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The most important feature of load forecasting is enabling the building
management system to control and manage its loads with available resources
ahead of time. The electricity usage in residential buildings has increased during
the COVID-19 period, as compared to normal times. Therefore, the performance
of forecasting methods is impacted, and further tuning of parameters is required
to copewith energy consumption changes due to COVID-19. This paper proposes
a new adaptive neuro-fuzzy 2 inference system (ANFIS2) for energy usage
forecasting in residential buildings for both normal and COVID-19 periods. The
particle swarm optimization (PSO) method has been implemented for parameter
optimization, and subtractive clustering is used for data training for the proposed
ANFIS2 system. Twomodifications in terms of input and parameters of ANFIS2 are
made to cope with the change in the consumption pattern and reduce the
prediction errors during the COVID-19 period. Simulation results obtained by
MATLAB software validate the efficacy of the proposed ANFIS2 in residential load
forecasting during both normal and COVID-19 periods. Moreover, the
performance of the proposed method is better than that of the existing
adaptive neuro-fuzzy inference system (ANFIS), long short-term memory
(LSTM), and random forest (RF) approaches.
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1 Introduction

The amount of energy consumption in residential buildings creates a huge burden on the
energy-providing utilities. This problem becomes severe during the peak hours of the day
when the utility might have to look for alternative resources of energy. In addition,
consumers have to pay a high electricity price during the peak hours. However, load
forecasting can help overcome this problem from both the grid side and the consumer’s
perspective. From the grid perspective, based on the knowledge of energy demands,
alternative resources of energy can be allocated ahead of time (Kapoor and Sharma,
2018; Almalaq and Edwards, 2019). Moreover, from the consumer’s point of view, the
loads can be scheduled based on the price of energy from the grid, available resources in the
buildings, and energy storage. In addition, it creates an opportunity for the consumers to sell
some of their residential energy to the grid, if possible, during peak hours. Therefore,
researchers have been continuously searching for efficient load forecasting methods.
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Among the various methods of load forecasting, time series or
regression-based predictions are frequently found in the literature.
The autoregressive integrated moving average (ARIMA) model has
attracted scholars for predictions (Kim et al., 2019; Rana et al., 2022).
ARIMA is the improved combination of the auto-regressive (AR)
and moving average (MA) methods. However, without a large
dataset and in changing load conditions, the performance of the
ARIMA model deteriorates. Moreover, regression trees are also
proposed as a forecasting method by many authors (Phyo and
Jeenanunta, 2021; Sun and Bi, 2021). It is a machine learning
tool that sub-divides the total data space into smaller clusters of
data and divides the sub-division into small divisions whenever an
interaction can be managed. Regression trees proceed with decisions
in the form of a tree that starts from the root to the leaf node, where
the leaf node gives the output. Random forest (RF) is the most
popular homogeneous regression tree method found in the literature
(Moon et al., 2018; Wang et al., 2018; Yiling and Shaofeng, 2020)
that provides the decision without having any bias among the
decision trees. The multiple linear regression method is also
recommended by some researchers (Chowdhury et al., 2018;
Oprea and Bâra, 2019). In this method, the dependent variable is
expressed as a sum of non-dependent variables. Furthermore, Zheng
et al. (2019) and Sharma et al. (2020) have investigated predictor
systems that utilize state space models, such as the Kalman filter.
However, the performance of the Kalman filter deteriorates as the
non-linearity of the system increases.

The common problem associated with these above-mentioned
methods is the degradation of performance with the increase in
nonlinearity in the system. The nonlinear nature of residential load
has enforced researchers (Wang and Srinivasan, 2017; Nair et al.,
2018) to search for more robust prediction systems that can predict
well when the system is highly nonlinear. The fuzzy logic system,
which performs on the IF–THEN logic, has been reported in the
literature (Alrizq and Doncker, 2018; Alam and Ali, 2020a) to have
performed well in nonlinear conditions. Moreover, temperature and
historical data are the most considered inputs for the fuzzy systems
that are proposed in the literature (Anoop and Kanchana, 2017;
Shao et al., 2018), although performance can still be improved
further by increasing the input number. However, limited input
numbers are considered because as the input number increases, the
fuzzy rules also increase, which makes the system slower.

