmemory, as well as a bat-based strategy to improve imbalanced data,
parameter optimization, and overfitting and achieve F1 score, precision,
recall, and receiver operating characteristics under the area curve (ROC-
AUC), was also presented and discussed in Table 1. All research described
in Table 1 covered the fundamental concept of ET detection. However,
the method used in this paper is novel and has never been used for ET
detection in a smart grid. Overall, this study emphasizes the need for
building reliable, precise, and effective detection technologies to guarantee
the integrity and sustainability of the smart grid and the continued efforts
to resist ET detection through creative approaches. The suggested
paradigm might eventually be used to apply power data for whole
power system structures.

TABLE 1 (Continued) Previous approach for ET detection using different algorithms.

References Problem Dataset
used

Technique used Performance
metrics

Limitations/Future work

Ali et al. (2023a) Electricity theft
detection in a

shopping mall in
Turkey

BEDAS Ensemble model TPR, FPR The balance of TPR and FPR is
neglected in this proposed work

F-measure, precision

Adil et al. (2020) Low accuracy,
Overfitting, and High

FPR in ETD

Self-made dataset LSTM Precision, Recall, F1-
score, Convergence
speed

Not suitable for large datasets

FIGURE 1
Proposed system flowchart for the electricity theft detection in
smart grid.
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In summary, the literature on ET detection presents a wide range of
approaches and techniques to address this critical issue. Researchers
have explored various machine learning algorithms to ensemble models
for achieving accurate and reliable detection results, including deep
neural networks, gradient boosting machines, and many others. Many
studies have focused on utilizing intelligent meter data, temperature-
dependent solutions, and AMI networks to enhance detection. Privacy-
preserving schemes, syntheticmonitoring samples, and data imputation
techniques have also been proposed to ensure the security and integrity
of the electricity grid. Challenges such as data imbalance, high false
favorable rates, and overfitting have been recognized and addressed in
the literature. Researchers have proposed methods to handle these
challenges, including performance metrics, ensemble techniques, and
optimization algorithms. Additionally, there is a growing emphasis on
system robustness and the need for reliable performance evaluation.
However, using AlexNet software, this work offered a revolutionary
deep-learning technique for ET detection in smart grids. All research
described in the literature covered the fundamental concept of ET
detection. However, the method used in this paper is novel and has
never been used for ET detection in a smart grid. Overall, this study
emphasizes the need for building reliable, precise, and effective
detection technologies to guarantee the integrity and sustainability of
the smart grid and the continued efforts to resist ET detection through
creative approaches. Figure 1 shows the suggested system flowchart for
ET detection in the smart grid.

The potential of traditional sampling methods on deep learning
technique AlexNet in the significant data context is studied in this
work. The main contributions of this research are: a) This paper is
focused on dealing with multi-class imbalance problems, which have
hardly been investigated and are critical issues in the field of data
classification; b) It addresses one of the most popular deep learning
methods (AlexNet), a specialized research topic, with details on
some particular aspects of the classifier, such as answering the
question: Is it pertinent to use methods that work in the features
space of classifiers that set the decision boundary in the hidden
space? c) Results notice the effectiveness of editing methods on the
output AlexNet to improve the curse of dimensionality, class
imbalance, and model hyperparameterization problems.

2 The proposed system

This section describes the suggested method in Figure 1, while
Figure 5 illustrates the proposed technique’s mechanism in all its
steps. The proposed system is divided into four steps. First, starting
with dataset collection details, then pre-processing the gathered
data, then data balancing, and finally, feature extraction. All of them
are briefly discussed in the following subsections.

2.1 Dataset collection details

The suggested technique is based on electricity consumption data
from the State Grid Corporation of China (SGCC). Table 2 shows the
details of the dataset (Shehzad et al., 2022). Most researchers use the
SGCC dataset for ET detection due to its extensive coverage. This is
because it provides a detailed overview of the geographical, commercial,
and technical aspects/data from different parts of China that would help

better apprehend ET with higher accuracy. Moreover, this is considered
one of themost reliable datasets available for this task thus far, with other
datasets still not offering such granular features. Therefore, it is an apt
choice amongst research communities working on developing effective
models and concepts for detecting unauthorized power consumption or
losses throughout distributed network areas spanning vast territories
without anymanual efforts needing to be expended into collecting actual
field readings from those locations directly.

SGCC data contains 42,372 energy consumption records, where
91% of customers are truthful and 9% are deceitful (Shehzad et al.,
2022). The information concerning the defrauded customers is
accurate. The disparity between honest and dishonest customers
demonstrates the unbalanced nature of data. The electricity
consumption patterns of two consumers, the fraudulent
consumer and the conscientious consumer, are shown in
Figure 2 (Shehzad et al., 2022). It demonstrates that the electrical
thief has irregular electricity consumption patterns and that meter
manipulation caused its electricity consumption value to decrease.
In contrast, an unbiased consumer displays typical electricity
consumption patterns.

2.2 Pre-processing and data

The dataset usually comprises outliers and missing values. These
figures result from incorrect measuring equipment, such as smart

TABLE 2 Information of SGCC dataset (Shehzad et al., 2022).

Explanation Values

Total consumers 42,372

Data collection period 01-01-2014 to 31-10-2016

Honest consumers 38,575

Theft consumers 3,615

FIGURE 2
Electricity consumption pattern (Shehzad et al., 2022).
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meters and sensors. The use of data pre-processing processes is
essential in this matter. As a result, a series of data pre-processing
techniques are used in this research, including data interpolation,
outlier removal, and normalization of data.

1. Eliminating the missing values: The model wrongly classifies
energy thieves and genuine consumers due to the data’s lost
instances. As a result, the electricity consumption data’s missing
values must be filled in from (Ali et al., 2023b). The missing
values are handled using the data interpolation technique in this
instance. This approach fills in the missing value using the
average of the closest numbers

2. Outliers identification and elimination: The outliers are values in
the dataset that exhibit unusual behavior. A three-sigma rule is
used to remove outliers from the whole dataset.

3. Data Normalization: As a result, the values are scaled using the
min-max normalization procedure.

2.3 Sampling of imbalanced data

The data imbalance has been addressed using random under-
sampling (RUS) techniques, sampling results in removing some
actual customer samples during training. Using a different number
as a random seed, the RUS technique eliminates the samples of
honest customers (Pereira and Saraiva, 2021). Figure 3 illustrates the
outcomes after stopping the customer data with a higher likelihood
of being mistaken for sincere clients (Pereira and Saraiva, 2021). The
picture also displays the outcomes of a random under-sampling
experiment using various random seeds. Under-sampling appears to
raise the accuracy score considerably. Undersampling significantly
boosts recall and precision performance.

2.4 Generation of feature

The baseline electricity consumption dataset is univariate and
contains just one electricity consumption feature. However, more

statistical traits must be developed for ET to be effective. Therefore,
the authors use the original electricity consumption data to compute
key statistical parameters, including median, mean, mode, max, and
min, to enhance the ET detection performance.

2.4.1 Feature generation using an AlexNet
technique

The electricity sector faces various challenges, the main among
them being the growing problem of illegal ET. This has led to
substantial financial losses for utilities and is also a primary
environmental concern, as stolen power usually comes from
unsustainable sources or those detrimental to the environment.
Therefore, there is an urgent need to develop solutions to detect
and deter ET to protect consumers’ pockets and the environment.

AlexNet is a deep neural network technology that can be used as a
feature extractor for detecting ET (Ullah et al., 2022). It has proven great
potential and accuracy for this task, effectively recognizing non-metered
customers and fraudulent activities within power grids. The scalability
of this system depends on the size of the data set that needs to be
processed, as larger datasets may require more computing resources
depending on hardware capability. This method also offers scalability
when adding additional features, such as recognizing multiple types of
fraud or incorporating temperature-sensing devices into existing
infrastructure (Raza et al., 2022f; Ullah et al., 2022). Additionally, if
new technologies are implemented for electrical networks with better
speed performance characteristics than present sensors, artificial
intelligence (AI) algorithms will become even faster, allowing
AlexNet techniques more remarkable ability to scale up
automatically with improved efficiency and precision at matching
patterns found in energy (Javaid, 2021).

Smart meters are used to capture electricity consumption data. It
frequently contains values that are missing or noisy. Inconsistent
electricity consumption readings, missing records, overlapping and
redundant records, anomalies, outliers, and other noise can all be
discovered in electricity consumption data. These sounds must be
managed, or the suggested ET detection model may provide
erroneous findings and further increase the false positive rate. We
use fundamental pre-processing approaches in this paper to deal with
the sounds. The three sigma rule deals with anomalies and outliers,
whereas LI is used to fill in missing values, and normalization is used to
deal with inconsistent values (Khan et al., 2020).