Moreover, Shabbir et al. (2019) and Moradzadeh et al. (2022)
have preferred the support vector regression (SVR) method for load
prediction. Although it can perform well for nonlinear systems, the
performance of the SVR system heavily depends on tuning the
parameters properly, and a large amount of data are required for
training purposes. Long short-term memory (LSTM) is another
recommended method (Kong et al., 2019; Wang et al., 2021; Zang
et al., 2021) that can predict well the nonlinearity of the system.
However, like SVR, for the best prediction, it requires a large number
of input features and a huge amount of data for proper tuning of the
parameters.

The artificial neural network (ANN) is another method that has
been reported (Alonso and Chávez, 2017; Khan et al., 2018;
Sulaiman et al., 2019; Banitalebi et al., 2020; Chandran et al.,
2021) in the literature to show better performances under the
nonlinear condition. In ANN, during training of data, hidden
layer parameters such as gains and biases are to be tuned

properly. Moreover, the performance of the ANN method highly
depends on the conditions such as the availability of a huge amount
of previous data or historical data, ensuring a good relationship
between the inputs and output and appropriate tuning of the hidden
and output layers. However, the adaptive neuro-fuzzy inference
system (ANFIS) is reported to show better performance than the
ANN system as it combines the beneficial features of both ANN and
the fuzzy system (Alam and Ali, 2020b). However, like the fuzzy
system, if the number of the input of ANFIS becomes more than
three, a sluggish response due to high computational burden makes
the system practically nonviable. Moreover, with an increase in the
number of membership functions for each input, the computational
burden increases further.

These above-mentioned problems can be alleviated by
implementing subtractive clustering-based ANFIS. Subtractive
clustering is a very efficient way to determine the number of
clusters along with their centers when data characteristics are
unpredictable. Therefore, a new subtractive clustering-based
ANFIS is proposed (Alam and Ali, 2020a) for predicting
residential loads. In that work, temperature is considered the first
input. Moreover, occupancy and day type are used to formulate an
equation to determine R, the second input for ANFIS.

However, the parameters of ANFIS in Alam and Ali (2020b) are
tuned only by the hybrid algorithm that is a combination of
backpropagation of input membership function parameters and
the linear regression method for the output. It is found that
converting the type-1 membership function into type-2
membership functions and tuning the parameters of ANFIS by
particle swarm optimization (PSO) can improve the performance of
ANFIS. Alam and Ali (2020a) proposed an equation-based system
that predicts load consumption by dividing input data into different
ranges and provides an equation to predict data whose parameters
are tuned by the data that fall within that range. Because of this, the
proposed equation-based system performs better than ANFIS.

However, this system is not robust for changing situations as the
energy consumption pattern has changed dramatically during the
COVID-19 situation, as reported in the recent literature. The
COVID-19 impact on residential load consumption in Memphis
City, United States, was investigated by Alam and Ali (2020b). In
this work, the energy consumption in residential buildings during
COVID-19 periods is reported to have increased during office hours
for normal working days for different types of occupants. The overall
per-day energy consumption on working days has also increased.
Similar analyses for both short-time and long-time energy
consumption were done for 87 regions of Zhejiang province,
China (Zhang et al., 2021), where it is reported to have a time
shift in electricity consumption in some regions and a permanent
change in the energy consumption pattern in the rest of the regions.
In Bompard et al. (2020), the impact of COVID-19 on the European
electricity market was analyzed. Another work is found in the
literature where the authors (Sławomir et al., 2020) investigated
the impact of COVID-19 lockdown on energy consumption in
Warsaw city in 2020 and found that the residential users who
stayed at home during lockdown consumed more energy, with a
change in consumption patterns as well. Moreover, pattern changes
in load forecasting, demand, generations, and frequency deviations
were also analyzed by Aviad et al. (2021). In this work, energy
consumption is reported to have changed with load shifts from the
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industrial and commercial sectors to the private sectors. As new
variants of the virus have been emerging, it is difficult to predict how
long this situation will continue. The energy consumption pattern
will be continuously changing, as compared to that before the
COVID-19 period.

Based on the above background, a new subtractive clustering-
based ANFIS2 is implemented in this work for residential load
forecasting. To the best of our knowledge, this method has never
been proposed for load forecasting. The performance of the
proposed ANFIS2 has been compared with that of the subtractive
clustering-based ANFIS proposed by Alam and Ali (2020a), RF and
LSTM methods. The predicted outputs of all systems are simulated
in the MATLAB environment first for normal conditions (before
COVID-19). The same inputs, as proposed by Alam and Ali (2020a,
2020b), are considered for both ANFIS and ANFIS2 methods.
Different prediction errors are computed to analyze the
performance of all the methods and tabulated as performance
indices.

Moreover, the impact on the performance of the proposed
ANFIS2 is investigated for predicting energy consumption during
the COVID-19 period due to changes in energy consumption.
Moreover, one input of ANFIS2, which is determined by the
number of occupants and the day type, is modified to investigate
the improvements in predictions. Finally, with inputs and COVID-
19 data, the parameters of ANFIS2 are tuned to further improve
efficacy in predictions.

To summarize the novelty and contribution, this work does the
following:

• First, it proposes a new subtracting clustering-based
ANFIS2 for energy consumption prediction during the
normal period.

• It investigates the performance of the proposed ANFIS2 in
predicting the energy conduction during the COVID-19
pandemic situation as the residential load consumptions
drastically changed during this time.

• It proposes two modifications in ANFIS2 that can efficiently
predict the energy consumption during the COVID-19
situation.

• It makes a performance comparison between the proposed
ANFIS2 and the conventional ANFIS, LSTM, and RF systems
during both normal and COVID-19 periods.

The rest of the paper is structured as follows: the problem
statement, i.e., the motivation behind the current work, is
represented in Section 2. In Section 3, all the methodologies are
described. Simulation results are analyzed, and performances of all
the methods are provided in Section 4. In Section 5, the paper ends
with the conclusion and is followed by references in Section 6.

2 Problem statement

Electrical load forecasting is a crucial element that can be
effectively used to provide power to consumers by proper
management of energy and keeping the cost of power at a
comfortable level for the consumers. Effective forecasting requires
well-trained models where the model parameters are tuned based on

the parameters (inputs) that contribute to energy consumption
(outputs). However, the performance of the conventional models
deteriorates if there are changes in the input pattern or the system is
not trained with many datasets. Therefore, it is evident that a new
model is required for load forecasting that will predict well under
normal conditions with limited data for training. Moreover, it
should be able to predict well under varying conditions.

As the energy consumption patterns are reported to have
changed significantly during the COVID-19 period, a new
forecasting method has been explored to solve the problem. The
performance of the proposed and existing systems is investigated for
the intermittent conditions with the models tuned with data
available for normal conditions. Moreover, the modifications of
the proposed system that are needed to predict well under varying
consumption patterns are also investigated to utilize the proposed
model for any future epidemic or emergency conditions.

3 Proposed ANFIS2 prediction method

Figure 1 shows the block diagram of the proposed ANFIS2, in
which the type-1 fuzzy system is Sugeno-type, and the considered two
inputs are the same as in Alam and Ali (2020a). In the neural part of
the ANFIS2 section, both temperature and R data on 568 days are
used. The value of R is determined from occupancy and the day type,
as described by Alam and Ali (2020a). When training the data, the
number of membership functions for both inputs is determined by
subtractive clustering, which utilizes a hybrid algorithm.

The number of membership functions, along with tuning of the
membership function, is facilitated by backpropagation methods,
and the linear regression function is tuned for the output section for
predicting data based on the fuzzy rules. Another benefit of
subtractive clustering is that the fuzzy rules are always selected
based on the clustering number by the algorithm during the training
period and are always less than the conventional fuzzy systems.
Therefore, ANFIS runs faster compared to the fuzzy systems.

In subtractive clustering, the input space (Yeom and Kwak,
2018) is divided into several clusters by considering the radius of the
cluster (range of influence). The values of the range of influence can
be from 0 to 1. If the radius (range of influence) is considered to be
small, then the number of clusters increases and so do the fuzzy
rules. The squash factor is a positive scalar that is utilized for grading
the range of influence of the centers of clusters. The accept ratio is a
positive number that indicates the fraction of potential of one
cluster. Another data point can be considered as the center of the
cluster if its fraction of potential value is above the acceptance ratio.
Moreover, any point cannot be considered the center of the cluster if
its fraction of potential value falls below the rejection ratio value.