Furthermore, the AlexNet model discards irrelevant and noisy
features. The AlexNet model automatically selects essential features
and minimizes noise effects. Again, selecting appropriate electricity
consumption characteristics is critical for completing effective ET
detection. As a result, we use AlexNet to extract hidden and dense
characteristics from the profiles of customers. It was created to
address the flaws of the time’s traditional models, such as LeNet,
which is considered CNN (Habib et al., 2022). AlexNet’s
architecture is comparable to the LeNet paradigm. The LeNet
model includes more filters and convolution, pooling, and fully
connected layers. Convolution layers obtain abstract and latent
features, whereas pooling layers help get high-level features to
reduce the dimensionality curse. Instead of regularisation
techniques, dropout layers are also used to control the overfitting
problem. Dropout layers, on the other hand, lengthen the AlexNet
model’s training time. The authors tune the parameters of the
AlexNet detection method for ET detection with high accuracy

FIGURE 3
Performance graph (Pereira and Saraiva, 2021).
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by splitting the dataset into training, validation, and test sets, then
pre-processing the data by normalizing it and dividing it into smaller
batches. After that, we initialize the hyperparameters, such as
learning rate, batch size, and the number of epochs, as shown in
Table 3, and finally, by training the AlexNet model using the training
set and adjusting the hyperparameters accordingly to improve
accuracy. The authors used the correct validation set to further
tune the model’s hyperparameters and prevent overfitting. At last,
we evaluated themodel’s performance on the test set and adjusted its
hyperparameters. For fine-tuned hyperparameters of the AlexNet
model, we also used the RUS sampling technique that perfectly
balanced the dataset. The AlexNet model’s basic design is shown in
Figure 4. Furthermore, the AlexNet block diagram is given in
Figure 5, and each component is described in sub-sections.

2.4.2 Layerwise classification of Alexnet technique

Layerwise description is listed below.

1. Layer One (Convolutional layer): The extraction of feature motifs
is made more accessible by segmenting an image into smaller
parts. The kernel multiplies its components by the pertinent
components of the receptive field and then convolves with the
pictures using a particular set of weights (Janthong et al., 2023).

2. Layer Two (Pooling Layer): Pooling layers are used to reduce the
dimensions of the feature maps. Thus, it reduces the number of
learning parameters and the computation performed in the
network. The pooling layer summarises the features present in
a region of the feature map generated by a convolution layer.

3. Layer Three (Activation Layer): The activation function acts as a
decision-making function and aids in recognizing complex
patterns. Therefore, choosing the proper activation function
can speed up the learning process.

4. Layer Four (Normalization of Batch Layer): Batch normalization
is essential because it helps address the internal covariate shift
problem in deep neural networks. It normalizes the intermediate
outputs of each layer within a batch during training, making the
optimization process more stable and faster.

5. Layer Five (Dropout Layer): Dropout produces regularization inside
the network by randomly omitting some units or connections with a
certain probability, subsequently improving generalization. When
numerous connections that learn a non-linear relation collaborate,

TABLE 3 Hyperparameters and their values.

Hyperparameters Values range

Epochs 100

Units 1, 100, 100, 1,001

Dropouts 0.4, 0.5

Batch size 5, 1, 72, 144, 288

Optimizer Adam

Activation function Relu, Sigmoid

FIGURE 4
Proposed model.
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overfitting in neural networks happens. The reduced network
topologies produced by this discretionary elimination of some
connections or units are then used to select one representative
network with low weights. Then, using this design chosen, all
suggested networks are approximated.

6. Layer Six (Flatten Layer): After the operations above, feature
maps are converted into 1D data to discriminate between valid
and fraudulent electricity consumption patterns. However,
because the output of the flattened layer minimizes the
overlapping and noisy data, it is considered an extracted
feature set in this study. This feature set offers a more
accurate representation of the electricity consumption data.

7. Layer Seven and Eight (Fully Connected Layer): AlexNet’s last
links the neurons of earlier layers with those of later levels.
Additionally, from the given feature maps, it extracts global

features. Additionally, it gathers the results of the preceding
layer to carry out the final categorization.

3 Evaluation and discussion on the
AlexNet model

This section discusses the simulation results for the suggested
fix. It is contrasted with other benchmark schemes to show the
proposed solution’s effectiveness.

3.1 Simulation framework

TensorFlow and Keras, two open-source Python libraries, are
used to run the simulations. The hyperparameters and their
appropriate values obtained during the tuning of the existing
AlexNet model are shown in Table 4. Due to their lengthy
computation, we did, however, investigate fewer hyperparameters.