In this work, when the above stages are completed, the
conventional Sugeno-type fuzzy system is converted into the
type-2 fuzzy system, where the input membership functions are
different from the conventional input membership function as it has
both the upper and lower membership functions with an area
between them considered as the footprint of uncertainty (FOU),
as shown in Figure 2. For the conventional fuzzy system, the
membership function has only the upper membership function,
as will be shown later. Moreover, the output membership functions
of the type-2 fuzzy system remain the same as in the conventional
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fuzzy system, which are linear functions considered for this work
[38]. The parameters of the upper membership functions of type-2
fuzzy systems remain the same as the corresponding membership
functions of conventional fuzzy systems [39].

From Figure 2, it is evident that the type-2 membership function
is defined by the upper and lower membership functions that are
represented by red and blue lines, respectively. The fuzzification of
input values is done by calculating the degree of membership from
both the upper and lower membership functions based on the rule
antecedent. Then, the range of strength firing rules is obtained by
implementing the fuzzy operator to the fuzzified values of the
membership functions. In this case, the maximum value of the
upper membership function and the minimum value of the lower
membership function are considered for the Sugeno-type system. In
the aggregation step, the output level of each rule of the type-2 fuzzy
system remains the same as in the conventional system; however, in
the conventional system, they are done in consequent steps. In
addition, in the aggregation step, the rule output levels are arranged
in an ascending order, which defines the universe of discourse for the
type-2 fuzzy set. The upper and lower membership values for each
output level are chosen based on the maximum and minimum firing
range values of the corresponding rule. Finally, the type-2 fuzzy set is
reduced to type-1 interval fuzzy sets using the reduction method to
obtain the clear output for the inference system. The type-1 interval
fuzzy set considers a range of values with lower (CL) and upper (CR)
limits that are considered centroids and can be approximated by the
following equations (40):

CL ≈
∑L

k�1xkμumf xk( ) +∑N
k�L+1xkμlmf xk( )∑L

k�1μumf xk( ) +∑N
k�L+1μlmf xk( ) , (1)

CR ≈
∑R

k�1xkμumf xk( ) +∑N
k�R+1xkμlmf xk( )∑R

k�1μumf xk( ) +∑N
k�R+1μlmf xk( ) , (2)

where N, xk, μumf, and μlmf correspond to the number of samples
considered over the output variable range, kth output sample value,
and upper and lower membership functions, respectively. The
enhanced iterative algorithm with stop condition (EIASC) is used
for this work as it is reported (Wu and Nie, 2011) to be the most
promising method. Finally, after the reduction steps, the input and
output membership function parameters are tuned and updated by
the PSO optimizing algorithm, as recommended by Banitalebi et al.
(2020), based on the input (x) and anticipated output that are
obtained from smart meter data.

3.1 Conventional adaptive neuro-fuzzy
inference system

As already mentioned, in this work, the efficacy of the
proposed ANFIS2 has been verified with the system reported by
Alam and Ali (2020a) in predicting energy consumption data.
Subtractive clustering is also used for the system proposed by Alam
and Ali (2020b), and the block diagram of the system is shown in
Figure 3.

FIGURE 1
ANFIS System.

FIGURE 2
Input membership functions for ANFIS2 system.

Frontiers in Energy Research frontiersin.org04

Alam and Ali 10.3389/fenrg.2023.1292183

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1292183


However, for predicting data, different parameters are
determined by the PSO algorithm.

Figure 4 indicates that each input has two membership functions;
therefore, only two fuzzy rules are needed for output predictions. The

Gaussian fuzzy membership functions are tuned by a hybrid algorithm
for both inputs. Then, the fuzzy system, based on the inputmembership
functions, output parameters, and the input (x), as shown in Figure 3,
provides the output, which comprise the energy predictions.

3.2 Long short-term memory (LSTM)
method

To compare the performance of the proposed ANFIS2, the
LSTM system is used as it is a very popular method for heating
load for power plants (Liu et al., 2020; Rafi et al., 2021), household
load forecasting (Ageng et al., 2021), and electrical load forecasting
(Islam et al., 2020; Kim et al., 2020). The block diagram of the LSTM
system is shown in Figure 5 and can be explained by the following
sets of equations from (3)-(8):

f t � σ Wf · ht−1, xt[ ]+bf( ), (3)
it � σ Wf · ht−1, xt[ ]+bi( ), (4)
ot � σ Wo · ht−1, xt[ ]+bo( ), (5)

C̃t � tanh WC · ht−1, xt[ ]+bC( ), (6)
Ct � f tʘCt−1+itʘ C̃t , (7)
ht � ot*tanh Ct( ), (8)

FIGURE 3
Block diagram of ANFIS System.

FIGURE 4
Input membership functions of ANFIS System.

FIGURE 5
Block diagram of the LSTM system.
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where ft indicates the forget gates that regulate the influence of the
previous states on the current states, whereas it and ot correspond to the
input and output gates, respectively. The input gates control howmuch
of new information is to be updated in the cell state, and the output

gates control the output based on the updated cell state. Σ controls the
output values between 0 and 1. Based on current input xt and previous
output ht−1, all the gates change their states. Ct and C̃t correspond to
the cell state and the estimated values of the cell state, respectively.

TABLE 1 ANFIS2, ANFIS, LSTM, and RF parameters.

Method Parameter Value

Subtractive clustering parameter for ANFIS and ANFIS2 Range of influence 0.80

Squash factor 0.95

Accept ratio 0.50

Reject ratio 0.05

ANFIS and ANFIS2 Number of nodes 17

Number of linear parameters 6

Number of nonlinear parameters 8

Total number of parameters 14

Number of training data pairs 568

Number of checking data pairs 0

Number of fuzzy rules 2

LSTM Number of hidden units 250

Fully connected layer 150

Dropout layer 0.5

Maximum number of epoch 550

Mini batch size 3

Initial learn rate 0.01

Learn rate drop period 250

RF Maximum number of split 1

Minimum leaf size 1

Number of learning cycles 324

FIGURE 6
Input occupant data considered for prediction during normal time.
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The ADAM optimization method is utilized for training
parameter optimizations, as proposed by Wang et al. (2019).

3.3 Random forest (RF) method

The random forest method is also popular (Qi et al., 2017; Yin
et al., 2020; Phyo and Jeenanunta, 2021; Sun and Bi, 2021) and
widely used for load forecasting. Random forest is an ensemble
approach that predicts based on the combination of decisions of all
the independent trees. The randomly chosen samples are
incorporated into the trees. The process of incorporation of the
samples into the trees is known as bagging, whereas the chosen
sample is termed a bootstrap, which is continuously changed in each
step. All the decisions from each independent tree are considered
with the same probability value. The classification is done by bagging
algorithms, and the cart algorithm is used for determining the set of

regression trees. The following equation is used to calculate the
average of the output of all the trees:

Ŷ ′ � 1
r
∑r
i�1
ĥ X′,Sθin( ), (9)

where Ŷ′ is the estimated output based on new inputX′ and ĥ(X′,Sθin )
is the predicted output of the bootstrap sample of Sn. θi indicates a
variable that has an identical distribution. The training parameters of
the rf system are optimized by grid search optimization techniques.

4 Simulation results and discussion

4.1 Simulation data and conditions

The energy consumption data are obtained through the smart
energy meter of an apartment in Memphis, TN, United States. The

FIGURE 7
Input temperature data considered for prediction during normal time.

FIGURE 8
Input day-type data considered for prediction during normal time.
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temperature is collected for Memphis City. Occupancy and day-type
data are obtained from the family members living in the apartment. A
total of 598 days’ data are considered in this work, and 568 days’ data are
used for ANFIS2 and ANFIS network training. The remaining 30 days’
data are used for the performance evaluation of ANFIS, ANFIS2, LSTM,
and RF systems for both normal and COVID-19 conditions. The
parameters used for ANFIS2, ANFIS, LSTM, and RF systems are
summarized in Table 1.

4.2 Efficacy of the proposed ANFIS2
prediction system over ANFIS and other
methods under normal conditions

As previously discussed, in this work, for both prediction
systems, arbitrarily selected 30 days’ data were utilized for
prediction and performance evaluation. For both systems,
input occupancy data for 30 days are shown in Figure 6.
Figure 7 shows input temperature data on the same days. In
addition, input day-type data are shown in Figure 8.

The performance of the ANFIS2 method and the ANFIS-based
prediction systems, and the LSTM and RF methods for energy
consumption data prediction are shown in Figure 9, which validates
the efficacy of the proposed ANFIS2-based prediction system over

ANFIS reported by Alam and Ali (2020b), LSTM, and RF system
during normal times.

4.3 Index calculations for the proposed
ANFIS2 and other prediction methods

The absolute percentage of error, the absolute average error,
root mean square error, and mean average percentage error in
prediction, which can be represented as shown in equations
(10)–(13), respectively, are used for ANFIS2, ANFIS, LSTM,
and RF systems as the performance index.