3.1.1 Performance metrics
Since accuracy does not provide a trustworthy evaluation for

unbalanced classification difficulties, the validation of the
classifier using imbalanced data is of concern in the ET
detection process. More appropriate performance
measurements are used in this situation. PR-AUC, AUC,
MCC, recall, and F1-score, in particular, are used to evaluate
the effectiveness of the suggested paradigm. The precision
determines correctly detected values, such as honest
consumers. Which positive class occurrences does the model
perceive as the recall indicates trustworthy purchasers? For a
more accurate model evaluation, the F1-score assesses the
precision-to-recall ratio. Another helpful statistic is the PR-
AUC, a graph that shows the recall values on the y-axis and
the precision values on the x-axis. The PR-AUC result ranges
from 0 to 1. MCC is more trustworthy in terms of all of the
performance indicators listed since it takes into account the link
between all four possible confusion matrix outputs, namely, false
negative (FN), false positive (FP), true negative (TN), and true
positive (TP). As a result, the confusion matrix is used to evaluate
the performance metrics and provide the following information.

• TP: Reputable users are correctly identified as reliable.
• TN: Use dishonest users to identify themselves as such
correctly.

• FP: Honest users are expected to be legitimate users by
mistake.

FIGURE 5
Alexnet block diagram.

TABLE 4 Limitations with proposed solutions.

Limitations Solutions Validation

Imbalanced dataset The problem of data imbalance is resolved using the RUS technique Compared to the sampling method

Null/missing values in
datasets

Data pre-processing eliminates the null values, and max, min, and
median values are calculated to enhance ET detection efficiently

Performance evaluation of proposed and existing techniques is shown in
Table 5. Alongside its limitations, the proposed solutions are presented
in Table 4

Inappropriate feature
engineering

AlexNet is used to enhance the feature extraction procedure using
multiple layers

Figure 5 shows the multiple layers of the AlexNet technique
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• FN: Inaccurate predictions of honest users as legitimate.

Precision (Hand and Christen, 2018), recall (Gu et al., 2019), F1-
score (Douzas et al., 2019), and MCC (Greff et al., 2016) are
calculated using equations:

Recall � TP

TP + FN
(1)

Precision � TP

TP + FP
(2)

F1 Score � 2*
Precision * Recall
Precision + Recall

(3)

MCC � TP * TN − FP * FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ (4)

Where FN, FP, and TP values are used to calculate recall and
precision, as shown in Figure 6, while recall identifies the instances
of the positive class that the model correctly recognizes as honest
consumers, precision displays those values that are reliably classified
as such. The F1-score, a more trustworthy statistic than recall and
precision, is determined in Eqn. 11. Recall and precision are
balanced to get a single score.

4 Proposed technique result

The proposedmodel AlexNet was trained and tested considering
three cases: a 50:50% ratio for training and testing themodel, and the
second case considering 75: 25% and 90:10% training and testing
sets. The model could achieve remarkable performance by
outperforming the accuracy confusion matrix, as shown in
Figure 7. The model correctly classified all theft consumers (True
Positive) without missing many theft consumers in the dataset (False
Negative). This exceptional accuracy underscores the effectiveness
of the AlexNet model for theft detection, making it a significant

accomplishment for theft detection and energy saving in power
systems.

Our experiments revealed promising outcomes for electric theft
detection using AlexNet, as shown in Figure 8. In the first case

FIGURE 6
Confusion metrics.

FIGURE 7
Confusion matrix outcomes for the AlexNet model (A) (50%,
50%), (B) (75%, 25%), (C) (90%, 10%).
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(50%:50% ratio), the model demonstrated remarkable accuracy and
lower training and validation losses a), indicating accuracy that the
model effectively learned the underlying patterns of electric theft
from the dataset. The training and validation losses in b) are slightly
more significant in the case first case. The ROC-AUC curve in c)
showcases the model’s ability to distinguish between positive and
negative instances with high sensitivity and specificity. In the second
case (75%:25% ratio), the model exhibited better accuracy levels with
slightly lower losses during training and validation d). However, the
overall performance remained robust, indicating that the model
generalizes well to unseen data, which meant the model could have
lower training and validation losses in e) compared to the first case.
The ROC-AUC curve f) reinforced the model’s proficiency in
differentiating electricity theft occurrences from standard
electricity consumption patterns. In the third case (90%:10%
ratio), the model’s accuracy remained consistently high in g),
with decreased training and validation losses h). This indicates
that increasing the training data leads to improved model
generalization. The ROC-AUC curve i) exhibited excellent

performance, affirming the model’s competence in distinguishing
electric theft events from average electricity consumption. However,
the limitations of the proposed solutions are presented in Table 4.