%Err � Actual − Predicted
Actual

∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣ × 100. (10)

A.E � 1
N
∑N
i�1

Actuali − Predictedi| |. (11)

RMSE �

������������������������
1
N
∑N
i�1

Actuali − Predictedi( )2
√√

. (12)

MAPE � 1
N
∑N
i�1
%Erri. (13)

Here, N = 30 was used for the equations (10) to (13). Moreover,
from Table 2, it can be seen that the average errors of the
ANFIS2 prediction system are smaller than those of ANFIS
reported in [30], LSTM, and RF systems. In this case, the
performances of the ANFIS2-based system are 0.80%, 33.62%,
and 45.18% better than those of ANFIS, LSTM, and RF systems,
respectively. Moreover, from RMSE values calculations for all
systems, it can be concluded that ANFIS2 performs 4.54%,
3.49%, and 19.82% better than the ANFIS, LSTM, and RF
systems, respectively. In addition, ANFIS2 performs 2.54% better
than ANFIS in terms of MAPE. Therefore, based on the
performance indices tabulated in Table 2, it is obvious that the

FIGURE 9
Performance of ANFIS, ANFIS2, LSTM, and RF systems for energy consumption prediction.

TABLE 2 Prediction errors of all predicted systems.

Errors

AVG (kWh) RMSE (kWh) MAPE (%)

ANFIS 0.8163 1.6756 17.81

ANFIS2 0.8098 1.5995 17.36

LSTM 1.2199 1.6574 39.87

RF 1.4771 1.9949 48.62
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performance of the proposed ANFIS2-based prediction system is
better than that of the ANFIS, LSTM, and RF systems in all cases
during normal conditions.

4.4 Effect of COVID-19 on the load pattern
change and load forecasting

As already mentioned, the energy consumption patterns of
residential consumers changed significantly during the COVID-
19 time. The energy consumption pattern for the residential load in
Memphis city, United States, is shown in Figure 10, which considers

data from August 2018 to June 2021, where the data from August
2018 to 24March 2020 are considered pre-COVID-19 data, and data
from 25 March 2020 to June 2021 are considered COVID-19 data
[32]. Similarly, Table 3 provides an analysis of energy
consumption between pre-COVID-19 and COVID-19
conditions. Moreover, Figure 10 shows that energy
consumption increased significantly for all months except
May, September, and October. The maximum energy
consumption increased for the month of July. In addition,
from Table 3, it is evident that energy consumption has
increased from January to April, ranging from 38.87% to
57.37%. The maximum increase is 60.97%, which is also

FIGURE 10
Daily average energy consumption of consumers in Memphis, United States.

TABLE 3 Analysis of energy consumption between pre-COVID-19 and COVID-19 conditions.

Month Energy consumption (kWh) % increase

Pre-COVID-19 COVID-19

January 3.06 4.81 57.37

February 2.92 4.13 41.54

March 2.79 4.03 44.21

April 3.46 4.81 38.87

May 9.87 9.27 −6.08

June 13.44 17.46 29.96

July 14.57 23.45 60.97

August 18.11 19.84 9.54

September 16.17 14.87 −8.03

October 6.94 6.61 −4.70

November 3.78 4.52 19.73

December 3.72 5.55 49.23
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evident from Figure 10. On the other hand, the minimum
increase in average daily energy consumption between the pre-
COVID-19 condition and the COVID-19 condition was 9.54% in
August. Due to the energy consumption pattern change during
the COVID-19 period, the performance of ANFIS2, ANFIS,
LSTM, and RF systems requires investigations. Therefore, all
systems that were tuned with normal time data are tested for
COVID-19 data prediction, and randomly chosen 30 days’ data
during COVID-19 conditions are used as input to all the systems.

Figure 11 shows the performances of the ANFIS2, ANFIS,
LSTM, and RF systems in predicting daily average energy
consumption during the COVID-19 period, which also
validates the efficacy of ANFIS2 over ANFIS. However, the
LSTM and RF systems perform better than ANFIS and
ANFIS2 in predicting COVID-19 data, as shown in Table 4, as
they predicted higher energy consumption for normal
conditions. Therefore, predicted data by the LSTM and RF
methods are closer to the actual data during COVID-19
periods. Table 4 shows that the absolute mean, RMSE, and
MAPE are less (which indicates improvements of 16.19%,
6.53%, and 20.42%, respectively) for the LSTM system
compared to the proposed ANFIS2.