4.1 Propose Technique with and Without
Pre-processing

In this research study, we also aimed to investigate the impact of
pre-processing and without pre-processing techniques on the
accuracy of the AlexNet model for a specific task. The task
involved predicting a binary flag based on consumer kWh
(kilowatt-hour) data. We conducted experiments using both the
AlexNet model without pre-processing and with pre-processing.
First, we loaded the raw data and separated the features (kWhs) and
labels. We applied the RUS technique to balance the dataset to
address the imbalance dataset. The RUS technique randomly selects
samples from the majority class and removes them until a balance is
achieved. After pre-processing, we split the data into train and test

FIGURE 8
The AlexNet results for the first case (50% 50%); Loss (A), accuracy (B), and ROC-AUC; second case (75% 25%); Loss (D), accuracy (E), and ROC-AUC
(F); third case (90% 10%); Loss (G), accuracy (H), and ROC-AUC (I).
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sets with a 50% test size. We then performed feature scaling using
the standard scaler to normalize the data and bring all features to a
similar scale.

We used a fully connected neural network architecture for the
model without pre-processing. The model consisted of multiple
dense layers with ReLU activation functions and dropout layers to

FIGURE 9
Epochs of the proposed model.

TABLE 5 Result summary of proposed and existing models.

Performance metrics AlexNet Extra tree classifier RF classifier GBDT classifier MLP algorithm

Precision 0.89 0.77 0.70 0.70 0.73

Recall 0.86 0.55 0.61 0.53 0.70

F1-Score 0.84 0.61 0.60 0.59 0.72

Accuracy 0.86 0.64 0.63 0.63 0.71

FIGURE 10
Comparison of AlexNet, Extra tree classifier, RF classifier, GBDT classifier, and MLP algorithm.
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prevent overfitting. We compiled the model using binary cross-
entropy loss, SGD optimizer, and metrics, including accuracy and
AUC. We trained the model with 30 epochs and a batch size of 32.
For the model with pre-processing, we used a convolutional neural
network architecture inspired by AlexNet. The model included
Conv2D layers with ReLU activation, MaxPooling 2D layers, and
dense layers with dropout. We compiled the model with the same
loss function, optimizer, and evaluation metrics as the model
without pre-processing. The input shape of the model was
adjusted to match the reshaped data. We trained the model with
pre-processing using the reshaped and scaled data. Again, we used
30 epochs but reduced the batch size to 16 to account for the larger
input size and convolutional layers. After training both models, we
evaluated their performance on the test set. The model without pre-
processing achieved an accuracy of 0.66, while the model with pre-
processing achieved a higher accuracy of 0.86. These findings
highlight the importance of data pre-processing in improving the
performance of deep learning models for specific tasks, such as
predicting binary flags based on consumer kWh data.

4.2 Comparison of AlexNetmodel with other
benchmark models results

4.2.1 AlexNet
This section highlights the novelty and contribution of the

AlexNet technique. The model’s EPOCH procedure, depicted in
Figure 9, along with its accuracy and validation accuracy,
demonstrates its performance. The orange curve represents the
accuracy, while the blue curve represents the validation accuracy.
The increasing accuracy in the graphic indicates that the suggested
model effectively learns electricity consumption patterns.
Additionally, the model converges quickly, benefiting from the
latent features’ inherent learning capabilities. One of this
research’s critical contributions is applying the AlexNet technique
during the model validation phase. The AlexNet method, known for
its pioneering architecture in deep learning, has been integrated into
the proposed framework. Notably, the AlexNet technique
demonstrates satisfactory performance even without using
optimization techniques. The results show that the proposed
model achieves over 0.89% precision, 0.86% accuracy, 0.84% F1-
score, and 86% recall. This highlights the effectiveness of the
AlexNet technique in capturing relevant patterns and classifying
the data accurately, as indicated in Table 4. To ensure a fair and
comprehensive comparison, this paper includes several benchmark
techniques such as random forecast (RF), extra tree classifier, GBDT
classifier, and MLP and compares results with the AlexNet model.
All these techniques are used as reference points to evaluate the
system’s performance, further emphasizing the novelty and
significance of integrating the AlexNet technique into the
framework. The comparison of the AlexNet model with other
benchmark models is indicated in Table 5.