However, the prediction errors increased for ANFIS2 for
COVID-19 data, as compared to the normal condition data,

which is evident from Table 5. Therefore, the absolute mean,
RMSE, and MAPE of ANFIS2 have increased by 271.17%,
122.85%, and 101.96%, respectively. This means
ANFIS2 should be modified so that it can also predict well for
COVID-19 data.

4.5 Tuning of the ANFIS2 method
parameters to adapt with the changed load
due to COVID-19

To improve the performance of ANFIS2, two situations are
considered. In the first situation, the input of ANFIS2 is changed
to cope with the energy consumption pattern while keeping the
same ANFIS2 that has been tuned with normal condition data. In
the second situation, the changed parameter is considered while
ANFIS2 is tuned with COVID-19 data.

4.5.1 Condition 1
As ANFIS2 has only two inputs, one of them can be changed

to cope with the energy consumption pattern change. Moreover,
the first input is the temperature that cannot be changed.
Therefore, the second input, R, should be changed as
compared to the normal conditions. R is determined from
occupancy and the day type (Alam and Ali, 2020b). The value
of day type (d) is considered to be 0, 1, and 2 for weekdays,
weekends, and special days, respectively. The reason behind

FIGURE 11
Comparison of performance of ANFIS2, ANFIS, LSTM, and RF systems for prediction during COVID-19 conditions.

TABLE 4 Prediction errors of predicted systems for COVID-19 data.

Errors

AVG (kWh) RMSE (kWh) MAPE (%)

ANFIS 3.2955 3.8902 36.78

ANFIS2 3.0057 3.5645 35.06

LSTM 2.5190 3.3317 27.90

Rf 2.6102 3.4819 24.08

TABLE 5 Prediction error comparison of ANFIS2 system.

ANFIS2 Errors

AVG (kWh) RMSE (kWh) MAPE (%)

Pre-COVID-19 0.8098 1.5995 17.36

COVID 3.0057 3.5645 35.06
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choosing these values is that during weekdays, most of the family
members will be out for work, and during the weekend, they will
stay at home. Moreover, during special days, the energy
consumption will be higher than the conventional days.
However, during COVID-19 periods, most of the family
members worked from home on weekdays. Therefore, the
energy consumption changed tremendously for weekdays. As
the number of occupants has not changed during COVID-19
time, the values of d for the weekdays, weekends, and special days
can be considered 2, 1, and 2, respectively, for COVID-19 data.

Finally, based on the changed input R and ANFIS2 that was
tuned with normal time data, the 30 days’ daily average energy
consumption, which are the same as shown in Figure 11, are
shown in Figure 12. Figure 12 indicates that the performance of
the modified1 ANFIS2 has improved by just adjusting R and
without retuning ANFIS2. Moreover, the errors are reduced, as
shown in Table 6. The absolute mean error, RMSE, and MAPE
are reduced by 38.65%, 41.51%, and 25.95%, respectively.

Moreover, the absolute mean error, RMSE, and MAPE are less
than that of the LSTM system that performs better than
ANFIS2 without any modification for COVID-19 data.

4.5.2 Condition 2
Figure 13 shows the modified model for ANFIS2 that can

predict well both normal data and COVID-19 data. All the data
are incorporated into ANFIS2, which separates normal data and

COVID-19 data, and these different data are sent to two
different sections. Normal data are sent to ANFIS2 that was
tuned with normal data. This section will have the same
parameters as shown in Table 1 and Figure 2. Similarly,
COVID-19 data are received by ANFIS2 that was tuned by
COVID-19 data. This section, as tuned by the COVID-19
data, has different parameters, which are shown in Table 7
and Table 8.

Moreover, the membership function is different, as shown in
Figure 14, which has eight membership functions for each input
compared to two membership functions for each input for the
ANFIS2 section that will process normal data. The eight
membership functions are selected based on subtractive
clustering that considers the type of data and correlation
between input and output data during the COVID-19
situation. Similar to the fuzzy-2 system, the membership
function has upper and lower membership functions. All the
membership functions inside a particular figure are tuned based
on the correlation between the input and output for various
ranges of input. Moreover, the output membership functions of
the type-2 fuzzy system remain the same as in the conventional
fuzzy system, which are linear functions considered for this work.
In both sections, the two inputs are kept the same, and the day
type is considered the same for both normal and COVID-19
periods, which were considered for ANFIS2. The data separation
unit provides COVID-19 data input (X1) and normal data input
(X2) to two separate sections. The COVID-19 (e1) and normal
predicted data (e2) are incorporated into the data accumulator,
which will provide predicted data (e) from modified2-ANFIS2.
Therefore, both normal and COVID-19 data can be predicted by
modified2-ANFIS2, and it will be robust for all conditions.