Figure 10 demonstrates how the suggested model reduces
overfitting and produces the best classification outcomes on
unobserved data. Compared to industry-standard methods like
the RF classifier and MLP algorithm, it shows how the AlexNet
method increases classification accuracy. However, it is impossible
to differentiate between dishonest and honest customers using the

accuracy of performance statistics. When there is an imbalance
between the data classes during categorization, it is misleading. As a
result, the proposed model is evaluated using more trustworthy
performance criteria, including recall, F1 score, accuracy, and
precision. It is discovered that the recommended model performs
more efficiently than the current models while using valid
measurements. It is also vital to note that the suggested ET
detection technique was developed using a sizable collection of
precise data from China. The proposed ET detection method is
found to be scalable.

5 Conclusion

Simulations employing a large Chinese smart-meter dataset
were used to evaluate the AlexNet model’s power theft detection
capabilities. The goal of these simulations was to identify
unauthorized electricity users. AlexNet’s new contribution is
evident in this case. AlexNet, in the suggested model, made
significant progress. The AlexNet method is known for
extracting relevant information and improving electricity theft
detection. The AlexNet deep learning architecture efficiently
captures electricity theft trends and characteristics in the
suggested model. The simulation results show that this feature
extraction capability increases the model’s complexity, improving
accuracy, precision, recall, and F1 score. The proposed method also
balances dataset types to reduce skewed data. This innovative
methodology ensures that the model remains neutral towards
the dominant class, allowing it to detect electricity theft even in
rare cases. This addition improves the model’s reliability and
resilience in practical situations. AlexNet’s inclusion in the
proposed framework opens up many applications for the
recommended technique. Power providers and stakeholders can
use the model to reduce power losses and detect electricity theft.
The proposed technology detects electricity theft, reducing energy
sector fraud and financial losses.

The AlexNet technique improves the suggested model’s efficacy
and reach, making it a significant resource for power providers and
industry professionals trying to reduce power losses and address
electricity theft. Future power theft detection research could examine
innovative algorithms, incorporate cutting-edge technologies like
reinforcement learning and swarm optimization, and create hybrid
models that combine multiple machine learning methods. In
addition, real-time monitoring and anomaly detection can increase
electricity theft detection systems’ efficiency and timeliness.

6 Limitations and future work

The proposed AlexNet approach, based on CNNs, has several
limitations when applied in practical applications. Firstly, due to the
large number of parameters used by CNN models such as AlexNet,
training these networks is computationally challenging to handle as
it requires a significant amount of time, which may be difficult or
impossible for some users. Additionally, while CNN architectures
are renowned for automatically identifying features from inputs that
could otherwise not have been detected with traditional methods,
they can suffer from overfitting if given too few input data points and
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under-fitting problems if given too many. Finally, these types of
networks tend to require more significant amounts of labeled data
than other machine learning paradigms, such as SVMs - further
limiting their applicability in specific contexts where accurate
labeling might not always be possible or efficient. In terms of
categorization, the suggested model outperforms the current
models. Even though the proposed model is the best option for
effective ET detection, there are some sudden variations in the
proposed model’s performance regarding the input data. The
suggested model is also trained on sparse sample data, which
hinders its ability to capture finer details of electricity
consumption pattern information. To create a robust model,
high-sampling ET detection data and various other elements,
such as varying customer usage patterns, temperature, and
seasonality, will be considered in the future.

Nomenclature.
Electricity theft (ET); Receiver Operating Characteristics under

the Area Curve (ROC-AUC); Convolutional Neural Network (CNN);
Time Division Multiplexing (TDM); Synthetic Minority Over-
sampling Technique (SMOTE); Principal Component Analysis
(PCA); Binary Black Hole Algorithm (BBHA); Deep Artificial
Neural Network (DANN); Gradient Boosting Machine Algorithm
(GBMA); Clustering and Evolutionary Genetic Algorithm (CEGA);
Advanced Metering Infrastructure (AMI) networks; Simplified
Memory Bounded (SMB); Feature Engineered - CatBoost
Algorithm (FECA); Synthetic Minority Oversampling Technique
(SMOTE) Algorithm; Multilayer Perception (MLP), Recurrent
Neural Network (RNN), Long Short-Term Memory (LSTM),
Gated recurrent Unit (GRU); Extreme Gradient Boosting (XG-
Boost); Artificial Neural Network–Multilayer Perception (ANN-
MLP); State Grid Corporation of China (SGCC).
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