The performance of modified2-ANFIS2 along with modified1-
ANFIS2 and LSTM systems, for the same data prediction, as shown
in Figure 11 and Figure 12, is shown in Figure 15. For the purpose of
performance comparison, the predicted data by modified1-ANFIS2
are also shown in Figure 15. Figure 15 shows that modified2-ANFIS2
performs better than the modified1-ANFIS2 and LSTM systems for

FIGURE 12
Comparison of performances of ANFIS2, modified1-ANFIS2, and LSTM systems for prediction during COVID-19 conditions.

TABLE 6 Prediction error comparison among ANFIS2 and LSTM system.

COVID Errors

AVG (kWh) RMSE (kWh) MAPE (%)

Modified1-ANFIS2 1.8440 2.0846 25.96

ANFIS2 3.0057 3.5645 35.06

LSTM 2.5190 3.3317 27.90
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predicting the same data. Therefore, the error is further reduced,
which is evident from Table 9. The absolute mean error, RMSE, and
MAPE are reduced by 32.77%, 2.15%, and 45.42%, respectively. So
the modified2-ANFIS2 system performs the best in predicting
energy consumption during the COVID-19 situation.

5 Conclusion

In this work, a new ANFIS2 method is implemented for the
prediction of residential energy consumption for both normal days
and COVID-19 conditions. To validate the efficacy of the proposed
ANFIS2, its performance has been compared with the proposed ANFIS

reported in Alam and Ali (2020a), LSTM, and RF systems. For training
purpose of the systems, 598 days’ data are utilized, and data of 30 days
are considered for the prediction of energy consumption.Moreover, the
performances of all the systems are evaluated for COVID-19 situations
as the change in energy consumption is reported in the literature. Two
modifications in terms of the input and parameters of ANFIS2 are
made to cope with the change in the consumption pattern and to
reduce the prediction errors during COVID-19. Based on the obtained
results, the following conclusions can be made:

FIGURE 13
Modified2-ANFIS2 system for prediction during COVID-19.

TABLE 7 Subtractive clustering parameter for COVID-19 data tuning.

Parameter Value

Range of influence 0.50

Squash factor 0.50

Accept ratio 0.50

Reject ratio 0.15

TABLE 8 ANFIS2 parameter for COVID-19 data tuning.

Parameter

Number of nodes 53

Number of linear parameters 24

Number of nonlinear parameters 32

Total number of parameters 56

Number of training data pairs 276

Number of checking data pairs 0

Number of fuzzy rules 8

FIGURE 14
Input membership functions for modified2-ANFIS2 system that
are tuned with COVID-19 data.
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a) The proposed ANFIS2-based prediction system is effective in
forecasting residential loads during both normal and COVID-19
periods.

b) The performance of the proposed ANFIS2 method is better than
that of the existing ANFIS, LSTM, and RF approaches during
both normal and COVID-19 situations.

c) The proposed ANFIS2 can be easily implemented in real practice
for both normal and COVID-19 conditions.

In the near future, other new methods for load forecasting will be
explored. In addition, the performance of those methods will be
compared with that of the proposed ANFIS2. The limitation of the
proposedmodified2-ANFIS2 is that data aremanually separated, which
is done by the consumer. In the future, a more robust system that can
automatically separate the pre-COVID-19 and COVID-19 data by
analyzing the pattern will be explored.
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FIGURE 15
Comparison of performances of LSTM, modified1-ANFIS2, and modified2-ANFIS2 systems for prediction during COVID-19.

TABLE 9 Prediction error comparison among modified ANFIS2 and LSTM
methods.

COVID-19 Errors

AVG (kWh) RMSE (kWh) MAPE (%)

Modified1-ANFIS2 1.8440 2.0846 25.96

Modified2-ANFIS2 1.2396 2.0398 14.12

LSTM 2.5190 3.3317 27.90
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